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Abstract

Detection of somatic point substitutions is a key step in characterizing the cancer genome. 

Mutations in cancer are rare (0.1–100/Mb) and often occur only in a subset of the sequenced cells, 

either due to contamination by normal cells or due to tumor heterogeneity. Consequently, mutation 

calling methods need to be both specific, avoiding false positives, and sensitive to detect clonal 

and sub-clonal mutations. The decreased sensitivity of existing methods for low allelic fraction 

mutations highlights the pressing need for improved and systematically evaluated mutation 

detection methods. Here we present MuTect, a method based on a Bayesian classifier designed to 

detect somatic mutations with very low allele-fractions, requiring only a few supporting reads, 

followed by a set of carefully tuned filters that ensure high specificity. We also describe novel 

benchmarking approaches, which use real sequencing data to evaluate the sensitivity and 

specificity as a function of sequencing depth, base quality and allelic fraction. Compared with 

other methods, MuTect has higher sensitivity with similar specificity, especially for mutations 

with allelic fractions as low as 0.1 and below, making MuTect particularly useful for studying 

cancer subclones and their evolution in standard exome and genome sequencing data.
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INTRODUCTION

Somatic single-nucleotide substitutions are an important and common mechanism for 

altering gene function in cancer. Yet, they are difficult to identify. First, they occur at a very 

low frequency in the genome, ranging from 0.1 to 100 mutations per megabase, depending 

on tumor type1–7. Second, the alterations may be present only in a small fraction of the DNA 

molecules originating from the specific genomic locus for reasons including: contaminating 

normal cells in the analyzed sample; local copy-number variation within the cancer genome; 

and presence of a mutation within only a sub-population of the tumor cells8–11 

(‘subclonality’). The fraction of DNA molecules harboring an alteration (‘allelic fraction’) 

has been reported to be as low as 0.05 for highly impure tumors8. The study of the subclonal 

structure of tumors is not only critical to understanding tumor evolution both in disease 

progression and response to treatment12, but also for developing reliable clinical diagnostic 

tools for personalized cancer therapy13.

Recent reports on subclonal events in cancer used non-standard experiments; they have 

either inferred subclonal status by looking for shared clonal events among several 

metastases from the same patient14, resorted to ultra-deep sequencing11 or sequenced very 

small numbers of single cells15–17. In contrast, tens of thousands of tumors are being 

sequenced at standard depths of 100–150x for exomes and 30–60x for whole genome as part 

of large scale cancer genome projects, such as The Cancer Genome Atlas (TCGA)1,2,7 and 

the International Cancer Genome Consortium (ICGC)18. In order to detect clonal and sub-

clonal mutations present in these samples there is a need for a highly sensitive and specific 

mutation calling method. Although specificity can be controlled through subsequent 

experimental validation, this is an expensive and time-consuming step that is impractical for 

general application.

The sensitivity and specificity of any somatic-mutation calling method varies along the 

genome. They depend on several factors, including the following: depth of sequence 

coverage in the tumor and a patient-matched normal sample; the local sequencing error rate; 

the allelic fraction of the mutation; and the evidence thresholds used to declare a mutation. 

Understanding how sensitivity and specificity depend on these factors is necessary for 

designing experiments with adequate power to detect mutations at a given allelic fraction, as 

well as for inferring the mutation frequency along the genome, which is a key parameter for 

understanding mutational processes and significance analysis19,20.

To meet these critical needs of high sensitivity and specificity, which are not adequately 

addressed by the available methods in the field21–23, we have developed a somatic point 

mutation caller, MuTect. During its development MuTect was used in numerous 

studies1–4,7,19,24–35. Here we describe the final and publicly available version of MuTect 

including the rationale behind its different components. We also estimate its performance as 

a function of the aforementioned factors using benchmarking approaches that, to our 

knowledge, have not been described before; through independent experimental validation in 

previous studies3,4,7,19,24–30; as well as by applying our method to datasets analyzed in other 

publications21,36,37. We demonstrate that our method is several times more sensitive than 

other methods for events at low allelic fractions while remaining highly specific, allowing 
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for deeper exploration of the mutational landscape of highly impure tumor samples and the 

subclonal evolution of tumors.

MuTect is freely available for non-commercial use at http://www.broadinstitute.org/

cancer/cga/mutect

RESULTS

Benchmarks for assessing mutation callers

Many mutation detection methods have been developed, but there are few systematic 

approaches for benchmarking their performance on real sequencing data. Previous 

publications described simulation methods ranging from fully synthetic models21 to ones 

that better capture real sequencing errors11. However, none of these methods model the full 

diversity of non-random sequencing errors of both the reference and alternate alleles at the 

genomic site. To better evaluate the performance of mutation detection methods, we have 

used two benchmarking approaches, down-sampling and virtual tumors.

