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ABSTRACT
Fast and catalyst-free cross-linking strategy is of great significance for construction of covalently
cross-linked hydrogels. Here, we report the condensation reaction between o-phthalaldehyde (OPA) and
N-nucleophiles (primary amine, hydrazide and aminooxy) for hydrogel formation for the first time. When
four-arm poly(ethylene glycol) (4aPEG) capped with OPA was mixed with various
N-nucleophile-terminated 4aPEG as building blocks, hydrogels were formed with superfast gelation rate,
higher mechanical strength and markedly lower critical gelation concentrations, compared to
benzaldehyde-based counterparts. Small molecule model reactions indicate the key to these cross-links is
the fast formation of heterocycle phthalimidine product or isoindole (bis)hemiaminal intermediates,
depending on theN-nucleophiles.The second-order rate constant for the formation of phthalimidine
linkage (4.3 M−1 s−1) is over 3000 times and 200 times higher than those for acylhydrazone and oxime
formation from benzaldehyde, respectively, and comparable to many cycloaddition click reactions. Based
on the versatile OPA chemistry, various hydrogels can be readily prepared from naturally derived
polysaccharides, proteins or synthetic polymers without complicated chemical modification. Moreover,
biofunctionality is facilely imparted to the hydrogels by introducing amine-bearing peptides via the reaction
between OPA and amino group.

Keywords: superfast gelation, o-phthalaldehyde chemistry, versatile cross-linking, functional hydrogel,
reaction kinetics

INTRODUCTION
Hydrogels are a class of viscoelastic materials that
are 70%–99% water by mass, retained in a cross-
linked polymer network.Thehighwater content and
viscoelastic nature of hydrogels render them phys-
ically similar to native tissues. These features pro-
vide the capacity to readily encapsulate cells and
bioactive compounds, thus making hydrogels a par-
ticularly promising candidate for drug delivery and
tissue engineering [1–4].

In hydrogels, hydrophilic or amphiphilic poly-
mers are cross-linked to form a network by covalent
bonds or physical interactions [5–9]. To date, a
wide range of reactions have been exploited for the
preparation of covalently cross-linked hydrogels,
such as Michael additions, azide-alkyne cycload-

ditions and Diels-Alder reactions [10–14]. The
condensation reactions between carbonyl groups
and N-nucleophiles such as primary amine, hy-
drazide and aminooxy are widely used in the field of
bioconjugation [15], as well as in the construction
of hydrogels [16–19]. In particular, the forma-
tions of hydrazone and oxime can be considered
click reactions due to their high reactivity, superb
specificity and mild reaction conditions. However,
comparedwithmany cycloaddition-based reactions,
the formations of hydrazone and oxime linkages
proceed at much slower rates at neutral pH, with
second-order rate constants that are commonly
below 0.1 M−1 s−1 [20–22]. Although the gelation
rates can be accelerated by tuning the pH to ca. 4.5
or by addition of aniline catalyst, these methods will
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compromise the biocompatibility of the ma-
terials and limit their biomedical applications
[23]. Recently, Gillingham et al. reported that
o-phthalaldehyde (OPA) is an exceptionally fast
reactant with aminooxy in oxime condensations
[24]. It was found that the reaction results in the
rapid and irreversible formation of an isoindole
bis(hemiaminal) (IBHA) heterocyclic interme-
diate, which gradually undergoes dehydration to
yield oxime. Additionally, the reaction between
OPA and primary amines has been shown to be a
rapid and chemoselective condensation reaction
for the formation of phthalimidine linkages under
physiological conditions [25,26]. However, to date,
there is no report on the feasibility of using the
OPA/N-nucleophile condensation reaction as a
potential cross-linking strategy for the construction
of hydrogels with superior gelation kinetics and
mechanical properties.

Here, we report a new method for the excep-
tionally fast formation of hydrogels via the reaction
betweenOPA andN-nucleophiles.The formation of
hydrogels was first demonstrated by using two types
of four-armpoly(ethylene glycol) (4aPEG) as build-
ing blocks, one capped withOPA and the other with
N-nucleophiles. Small molecule model reactions
were conducted to illuminate the fast cross-linking
mechanism and reaction kinetics. Moreover, the
highly efficient and versatile OPA chemistry was
exploited to construct diverse hydrogels from
naturally derived polysaccharides, proteins or
synthetic polymers, as well as to incorporate
bioactive peptides into the hydrogels.