Down-sampling uses subsets of reads from primary sequencing data of validated somatic 

mutations to measure the sensitivity with which a mutation caller identifies the known 

mutations. Subsets are generated by randomly excluding reads from the experimentally-

derived data set until a desired depth of coverage is reached. Notably, down-sampling 

preserves the expected allelic fraction of the original mutation because reads are removed 

regardless whether or not they contain the mutant allele. The down-sampling approach is 

limited in four respects: (i) the number of validated events is typically small, resulting in 

larger error bars for the sensitivity estimate; (ii) because allele fractions are preserved, only 

previously validated allele fractions can be explored; (iii) the analysis excludes any 

mutations that were not originally detected and hence may overestimate the true sensitivity; 

and (iv) specificity cannot be measured.

To address the issues with down-sampling, we developed a benchmarking procedure that 

involves creating ‘virtual tumors’ in which we know all true mutations with certainty 

(Online Methods, Supplementary Fig. 1). To measure specificity, we created virtual tumors 

and normals, at controlled depths, from sequencing data generated by two different 

sequencing experiments of the same normal sample (designated A). All mutations identified 

are necessarily false positives. To measure sensitivity, we simulated somatic mutations at 

controlled allele fractions by replacing selected reads in the virtual tumor with reads from a 

second sample (designated B) at loci where sample A is reference and sample B harbors a 

high confidence germline heterozygous event. We then assess the ability of an algorithm to 

detect these simulated somatic mutations. In this manner, we can measure sensitivity using 

real sequencing data at a desired depth of coverage and allelic fraction.

The two benchmarking approaches are complementary. Down-sampling uses real somatic 

mutations but is limited in the parameter regimes it can explore, and it cannot measure 

specificity directly. In contrast, the virtual tumor approach does not have these limitations. 

However, it simulates somatic mutations using germline events, which differ from somatic 

mutations in their nucleotide substitution frequencies and context. As recalibrated base 
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qualities vary for the different bases (owing to biases in machine errors), there is variable 

sensitivity to detect different substitutions (Supplementary Fig. 2). Because the difference in 

sensitivity is minimal, we have chosen to use all the germline events. However, it is possible 

with the virtual tumor approach to simulate the mutation spectrum of a specific tumor type 

by reweighting the germline events to match the expected mutation spectrum of the tumor.

Somatic mutation detection with MuTect

MuTect takes as input sequence data from matched tumor and normal DNA after alignment 

of the reads to a reference genome and standard preprocessing steps38–40, which include 

marking of duplicate reads, recalibration of base quality scores and local realignment. The 

method operates on each genomic locus independently and consists of four key steps (Fig. 

1): (i) Removal of low-quality sequence data (Supplementary Methods); (ii) variant 

detection in the tumor using a Bayesian classifier; (iii) filtering to remove false positives 

resulting from correlated sequencing artifacts that are not captured by the error model; and 

(iv) designation of the variants as somatic or germline by a second Bayesian classifier.

Variant detection—Variants in the tumor are identified by analyzing the data at each site 

under two alternative models: (i) a reference model, M0, which assumes there is no variant at 

the site and any observed non-reference bases are due to random sequencing errors; and (ii) 

a variant model, , which assumes the site contains a true variant allele m at allele 

fraction f in addition to sequencing errors. The allele fraction f is unknown and is estimated 

as the fraction of tumor reads that support m. This explicit modeling of f instead of assuming 

a heterozygous, diploid event makes our method more sensitive than other methods21,22. We 

declare m to be a candidate variant if the log-likelihood ratio of the data under the variant 

and reference models (that is, the LOD score (log odds)) exceeds a predefined decision 

threshold that depends on the expected mutation frequency and the desired false positive rate 

(Online Methods). The choice of decision threshold can be used to control the tradeoff 

between specificity and sensitivity, as described by a Receiver Operating Characteristic 

(ROC) curve (Fig. 2a, dashed line). We use a fixed threshold of 6.3 for all results presented 

unless indicated otherwise. This threshold corresponds to a 106.3:1 odds ratio in favor of the 

reference model, which is reasonable because the frequency of mutations in many tumors is 

only 1–10 per Mb and thus the a priori odds of a site harboring a mutation may be as low as 

1:105 or 1:106.