RESULTS AND DISCUSSION
To obtain the building blocks for the construction
of hydrogels via OPA/N-nucleophile condensa-
tion, multiple forms of 4aPEG (Mn = 10 kDa)
end-capped with OPA or N-nucleophiles were
synthesized, including OPA-terminated 4aPEG
(4P-OPA), primary amine-terminated 4aPEG (4P-
NH2), hydrazide-terminated 4aPEG (4P-NHNH2)
and aminooxy-terminated 4aPEG (4P-ONH2).
Benzaldehyde-terminated 4aPEG (4P-PhCHO),
a routinely employed building block, was also
prepared for comparison (Fig. 1; supporting in-
formation: Scheme S1, Figs S1–S11). With the
molar ratio of reactive end groups fixed at 1 : 1, the
gelation behaviors for various mixtures of 4aPEG
were estimated by the vial inversion method at
pH 7.4 and 37◦C. It was observed that all the
4P-OPA-based mixtures displayed CGCs as low
as 1% (w/v), which is defined as the lowest total
polymer concentration required for hydrogel for-
mation within 24 h (Fig. 2A and B). Free-standing
hydrogels were formed within 10 min after mixing

4P-OPA with 4P-NH2, 4P-NHNH2 or 4P-ONH2,
even at a low polymer concentration of 2% (w/v)
(Fig. 2C). The gelation of the 4P-OPA-based
systems was accelerated further with increasing
polymer concentration, and hydrogels formed
instantly after mixing the precursor components
when the polymer concentration was higher than
9% (w/v).

By contrast, after mixing 4P-PhCHO with 4P-
NH2, hydrogel could only form at polymer con-
centration not less than 25% (w/v) (Fig. 2B,
Fig. S12). Although hydrogels formed after mixing
4P-PhCHO with 4P-NHNH2 or 4P-ONH2 at rel-
atively low polymer concentrations (CGCs = 5%
(w/v) and4%(w/v), respectively), the gelation time
was rather long: 110–341 min was required for the
gelation of 4P-PhCHO with 4P-NHNH2 and 27–
227min for 4P-PhCHOwith 4P-ONH2, depending
on the polymer concentration (Fig. 2C).

Rates of hydrogel formation were studied fur-
ther by rheometry, using time sweep measurement.
The storage modulus (G′) and loss modulus (G′′)
were recorded immediately after mixing the precur-
sor polymers. The time at the crossover of G′ and
G′′ was regarded as the gelation point. As shown in
Fig. 2D–F, for the5%(w/v)4P-OPA-based systems,
the G′ increased rapidly within the first 5 min, in-
dicating fast hydrogel formation. Meanwhile, there
was no obvious G′ increase within 90 min for all the
4P-PhCHO based counterparts.These results are in
agreementwith the above results fromvial inversion.
Specifically, it was found that a hydrogel status with
G′ > G′′ was formed before the first data point was
recorded for the 5% (w/v) mixture of 4P-OPA with
4P-NH2, suggesting an instantaneous gelation pro-
cess (Fig. 2D). In sharp contrast, the combination of
4P-PhCHOwith 4P-NH2 at 5% (w/v) only resulted
in a liquid mixture with G′ < G′′ throughout the
measurement. Additionally, the gelation point for
the 5% (w/v) mixture of 4P-OPA with 4P-NHNH2
was determined as 2 min through the G′/G′′

crossovermethod,while itwas prolonged to277min
by mixing 4P-PhCHOwith 4P-NHNH2 (Fig. 2E).