The LOD score is useful as a threshold for detection, as observed in the concordance of 

predicted sensitivity and measured sensitivity from the virtual tumor approach (Fig. 2a, solid 

grey vs. dashed line; Fig. 2b, solid lines vs. circles). Nonetheless, the LOD score cannot be 

immediately translated into the probability that a variant is due to true mutation rather than 

to sequencing error because the LOD score is calculated under an assumption of 

independent sequencing errors and accurate read placement. As we discuss below, these 

assumptions are incorrect and as a result, although direct application of the LOD score 

accurately estimates the sensitivity to detect a mutation, it substantially underestimates the 

false positive rate.

Cibulskis et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2013 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variant filtering—To eliminate these additional false positives due to inaccurate read 

placement and non-independent sequencing errors, we developed six filters (Fig. 1, Table 1). 

In addition, we use a panel of normal samples as controls to further eliminate both germline 

events and artifacts (Online Methods). Subsets of these filters define several versions of the 

method (Fig. 1): (i) Standard (STD), which applies no filters and thus includes all detected 

variants; (ii) High Confidence (HC), which applies the six filters and (iii) High Confidence + 

Panel of Normals (HC+PON), which additionally applies the Panel of Normals filter.

We tested the utility of these filters by applying them to the virtual tumors benchmark and 

re-comparing the results with the calculations (Fig. 2a). The sensitivity estimated for both 

with (HC) and without (STD) filters is similar, indicating that the model is accurate with 

respect to detection and that the filters do not adversely impact sensitivity. However, after 

applying the filters (HC), the specificity increases and closely follows the calculations, 

suggesting that the filters have largely eliminated the systematic false positives (Fig. 2a, 

Supplementary Fig. 3).

Variant classification—Finally, each variant detected in the tumor is designated as 

somatic (not present in the matched normal), germline (present in the matched normal) or 

variant (present in the tumor, but indeterminate status in the matched normal due to 

insufficient data). To perform this classification, we use a LOD score that compares the 

likelihood of the data under models in which the variant is present as a heterozygote or 

absent in the matched normal (Online Methods). We declare that there are insufficient data 

for classification if the power to make a germline classification is less than 95%. We also 

make use of public germline variation databases41 as a prior probability of an event being 

germline.

Sensitivity

We applied several benchmarking methods to evaluate the sensitivity of our method to 

detect mutations as a function of sequencing depth and allelic fraction (Fig. 2b). First, we 

calculated the sensitivity under a model of independent sequencing errors and accurate read 

placement using our statistical test given an allelic fraction, tumor sequencing depth and 

assuming all bases have a fixed base quality score of Q35 (approximate mean base quality 

score in simulation data; Online Methods; Supplementary Fig. 4).

Next, to apply the down-sampling benchmark, we used 3,753 validated somatic mutations, 

stratified by allele fraction (median=0.28, range=0.07–0.94), in colorectal cancer7 with 

deep-coverage (≥100x) exome-capture sequencing downloaded from dbGAP (phs000178). 

Finally, to apply the virtual tumor benchmark, we used deep-coverage data from two high 

coverage whole-genome samples (NA12878 and NA12981) sequenced on Illumina HiSeq 

instruments by the 1000 Genomes Project42 and another previous study43, across 1 Gb of 

genomic territory. Note that we cannot use the Panel of Normals filter (HC+PON) in the 

virtual tumor sensitivity benchmark, because it discards common germline sites.

Sensitivity estimates based on these three approaches were highly consistent with each other 

(median coefficients of variation for each depth of 3.1%). This suggests that the 

benchmarking approaches accurately estimate the sensitivity of mutation calling methods, 

Cibulskis et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2013 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and also that the calculated sensitivity is robust across a large range of parameter values 

enabling us to confidently extrapolate to higher depths and lower allele fractions 

(Supplementary Table 1).

Based on this analysis, we observe that MuTect is a highly sensitive detection method. It 

detects mutations at a site with 30x depth in the tumor (typical of whole genome 

sequencing) and an allele fraction of 0.2 with 95.6% sensitivity. The sensitivity can be 

increased to 99.9% by sequencing deeper (to 50x), and drops to 58.9% for detecting 

mutations with allelic fraction of 0.1 (at 30x) (Fig. 2b, Supplementary Table 1). 

Furthermore, with 150x depth (typical of exome sequencing) we have 66.4% sensitivity for 

3% allele fraction events. It is this sensitivity to detect low-allele fraction events that 

uniquely positions MuTect to analyze samples with low purity or with complex subclonal 

structure.

This detailed understanding of the factors determining sensitivity is critical for targeting the 

appropriate depth of sequencing. Because the allelic fraction of a mutation depends on the 

tumor purity, local copy-number and clonality8, one can calculate the sequencing depth 

required for a desired sensitivity on a tumor-specific basis. Also, given a sequencing data set 

we can calculate the sensitivity to have detected a mutation with a particular allelic fraction 

for each base along the genome. This allows us to assert the absence of a mutation (with a 

specified allele fraction), which is particularly important in a clinical setting.