Apart from their exceptionally fast gelation
kinetics, significantly higher G′ values were ob-
tained for the 4P-OPA-based hydrogels, indicating
enhanced mechanical strength. For instance, the
G′ of 5% (w/v) 4P-OPA-based hydrogels rapidly
increased to 7000–9200 Pa within 30 min and
maintained at 7700–9700 Pa at 420 min, com-
pared to the much lower G′ for the counterparts
of 4P-PhCHO with 4P-NHNH2 or 4P-ONH2
(450 and 3100 Pa at 420 min, respectively)
(Fig. 2D–F). Frequency sweep tests showed that
the G′ of 5% (w/v) 4P-OPA-based hydrogels
were nearly constant from 0.1 Hz to 100 Hz.
Strain sweep tests revealed that the hydrogels
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Figure 1. (A) Structures of building blocks for hydrogel formation: 4aPEG end-capped with OPA or N-nucleophiles (amine, hydrazide or aminooxy).
Benzaldehyde (PhCHO) terminated 4aPEG was used for comparison. (B) Schematic representation of formation of hydrogel from materials in A.
(C) Putative mechanism of the linkage formation between OPA (or PhCHO) and various N-nucleophiles with the molar ratio of 1 : 1. The new cross-
linking strategy presented here is outlined in blue: OPA reacts with N-nucleophiles to give heterocyclic products, which greatly accelerate the initial
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Figure 2. (A) Photographs showing the solution or hydrogel status of the mixtures of 4P-OPA with 4P-NH2, 4P-NHNH2 and 4P-ONH2, respectively, when
the polymer concentrations were below or equal to the critical gelation concentrations (CGCs). (B) CGCs for various combinations of 4aPEG. (C) Gelation
time at different polymer concentrations determined by vial inversion method (mean ± SD, n = 3). (D–F) Time sweep rheological measurement for the
5% (w/v) mixtures of various formulations. (G) Time sweep rheological measurement for the 5% (w/v) mixtures of 4P-OPA with 4P-NHNH2, compared
with those for the 5% (w/v) mixtures of 4P-PhCHO with 4P-NHNH2 in the presence of 10–50 mM of aniline catalyst. (H) Representative stress-strain
curves for compressive tests. (I) Representative stress-strain curves for tensile tests. The molar ratios of reactive end groups of all the mixtures in
(A-I) were fixed at 1 : 1.

exhibited linear viscoelastic behavior at strain from
0.1% to 20%, while the G′ rapidly decreased at large
strain (Fig. S13). In addition, theG′ of the 4P-OPA-
based hydrogels can be well tuned from 340 Pa to
over 19 000 Pa by changing the polymer concentra-
tion from 2% (w/v) to 9% (w/v) (Fig. S14).

Nucleophilic catalysts have been developed to
accelerate the formation of hydrazone and oxime
linkages by virtue of the first formation of Schiff
bases [27].Thus, to investigate if the 4P-OPA-based
hydrogels still hold the advantage in gelation
kinetics, time sweep rheological measurement of
4P-PhCHO based hydrogels was performed with
the presence of 10–50 mM of classic aniline

catalyst (Fig. 2G). For the 5% (w/v)mixtures of 4P-
PhCHO with 4P-NHNH2, the addition of 10 mM
aniline dramatically shortened the gelation point to
27 min. Increasing the catalyst concentration to 20
and 50 mM further reduced the gelation point to
14 and 6.5 min, respectively. Even though the addi-
tion of aniline catalyst significantly accelerated the
gelation of 4P-PhCHObased system, themixture of
4P-OPA with 4P-NHNH2 (5% (w/v)) still exhib-
ited an obviously faster gelation rate. Similar results
were obtained for the mixture of 4P-OPA with 4P-
ONH2, which exhibited superior gelation ability as
compared with its 4P-PhCHO counterpart with the
presence of aniline catalyst (Fig. S15). Additional
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gelation kinetics were conducted to investigate the
effects of pH. As the pH value increased from 6.2
to 8.0, the gelation rate of 4P-OPA-based hydrogels
increased unexpectedly (Fig. S16). This behavior is
opposite to what was observed for the 4P-PhCHO
based systems, for which gelation proceeded faster
at acidic pH.

Moreover, compressive and tensile tests were
performed to evaluate the mechanical strength
of bulk hydrogels. As expected, the compressive
and tensile strength of the 4P-OPA/4P-NHNH2
hydrogels increased from 234 kPa and 37.7 kPa to
410 kPa and 60.5 kPa, respectively, with increasing
the polymer concentration from 9% (w/v) to 15%
(w/v) (Fig. 2Hand I, Fig. S17).At the samepolymer
concentrations, the 4P-OPA/4P-NHNH2 hydro-
gels exhibited significantly strengthenedmechanical
properties as compared with the 4P-PhCHO/4P-
NHNH2 counterparts. Scanning electron mi-
croscopy revealed a porous structure of the freeze-
dried 4P-OPA/4P-NHNH2 hydrogels (Fig. S18).

It is noteworthy that the condensation reac-
tions between carbonyl groups and N-nucleophiles
are currently widely used cross-linking approaches
for hydrogel formation. Specifically, imine linkages
are readily hydrolyzed in aqueous solutions, while
hydrazone- and oxime-based linkages, much more
stable than imines, form slowly at neutral pH.Mech-
anism studies by Jencks suggested that carbonyl con-
densations typically undergo a rapid pre-equilibrium
formation of a tetrahedral hemiaminal intermedi-
ate, followed by an acid-catalyzed and rate-limiting
dehydration (Fig. 1C) [28–30]. As a consequence,
synthesis of 4P-PhCHO based hydrogels usually
needs high polymer concentrations, slightly acidic
media or nucleophilic catalysts, all of which are
detrimental to biomedical applications [31–33]. In
the case of 4P-OPA-based systems, the markedly
increased gelation rate can be attributed to the
increased reactivity of OPA to N-nucleophiles, re-
sulting from the strong substituent effects of the
two adjacent formyl groups [34].More importantly,
OPAprovides an intramolecular trap such thatmore
stable heterocycle products (phthalimidine for pri-
mary amine, and IBHA intermediate for hydrazide
or aminooxy) are formed, which greatly accelerates
the speed of initial bimolecular addition reaction
[24].

To better understand the cross-linking mech-
anism of the 4P-OPA-based hydrogels, model
reactions between commercially available OPA
and N-nucleophiles (methylamine, ethyl carbazate
and ethoxyamine) were investigated by nuclear
magnetic resonance (NMR) spectrometry, UV-vis
spectrometry and mass spectrometry. It has been
established that OPA exists reversibly as a hydrate
in aqueous solution [35]. From the 1H NMR

spectrum of OPA in D2O/DMSO-d6 (4 : 1 (v/v)),
the chemical shifts assigned to OPA hydrate were
observed at 6.44 and 6.15 ppm (Fig. 3A, Fig. S19),
corresponding to the acetal protons (meso form
and diastereomer). At 5 min after mixing OPA
with methylamine, the aldehyde peak of OPA at
10.26 ppm was almost completely eliminated,
with the generation of a phthalimidine product
(4.37 ppm). At the same time, the peak intensities
for OPA hydrate kept decreasing, while these for
phthalimidine tended to increase. The reaction
nearly completed within 50 min, resulting in clean
NMR and ESI-MS spectra corresponding to single
phthalimidine product (Fig. S20).

The formation kinetics of phthalimidine was
further assessed via UV-vis spectrometry by mixing
0.1 mM of OPA with 0.1 mM of methylamine in
phosphate buffer saline (PBS) (Fig. 3B, Fig. S21).
Theprogress of reactionwasmonitoredby recording
the absorption at 238nmover time. Fitting of kinetic
plot of the reaction according to a second-order ki-
netic equationgave a rate constant of 4.3M−1 s−1 for
phthalimidine formation, which is over 3000 times
and 200 times higher than those for acylhydrazone
(0.00141 M−1 s−1) and oxime (0.0213 M−1 s−1)
formation from benzaldehyde in phosphate buffer,
respectively [36]. Moreover, the rate constant for
phthalimidine formation is in the same level as
those of many other click reactions, such as strain-
promoted alkyne-azide cycloaddition (SPAAC)
(1 M−1 s−1) and inverse electron demand Diels-
Alder (iEDDA) reaction (1–10 M−1 s−1) [21].
Thus, this result strongly supports the vast potential
of OPA/N-nucleophile condensation as a useful
tool for click chemistry.