Specificity

It is trivial to create an extremely sensitive somatic mutation detection method by 

identifying any site with a single non-reference read as a candidate mutation. Clearly, such 

an approach would have an enormous false positive rate. Therefore in evaluating the 

performance of a mutation detection method, it is critical to thoroughly characterize its 

specificity. There are two sources of false positives: (i) over-calling events in the tumor and 

(ii) under-calling true germline events in the matched normal. Over-calling in the tumor is 

typically due to sequencing errors and inaccurate read placements whereas under-calling of 

true germline events in the matched normal is often due to low sequencing depth in the 

normal.

To measure the false positive rate due to tumor over-calling, we used the virtual tumor 

approach across 1 Gb of NA12878 at various depths in the virtual tumor and at 30x in the 

virtual normal. All detected events are false positives, but to eliminate those due to under-

calling germline events from consideration, we excluded all known germline variant sites. 

Using no filters (STD) the false positive rate increased with depth (from 6.7/mb at 5x to 

20.1/mb at 30x) (Fig. 3a). This is due to the increased power to call mutations with lower 

allele fractions, which are enriched with false positives (Fig. 3b). The HC filters reduce the 

false positive rate by an order of magnitude (1.00/mb at 30x). The Panel of Normals (HC

+PON) then filters out remaining rare, but recurrent, artifacts (0.51/mb at 30x). Certain 

filters, such as the Poor Mapping filter, have the biggest effect at low depths whereas other 

filters are more invariant to depth, such as the Proximal Gap filter (Fig. 3c). The Clustered 

Position filter rejects the most sites exclusively. However, the majority of false positives are 

rejected by several filters.
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We then studied the errors owing to under-calling of true germline events in the matched 

normal with the same approach but instead using the ~1 million germline variant loci in the 

same territory (Fig. 3d–f). In classifying an event as germline or somatic, MuTect uses 

different prior probabilities at sites of common germline variation versus the rest of the 

genome, and therefore we report the false positive rates separately for these two scenarios 

(Fig. 3d) along with the power to have classified such events (Fig. 3e–f). We observe that 

with ≤ 7 reads in the normal at novel germline sites (Fig. 3e) or with ≤ 18 reads at sites of 

known germline variation (Fig. 3f), there is insufficient data to classify a variant as being 

somatic or germline, and hence we keep such sites as ‘variant’ and never make false positive 

somatic calls in these cases. Once there is sufficient data to make a classification, the error 

rate drops rapidly from 2.4×10−3 at 8x in the normal to below 0.2×10−3 at 12x, which 

corresponds to less than one misclassified germline in the entire exome (~30mb in the 

exome × 50 novel germline variants/mb × 0.2×10−3 error rate).

Finally, we have used MuTect in several recent studies and found a consistent validation rate 

of ~95% in coding regions based on multiple orthogonal validation technologies3,4,7,19,24–30 

(Table 2) These studies used earlier versions of MuTect which were less sensitive, however 

a recent publication13 using this version was able to detect mutations present at 7% allelic 

fraction (8 reads out of 102) which were subsequently validated by ultra-deep sequencing 

(~6,000x). In fact, the validation rate is not the best measure for comparing false positive 

rates across studies because it depends on the ratio of false positive to true mutations, which 

varies across tumor types. We therefore also report the false positive rate itself (Table 2). 

We observe a median false positive rate of 0.16/Mb, which is lower than the rate we report 

using whole genome data (Fig. 3) but consistent with the rate measured when restricting to 

coding regions (Supplementary Fig. 5), indicating that coding regions are less prone to 

sequencing and alignment errors.

Comparison to other methods

We used the down-sampling and virtual tumor benchmarking approaches to compare 

MuTect against other commonly used methods: SomaticSniper21, JointSNVMix22 and 

Strelka23. Each method was tested in two configurations, standard (STD) and high 

confidence (HC), with thresholds chosen to produce similar false positive rates across the 

methods. For SomaticSniper (v1.0.0), we used the published configurations and for 

JointSNVMix (v0.7.5) we used a detection threshold of P(Somatic) ≥ 0.95 for STD and 

P(Somatic) ≥ 0.9998 for HC. For Strelka (v0.4.7) we used the recommended configuration 

with a quality score ≥ 15 for HC and ≥ 1 for STD.

We evaluated the sensitivity of the methods with regard to allele fraction and tumor 

sequencing depth using the virtual tumor (Fig. 4a) and downsampling (Supplementary Fig. 