With regard to the reaction of OPA with ethyl
carbazate or ethoxyamine, time-dependent 1H
NMR analysis suggested the formation of IBHA
intermediate, which gradually dehydrated to form
the hydrazone or oxime. For instance, after mixing
OPA with ethyl carbazate for 5 min, 1H NMR
spectrum showed that the mixture was composed
of OPA hydrate and IHBA (5.67 and 5.45 ppm)
with an OPA hydrate/IHBA molar ratio of 53 : 47
(Fig. 3C and D). Then, the peak intensities for
OPA hydrate kept decreasing, with the continuous
generation of the expected hydrazone (Figs S22
and S23). Due to the fact that the residual aldehyde
group was able to engage in another nucleophilic
attack, the hydrazone formed by OPA with ethyl
carbazate could undergo an intramolecular cycliza-
tion within several days to yield a cyclization pro-
duct, 2-(ethoxycarbonyl)-1,2-dihydro-phthalazin-
1-ol (Fig. 3E, Figs S24 and S25).

Additionally, it is worth noting that the hydra-
zone could also react with the second ethyl car-
bazate to form a bis-hydrazone precipitate with one
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Figure 3. (A) Time-dependent 1H NMR analysis of the reaction of OPA with methylamine in D2O/DMSO-d6 (4 : 1 (v/v)).
(B) Kinetic profile of phthalimidine formation monitored by UV-vis spectroscopy (mean ± SD, n = 3). (C) Time-dependent
1H NMR analysis of the reaction of OPA with ethyl carbazate in D2O/DMSO-d6 (4 : 1 (v/v)). (D) The percentages of com-
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(E) 1H-13C HMBC spectrum of 2-(ethoxycarbonyl)-1,2-dihydro-phthalazin-1-ol in DMSO-d6.

OPA linked to two hydrazides, especially when ex-
cessive ethyl carbazate was added (Fig. S26). On
the other hand, oxime product was formed from the
reaction between OPA and ethoxyamine (Figs S27
and S28).

The high reactivity of OPA toward
N-nucleophiles provides a versatile strategy for
fabrication of diverse hydrogels from both natu-
rally derived and synthetic macromolecules. To
verify the feasibility of this approach, we further
investigated the gelation properties of 4P-OPA

with various N-nucleophile-containing naturally
derived and synthetic macromolecules, including
hydroxyethyl chitosan (HECS), adipic dihydrazide
modified hyaluronic acid (HA-ADH), gelatin,
bovine serum albumin (BSA) and poly(L-lysine)
(PLL) (Fig. 4A). All combinations were mixed at a
mass ratio of 1 : 1 in PBS. Vial inversion tests and
time sweep rheological measurements showed that
hydrogels could be formed within 15 s to 5min after
mixing 4P-OPAwith each of these macromolecules,
depending on the type ofN-nucleophile-containing
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Figure 4. (A) Schematic illustration for the reactions between 4P-OPA and various N-nucleophile-containing naturally derived or synthetic macro-
molecules, including hydroxyethyl chitosan (HECS), adipic dihydrazide modified hyaluronic acid (HA-ADH), bovine serum albumin (BSA), gelatin and
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polymer concentrations (mean ± SD, n = 3). (C–G) Time sweep rheological measurement of the gelation process for each combination in A. Swelling
and degradation profiles of (H) 4P-OPA/HA-ADH hydrogels and (I) 4P-OPA/BSA hydrogels. The concentration of hyaluronidase (HAase) and elastase is
10 U mL−1 and 1 U mL−1, respectively (mean ± SD, n = 3). 4P-OPA and each of N-nucleophile-containing macromolecules were mixed at a mass ratio
of 1 : 1.
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macromolecule and polymer concentration
(Fig. 4B). Increasing the polymer concentration
would decrease the gelation time and markedly
increase the mechanical strength of resultant hy-
drogels (Fig. 4C–G). The incorporation of diverse
naturally derived or synthetic macromolecules en-
dows thehydrogelswith adjustable biodegradability.
For instance, the 4P-OPA/HA-ADH hydrogels
could be degraded within 22 days and 30 days at
the polymer concentrations of 2% (w/v) and 4%
(w/v), respectively, in the presence of 10 U mL−1