6) approaches, and observed a sharp distinction in sensitivity, particularly at lower allele 

fractions. We analyzed data for 30x sequence coverage. In the standard configurations, all 

methods show ≥ 99.3% sensitivity for mutations at an allele fraction of 0.4. However, in the 

HC configurations, MuTect, JointSNVMix and Strelka remain sensitive, 98.8%, 96.6% and 

98.5% respectively, whereas SomaticSniper drops to 91.5%. At an allele fraction of 0.1, 

MuTect HC can detect more than half of the mutations (53.2%), whereas Strelka HC detects 
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only 29.7%, JointSNVMix HC drops to 16.8% and SomaticSniper HC falls to 7.4%. At an 

even lower allele fraction of 0.05, MuTect HC has 16.0% sensitivity but can be increased to 

51.9% with 60x coverage. By contrast, JointSNVMix HC and SomaticSniper HC have a 

sensitivity of ≤ 2.0%, and the sensitivity does not increase appreciably with tumor 

sequencing depth. Strelka HC detects just 4.6% of the events at 30x and only increases to 

20.8% at 60x. Sensitivity for such low allelic fraction events is critical for characterizing 

impure tumors or subclonal mutations in heterogeneous tumors, and it appears that MuTect 

is much more sensitive in this regime.

As a more sensitive method may also be less specific, we also compared the performance of 

the methods with regard to the two kinds of false positives. We observed a very low false 

positive rate due to miscalled germline sites for all methods given sufficient depth (≥15x) in 

the matched normal (Fig. 4b). The false positive rates per megabase owing to miscalled 

reference sites (Fig. 4c) are comparable above 20x in both the STD configuration 

(median=10.2, range=0.7–20.1) and the HC configuration (median=1.0, range=0.2–3.1).

We can summarize the tradeoff between sensitivity and specificity for each of the methods 

using a ROC curve, which depends on the sequencing depths in the tumor and normal and 

the mutation allele fraction. Figure 4d gives an example using tumor depth of 30x, normal 

depth of 30x and allele fraction of 0.1, showing that MuTect is a generally more sensitive 

for a given specificity and also has a much smaller decrease in sensitivity for a similar 

increase in specificity gained by the HC configuration (dashed lines).

Finally, we have also compared the sensitivity of the methods using previously reported 

sequencing data and validated mutations in the COLO-829 melanoma cell line37 

(Supplementary Table 2). Although MuTect is slightly more sensitive than the other 

methods, this dataset represents a pure cell line with easily detectable high allelic fractions 

events (median=0.55) and thus does not expose differences between methods. By running 

MuTect and the other mutation callers we were able to find additional mutations not 

originally reported (Supplementary Tables 3,4), underscoring that comparisons to mutations 

reported in the literature typically underestimate the sensitivity as the complete ground truth 

set of somatic mutations is often unknown.

Discussion

As new somatic mutation callers are developed, the cancer genomics community will greatly 

benefit from a systematic performance measurement using the approaches described here 

across the entire parameter space of tumor and normal depths and mutation allele fraction. 

Our method as well as the tools we developed to benchmark mutation detection methods are 

available, and we encourage methods developers to report the characteristics of their method 

using these metrics. The approaches described here can also be extended to other alterations 

such as indels or rearrangements.

Our data suggest that MuTect has an advantage over other methods in terms of its tradeoff 

between specificity and sensitivity (Fig. 4). The advantage in sensitivity of MuTect is 

derived from the variant detection statistical test, which includes an estimation of the allele 
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fraction of the event, and the working point chosen along the ROC curve. SomaticSniper 

and JointSNVMix use a model based on a clonal mutation in a pure, diploid tumor (and thus 

assume a fixed 50% allele fraction). This assumption reduces sensitivity for lower allele 

fraction events. In contrast, Strelka specifically considers allele fraction, and thus in the STD 

configuration has similar sensitivity to MuTect. However, when running in the 

recommended HC configurations to control false positives, MuTect has only a minor drop in 

sensitivity compared with the other methods. This is likely because the filters in MuTect 

were carefully tuned to reject true false positive calls without sacrificing sensitivity.

We have shown that MuTect is much more sensitive at a given specificity than competing 

methods, allowing us to more comprehensively characterize the landscape of somatic 

mutations, particularly those present in a small fraction of cancer cells. Moreover, this can 

be done with standard sequencing depths enabling analysis of the large datasets that are 

being generated worldwide. Analysis of subclonal mutations and changes in the fractions of 

cancer cells which harbor them is a powerful way to study the evolution of subclones as they 

progress during treatment, metastasis and relapse11,12,44,45. In particular, we demonstrated 

that the presence of subclonal mutations in genes involved in driving chronic lymphocytic 

leukemia (CLL) is an independent prognostic factor beyond the currently used clinical 

parameters13. In fact, using standard exome sequencing data, we were able to detect 

mutations present in as low as 10% of cancer cells, representing an expected allele fraction 

of 0.05 (assuming a heterozygous mutations in a diploid region) even before accounting for 

stromal contamination, which appear to have an effect on time to therapy13.

Because other methods are not as sensitive to low allelic fraction events, they may miss 

important subclonal drivers of progression or resistance. Therefore, the sensitivity of 

MuTect to detect subclonal mutations with low allele-fractions represents a substantial 

advance, essential to future discoveries regarding the subclonal architecture of cancer and 

the translation of those discoveries into clinical diagnostics affecting cancer patient 

treatment and outcomes.

Online Methods

Virtual tumor benchmarking approach

The virtual tumor approach begins with deep-coverage data from a high coverage whole-

genome sample (NA12878) sequenced on Illumina HiSeq instruments by the 1000 Genomes 

Project42 (2 libraries, “Solexa-18483” and “Solexa-18484”, at 30x each) and Gnerre et al.43 

(1 library, “Solexa-23661”, at 30x). These data are publicly available – details are in 

Supplementary Table 5.

First, we randomly divide the sequencing data into several partitions. We chose to create 6 

partitions from each of the 3 libraries (18 partitions total), therefore creating data partitions 

with ~5x each. We accomplished this by sorting the BAM by name using SortSam from the 

Picard (http://picard.sourceforge.net) tools to effectively give the reads random ordering. We 

then randomly allocate each read to one of the partitions and write it to a partition-specific 

BAM file.
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In order to measure specificity, we can designate certain partitions as the tumor and others 

as the normal and process them through MuTect (or any other method). Somatic mutations 

identified in this process are false positives as they are either germline events that are under-

called in the normal, or erroneous variants due to sequencing noise over-called in the 

partitions designated as tumor. We chose to draw reads from libraries Solexa-18483 and 

Solexa-23661 for the tumor and from library Solexa-18484 for the normal.

In order to measure sensitivity, we turn to additional sequencing data on a second individual 

(Supplementary Table 5). In this case we chose NA12891 that was also sequenced to 60x as 

part of the 1000 Genomes Project. Using the published high confidence SNP genotypes for 

those samples from the 1000 Genomes Project, we identify a set of sites that are 

heterozygous in NA12891 and homozygous for the reference in NA12878. We then used a 

second utility, SomaticSpike, which is part of the MuTect software package, to perform a 

mixing experiment in-silico. At each of the selected sites, this utility attempts to replace a 

number of reads determined by a binomial distribution using a specified allelic fraction in 

the NA12878 data with reads from the NA12891 data, therefore simulating a somatic 

mutation of known location, type and expected allele fraction. If there are not enough reads 

in NA12891 to replace the desired reads in NA12878 the site is skipped. The output of this 

process is a virtual tumor BAM with the in-silico variants and a set of locations of those 

variants. Sensitivity is then estimated by attempting to detect mutations at these sites.

Variant detection

For each site we denote the reference allele as r ∈ {A, C, G, T} and denote by bi and ei the 

called base of the i-th read (i=1…d) that covers the site and the probability of error of that 

base call (each base has an associated Phred-like quality score qi where ). To call a 

variant in the tumor we try to explain the data using two models: (i) a model, M0, in which 

there is no variant at the site and all non-reference bases are explained by sequencing noise; 

and (ii) a model, , in which a variant allele m truly exists at the site with an allele 

fraction f and, as in M0, reads are also subject to sequencing noise. Note that M0 is 

equivalent to  with f=0.

The likelihood of the model  is given by

assuming the sequencing errors are independent across reads. If all substitution errors are 

equally likely, i.e. occur with probability ei/3, we obtain
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Variant detection is performed by comparing the likelihood of both models and if their ratio, 

i.e. the LOD score (log odds) exceeds a decision threshold (log10 δT) we declare m as a 

candidate variant at the site. We calculate

and set δT to 2 to ensure that we are at least twice as confident that the site is variant as 

compared to noise. We can then also rewrite LODT as:

To determine P(m,f), we first assume that P(m) and P(f) are statistically independent, and 

that P(f) is uniformly distributed (i.e. P(f)=1) and P(m) is a 1/3 of the expected mutation 

frequency for the studied tumor type (representing equal prior for all substitutions). In 

practice, we use a typical mutation frequency of 3×10−6 which yields θT=6.3.

We find the maximum LODT across all three values of m and in order to set the unknown 

allelic fraction parameter f, we could use maximum likelihood estimation, i.e. find f that 

maximizes LODT. However, for computational efficiency, we instead estimate 

.