of hyaluronidase (Fig. 4H). The 4P-OPA/BSA
hydrogels could be rapidly degraded within 3 days
and 8 days at the polymer concentration of 4%
(w/v) and 8% (w/v), respectively, in the presence
of 1 U mL−1 of elastase (Fig. 4I). Besides, gelatin
and hyaluronic acid are known to promote cell
adhesion and proliferation [37,38], and chitosan
possesses hemostatic and anti-bacterial activity
[39]. Therefore, the results indicated that 4P-OPA
is suitable to serve as a universal building block
for construction of hydrogels to satisfy different
requirements for biomedical applications.

Subsequently, the swelling and degradation be-
haviors of the 4P-OPA-based hydrogels in PBSwere
evaluated at pH 7.4 (physiological pH) and 4.0
(acidic conditions that can catalyze the hydrolysis
of carbon-nitrogen double bonds). The 5% (w/v)
4P-OPA/4P-NHNH2 hydrogel exhibited good hy-
drolytic stability for nine weeks at pH 7.4 (Fig. 5A).
In contrast, the same hydrogels showed an obvious
increase in the swelling ratio at pH 4.0 in the first
eight weeks, likely associated with the gradual de-
cline in the cross-linking density caused by the con-
tinuous hydrolysis of the hydrazone-containing link-
ages under acidic conditions [40]. After incubation
for nine weeks at pH 4.0 the hydrogels were found
to have dissolved in the buffer, suggesting the com-
plete degradation of the hydrogel. Additionally, the
4P-OPA/4P-NH2 and 4P-OPA/4P-ONH2 hydro-
gels showednoobviousdegradation afternineweeks
at both pH 7.4 and 4.0 (Fig. S29). These results in-
dicated that the phthalimidine and oxime linkages
formed by the 4P-OPA/4P-NH2 and 4P-OPA/4P-
ONH2 systems, respectively, possess highhydrolytic
stability [24–26]. The slow degradation profiles of
4P-OPA-based hydrogels offer the potential of long-
term application of these materials in vivo at a rel-
ative low polymer concentration, given that hydro-
gels with high polymer content may induce severe
inflammation or toxic reactions [41].

Excellent biocompatibility of both the precursor
polymers and the gelation process is required if
hydrogels formed in situ are intended for biomedical
applications. The cytotoxicity of the end-group
modified 4aPEG macromonomers was evalu-

ated by MTT assay against L929 fibroblasts, with
polyethyleneimine (PEI) 25k as a positive control.
As shown in Fig. 5B, the cell viability remained
over 90% when cultured with the 4aPEG-based
macromonomers at all concentrations up to
1000 mg L−1 for 48 h, indicating no detectable
cytotoxicity of the hydrogel precursor polymers.
To further evaluate the cytocompatibility of the
gelation process of the 4P-OPA-based hydrogels, in
situ encapsulation of L929 cells by the 4P-OPA/4P-
NHNH2 hydrogels was carried out. After 24 h
of incubation, the viability of the cells cultured
inside the hydrogels was evaluated by live/dead cell
staining kit. As shown in Fig. 5C, the majority of
the cells were stained green with calcein, suggesting
high viability of cells inside the hydrogels and
therefore good cytocompatibility of the gelation
process.