A common source of false positive mutation calls is contamination of the tumor DNA with 

DNA from other individuals. Germline SNPs in the contaminating DNA appear as somatic 

mutations. We have previously demonstrated that such contamination can yield a large 

number of false positives and developed a tool, ContEst46 to estimate the contamination 

level, fcont, in sequencing data. Low-level contamination of DNA is a common phenomenon 

and even 2% contamination can give rise to 166 false positive calls per megabase and 10/Mb 

when excluding known SNP sites46. To protect against this type of false positives and 

enable analysis of contaminated samples, we replace the reference model with a variant 

model . This guarantees that variants are called only when they are highly unlikely to 

be explained by contamination.

Variant Filters

Panel of Normals—To further reduce false positives and miscalled germline events, we 

employ a panel of normal samples as a filter. To create this filter we run MuTect on a set of 

normals as if they were tumors without a matched normal in STD mode. From this data, a 

VCF file is created for the sites that were identified as variant by MuTect in more than one 

normal.
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This VCF is then supplied to the caller, which rejects these sites. However, if the site was 

present in the supplied VCF of known mutations (--cosmic) it is retained because these sites 

could represent known recurrent somatic mutations which have been detected in the panel of 

normal when the normal are from adjacent tissue or have some contamination tumor DNA.

The more normal samples used to construct this panel, the higher the power will be to detect 

and remove rare artifacts. Therefore, we typically we use all the normal samples readily 

available. The results presented here were obtained by using a panel of whole genome 

sequencing data from blood normals of 125 solid tumor cancer patients. The samples used as 

part of the virtual tumor approach were not included in this panel.

Variant Classification

To perform this classification, we use a similar classifier to the one described above. In this 

case f, in , is conservatively set to 0.5 for a germline heterozygous variant. Thus we have

which can be rewritten as

Note that here the terms are inverted since we want to be confident that alteration was not 

present. For δN we set a threshold of 10, which is higher than the threshold for δT because 

we want to be more confident in our variant classification as misclassified germline events 

will quickly appear to be significant in downstream somatic analysis due to their elevated 

population frequency at recurrent sites as compared to real somatic events.

To calculate P(germline) we distinguish two cases: (i) sites which are known to be variant in 

the population and (ii) all other sites. We use the public dbSNP database41 to make this 

distinction.

There are ~30×106 sites known to be variant in the human population according to dbSNP 

release 134, which is ~1000 variants/megabase. A given individual typically has ~3×106 

variants in their genome, 95% of which fall on dbSNP sites41,42. Therefore we expect ~50 

variants/mb not at dbSNP sites, i.e. P(germline| non-dbSNP site) = 5×10−5 and therefore we 

use θN|non-dbSNP site = 2.2. At dbSNP sites, however, we expect 95% of the ~3×106 variants 

to occur in the 30×106 sites in the dbSNP database, yielding P(germline| dbSNP site) = 

0.095 hence θN|dbSNP site = 5.5.
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Sensitivity Calculation

To calculate the sensitivity to detect a mutation with allelic fraction f using n reads having a 

Phred-like quality score q (and hence a base error, e, of ), we first calculate k, the 

minimum number of reads with the alternate allele that will trigger a variant call using

The sensitivity is then the probability of observing k or more reads given the allelic fraction 

and depth. The marginal distribution of the number of reads with the alternate allele, either 

originating from the alternate base or a misread reference base, follows a binomial 

distribution with a frequency that reflects the true underlying allelic fraction f and the 

probability of error e (note that here we take the worst case in which all misread bases 

convert to the same alternate allele). Therefore we can calculate the probability of having 

observed k or more reads as:

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of somatic point mutation detection using MuTect.

MuTect takes as input tumor (T) and normal (N) next generation sequencing data and, after 

removing low quality reads (Supplementary Methods), determines if there is evidence for a 

variant beyond the expected random sequencing errors. Candidate variant sites are then 

passed through six filters to remove artifacts (Table 1). Next, a Panel of Normals is used to 

screen out remaining false positives caused by rare error modes only detectable in additional 

samples. Finally, the somatic or germline status of passing variants is determined using the 

matched normal.
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Figure 2. 
Sensitivity as a function of sequencing depth and allelic fraction.