Further, the chemoselective and traceless re-
action between OPA and amino group offers a
facile approach to introducing amino-containing
functional molecules into hydrogel networks. To
demonstrate this concept, 4P-OPA was mixed with
4P-NHNH2 and 2 mM of c(RGDfK), a cyclic
cell adhesion peptide containing a lysine residue
(Fig. 5D). The condensation reaction of OPA with
the ε-amino group of the lysine residue led to the
conjugation of c(RGDfK) into the hydrogel net-
work. To investigate the variation in cell-adhesive
property of the hydrogels after incorporation of
c(RGDfK), the adhesion and spread morphology of
NIH 3T3 fibroblasts were observed after seeding on
the hydrogel surface for 12 h. The cell nuclei were
stainedwith 4’,6-diamidino-2-phenylindole (DAPI)
and F-actin filaments were stained with Alexa Fluor
488 phalloidin. On the c(RGDfK) modified 4aPEG
hydrogels, filopodia and lamellipodia were observed
at the leading edge of fibroblasts with actin bundles
(Fig. 5E), suggesting healthy cell adhesion and
spread. Moreover, the cells were found to adhere on
the hydrogel surface and proliferate over 5 days as
manifested by the cell counting kit-8 (CCK-8) assay
(Fig. 5F). By contrast, very few cells were found to
adhere or spread on the 4aPEG hydrogels without
c(RGDfK) modification. Thus, our results clearly
demonstrated the potential of OPA chemistry as
a straightforward method to incorporate bioactive
peptides or proteins into hydrogels.

CONCLUSION
Here we have presented an exceptionally fast gela-
tion approach based on the reaction between OPA
and N-nucleophiles (primary amine, hydrazide or
aminooxy group). Compared to the counterparts
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Figure 5. (A) Swelling and degradation profiles of the 5% (w/v) 4P-OPA/4P-NHNH2 hydrogels in PBS at pH 4.0 and 7.4, respectively (mean ± SD,
n= 3). (B) Viability of L929 cells after incubation with end-group modified 4aPEG for 48 h determined by MTT assay (mean± SD, n= 6). A widely used
cationic polymer, polyethyleneimine (PEI) 25k, was used as a positive control. (C) Live/dead cell staining images of L929 cells encapsulated within 2%
(w/v) 4P-OPA/4P-NHNH2 hydrogels for 24 h (green: live; red: dead). (D) Schematic illustration for functionalization of 4P-OPA/4P-NHNH2 hydrogels with
amine-bearing bioactive peptide through the reaction between OPA and amino group. (E) Confocal laser scanning microscope (CLSM) images for the
NIH 3T3 cells on the hydrogel surface with or without RGD modification after seeding for 12 h. The nuclei and F-actin filaments were stained with DAPI
and Alexa Fluor 488 phalloidin, respectively. (F) Proliferation of NIH 3T3 cells on RGD modified 4aPEG hydrogels determined by CCK-8 method (mean ±
SD, ∗∗∗P< 0.001, One-Way ANOVA, n = 3).

formed by traditional benzaldehyde/N-nucleophile
reactions, the OPA/N-nucleophile cross-linked
4aPEGhydrogels displayedmarkedly faster gelation
rates, superior mechanical strengths and lower
critical gelation concentrations under physiological
conditions. The model reactions between OPA
and small molecule N-nucleophiles revealed that
the key to the cross-links is the rapid formation
of heterocyclic phthalimidine linkage or isoindole
(bis)hemiaminal intermediate. The rate constant
determined by a second-order kinetic model be-
tween OPA and methylamine was 4.3 M−1 s−1,
which is over 3000 times and 200 times higher than

those for acylhydrazone and oxime formation from
benzaldehyde, respectively, and in the same level
as many widely used cycloaddition-based click
reactions. Both the precursor polymers and the
OPA-based cross-linking process exhibit good
cytocompatibility. Additionally, the highly efficient
and versatile reaction of OPA with N-nucleophiles
allows easy conjugation of bioactive peptides into
the hydrogel network, as well as facile preparation
of diverse hydrogels from naturally derived polysac-
charides, proteins and synthetic polymers. To our
knowledge, this is the first study of utilization of
OPA/N-nucleophile chemistry as the cross-linking
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approach for hydrogel formation. The fast gelation
kinetics allow the facile encapsulation of cells in
hydrogels for three-dimensional culture. Moreover,
the efficient and traceless reaction of OPA with
amino groups in proteins of soft tissues can be
exploited to prepare hydrogel bioadhesives for
wound closure. Considering the remarkable advan-
tages of the OPA chemistry, we believe this rapid
catalyst-free cross-linking strategy holds tremen-
dous potential for the construction of hydrogels for
a wide range of biomedical applications.
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