(a) Sensitivity and specificity of MuTect for mutations with an allele fraction of 0.2, tumor 

depth of 30x and normal depth of 30x using various values of the LOD threshold (θT) (0.1 ≤ 

θT ≤ 100). Results using a model of independent sequencing errors with uniform Q35 base 

quality scores and accurate read placement (solid grey) are shown as well as results from the 

virtual tumor approach for the standard (STD, dashed green) and high-confidence (HC, solid 

green) configurations. A typical setting of θT = 6.3 is marked with black circles. (b) 

Sensitivity as a function of tumor sequencing depth and allele fraction (indicated by color) 

using θT = 6.3. The calculated sensitivity using a model of independent sequencing errors 

and accurate read placement with uniform Q35 base quality scores (solid lines) are shown as 

well as results from the virtual tumor approach (circles) and the downsampling of validated 

colorectal mutations7 (diamonds). Error bars represent 95% CIs.
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Figure 3. 
Specificity of variant detection and variant classification using virtual tumor approach. (a) 

Somatic miscall error rate for true reference sites as a function of tumor sequencing depth 

for the STD (red), HC (blue) and HC+PON (green) configurations of MuTect. Error bars 

represent 95% CIs. (b) Distribution of allele fraction for all miscalls as a function of tumor 

sequencing depth. (c) Fraction of events rejected by each filter; hashed regions indicate 

events rejected exclusively by each filter. (d) Somatic miscall error rate for true germline 

SNP sites by sequencing depth in the normal when the site is known to be variant in the 

population (blue) and novel (red). Error bars represent 95% CIs. (e,f) Mean power as a 

function of sequencing depth in the normal to have classified these events as germline or 

somatic at novel germline sites (e) and known germline variant sites (f).
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Figure 4. 
Benchmarking mutation detection methods. (a) Comparison of sensitivity as a function of 

tumor sequencing depth and mutation allele fraction for different mutation detection 

methods and configurations. (b) Comparison of somatic miscall error rate for true germline 

sites as a function of sequencing depth in the normal. (c) Comparison of somatic miscall 

error rate for true reference sites as a function of tumor sequencing depth. (d) Sensitivity as 

a function of specificity for mutations with an allele fraction of 0.1, tumor depth of 30x and 

normal depth of 30x between different methods and configurations. Black dotted lines 

indicate change in sensitivity and specificity between STD and HC configurations for a 

method. Grey solid lines are the MuTect results of virtual tumor approach from 

Supplementary Figure 3. (a–c) Error bars represent 95% CIs.
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Table 1

Description of variant filters and default thresholds

Filter Name Class Description and Default Thresholds

Proximal Gap HC Remove false positives caused by nearby misaligned small insertion and deletion events. Reject candidate 
site if there are ≥ 3 reads with insertions within an 11-bp window centered on the candidate mutation, or if 
there are ≥ 3 reads with deletions within the same 11-bp window

Poor Mapping HC Remove false positives caused by sequence similarity in the genome, leading to misplacement of reads. 
Two tests are used to identify such sites: (i) Candidates are rejected if ≥ 50% of the reads in the tumor and 
normal have a mapping quality of zero (although mapping quality zero reads are discarded in the short-
read preprocessing (Supplementary Methods) this filter reconsiders those discarded reads); (ii) Candidates 
are rejected if they do not have at least a single observation of the mutant allele with a confident mapping 
(i.e. mapping quality score ≥ 20).

Triallelic Site HC Reject false positives caused by calling tri-allelic sites where the normal is heterozygous with alleles A/B 
and MuTect is considering an alternate allele C. Although this is biologically possible, and remains an 
area for future improvement in mutation detection, calling at these sites generates many false positives 
and therefore they are currently filtered out by default. However, it may be desirable to review mutations 
failing only this filter for biological relevance and orthogonal validation and further study the underlying 
reasons for these false positives.

Strand Bias HC Reject false positives caused by context specific sequencing errors where the vast majority of the alternate 
alleles are observed in a single direction of reads. We perform this test by stratifying the reads by 
direction and then applying the core detection statistic on the two datasets. We also calculate the 
sensitivity to have passed the threshold given the data (Online Methods). Candidates are rejected when the 
strand specific LOD is < 2.0 in directions where the sensitivity to have passed that threshold is ≥ 90%.

Clustered Position HC Reject false positives caused by misalignments hallmarked by the alternate alleles being clustered at a 
consistent distance from the start or end of the read alignment. We calculate the median and median 
absolute deviation of the distance from both the start and end of the read and reject sites that have a 
median ≤ 10 (near the start/end of the alignment) and a median absolute deviation ≤ 3 (clustered)

Observed in Control HC Eliminate false positives in the tumor by looking at the control data (typically from the matched normal) 
for evidence of the alternate allele beyond what is expected from random sequencing error. A candidate is 
rejected if, in the control data, there are (i) ≥2 observations of the alternate allele, or they represent ≥ 3% 
of the reads; and (ii) their sum of quality scores is > 20.

Panel of Normals HC+PON Reject artifacts and germline variants by inspecting a panel of normal samples and rejecting candidates 
that are present in two or more normal samples (Online Methods)
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