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Bladder cancer is the most common cancer of the urinary system. Bladder

urothelial cancer accounts for 90% of bladder cancer. These two cancers have

high morbidity and mortality rates worldwide. The identification of biomarkers

for bladder cancer and bladder urothelial cancer helps in their diagnosis and

treatment. circRNAs are considered oncogenes or tumor suppressors in

cancers, and they play important roles in the occurrence and development

of cancers. In this manuscript, we developed an Ensemble model, CDA-

EnRWLRLS, to predict circRNA-Disease Associations (CDA) combining

Random Walk with restart and Laplacian Regularized Least Squares, and

further screen potential biomarkers for bladder cancer and bladder urothelial

cancer. First, we compute disease similarity by combining the semantic

similarity and association profile similarity of diseases and circRNA similarity

by combining the functional similarity and association profile similarity of

circRNAs. Second, we score each circRNA-disease pair by random walk with

restart and Laplacian regularized least squares, respectively. Third, circRNA-

disease association scores from these models are integrated to obtain the final

CDAs by the soft voting approach. Finally, we use CDA-EnRWLRLS to screen

potential circRNA biomarkers for bladder cancer and bladder urothelial cancer.

CDA-EnRWLRLS is compared to three classical CDA prediction methods (CD-

LNLP, DWNN-RLS, and KATZHCDA) and two individual models (CDA-RWR and

CDA-LRLS), and obtains better AUC of 0.8654. We predict that circHIPK3 has

the highest association with bladder cancer and may be its potential biomarker.

In addition, circSMARCA5 has the highest association with bladder urothelial

cancer and may be its possible biomarker.
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1 Introduction

Bladder cancer is considered to be the most common cancer

in the urinary system (Kamat et al., 2016). It is the fourth most

common malignant tumor in men and the eighth most common

in women in theWestern world. In the United States and Europe,

it accounts for 5%–10% among all malignancies in men. The risk

with the bladder cancer infection at less than 75 years is 2%–4%

in men and 0.5%–1% for women (Kirkali et al., 2005). The

incidence of bladder cancer has been increasing (Kamat et al.,

2016). The majority of patients with bladder cancer suffer from

the less aggressive non-muscle-invasive disease, while 30% of

patients suffer frommuscle-invasive disease (Lopez-Beltran et al.,

2021; Tran et al., 2021; Yang et al., 2021).

Bladder cancer has a metastatic potential, and thus presents a

worse prognosis. It is usually grouped into three pathological

categories: bladder urothelial carcinoma, bladder squamous cell

carcinoma, and bladder adenocarcinoma (Black and Black, 2020;

Lopez-Beltran et al., 2021). Bladder urothelial carcinoma accounts

for over 90% among all cases of bladder cancer. Furthermore,

bladder urothelial carcinoma can be categorized into muscle-

invasive bladder cancer, which accounts for about 75% of all

cases, and non-muscle-invasive bladder cancer (Kirkali et al.,

2005). The all-stage five-year survival rate of bladder urothelial

cancer remains approximately 80% (Lopez-Beltran et al., 2021).

Recently, the treatment of bladder cancer has obtained great

progresses worldwide. Besides traditional surgical resection,

radiotherapy, and chemotherapy, immunotherapy is also a

promising avenue for bladder cancer treatment (Gao et al.,

2021; Mancini et al., 2021). However, postoperative recurrence

and distant metastasis cause five-year survival rates to still be very

low for advanced bladder cancer (Fabiano et al., 2021; Roviello

et al., 2021). Advanced disease or relapse of radical cystectomy is

closely associated with the poor outcomes (Nouhaud et al., 2021).

The first-line therapy of metastatic bladder urothelial cancer

usually adopts cisplatin-based combinations, and has been

unaltered over the last decades (Powles et al., 2021; Renner

et al., 2021; Walia et al., 2021). Unfortunately, almost all

patients with bladder urothelial cancer will finally progress

and die from bladder cancer, despite their initial response to

cisplatin-based combinations (Bin Riaz et al., 2021; Lopez-

Beltran et al., 2021). Consequently, inferring potential

biomarkers for bladder cancer is a good way to diagnose and

treat it (Peng et al., 2017; Peng et al., 2018).

With the advance of sequencing technology, there are now

massive amounts of RNA data (Ozsolak and Milos, 2011; Peng

et al., 2020; Yang et al., 2020; Peng et al., 2022a), which help the

prognosis and treatment of various diseases (Xu et al., 2020; Li

et al., 2021). Circular RNAs (circRNAs) are a class of single-

stranded noncoding RNA molecules that are lack of terminal 5′
caps and 3′ poly(A) tails (He et al., 2017). circRNAs are widely

distributed in various organisms. They have circular features, and

thus demonstrate more resistance to degradation by exonucleases

and stronger stability than linear RNAs (Xia et al., 2018; Li G.

et al., 2020). The estimated total number of circRNAs is

approximately 1% of one of poly (A) molecules. In addition,

the expression levels of the majority of circRNAs are estimated to

be 5%–10% of the corresponding linear RNAs (Jeck and

Sharpless, 2014; Zhang J. et al., 2021).

Although circRNAs were found in 1976, they were originally

considered to be functionless by-products from aberrant RNA

splicing and thus did not obtain enough attention over the past

3 decades. However, with the rapid advance of high-throughput

sequencing technologies, massive differentially expressed

circRNAs have been increasing discovered in human normal

and malignant cells (Zhang et al., 2018; Li G. et al., 2020; Yang

et al., 2021). circRNAs exist widely in various tissues, serum, and

urine. The expression profiles of circRNAs demonstrate strong

specificity in cell types, tissues, and developmental stages (Yang

et al., 2021). Furthermore, circRNAs can regulate transcription or

splicing, translate proteins, interact with RNA-binding proteins,

and act as miRNA sponges (Sheng et al., 2018). A large body of

evidence shows that circRNAs have dense associations with

various diseases, including neurological dysfunction,

cardiovascular diseases, and cancer. Here, circRNAs, as

miRNA sponges, can inhibit the regulation from downstream

cancer target genes. For instance, circCDR1as and circMTO1 can

control gene regulation and further indirectly stimulate or inhibit

tumors by binding to miR-7 and miR-9 (Vromman et al., 2021).

circRNAs have abundant associations with cancers and thus can

be used as candidate cancer biomarkers (Zhang et al., 2018). An

increasing amount of evidence has reported that circRNAs present

in human biofluids and exosomes, and are a class of potential

biomarkers of noninvasive liquid biopsies. For instance, circ-

ZEB1.33 is overexpressed in hepatocellular cancer and has close

links with the survival of hepatocellular cancer patients (Gong et al.,

2018). In particular, substantial studies have demonstrated that

circRNAs play key roles in the carcinogenesis and progression of

bladder cancer. For example, circRNAs Cdr1as performs anti-

oncogenic functions in bladder cancer through microRNA 135a

(Li et al., 2018), BCRC-3 suppresses bladder cancer proliferation via

sponging miR-182-5p/p27 (Xie et al., 2018), MYLK and

circPDSS1 promote bladder cancer progression separately by

modulating VEGFA/VEGFR2 signaling pathway and down-

regulating miR-16 (Zhong et al., 2017; Yu et al., 2020),

PRMT5 supports metastasis of bladder urothelial cancer through

Sponging miR-30c (Chen et al., 2018), circSLC8A1 suppresses

bladder cancer progression through regulating PTEN (Lu et al.,

2019), and circMTO1 inhibits bladder cancer metastasis through

sponging miR-221 (Li G. et al., 2019).

Many computational methods have been proposed to

identify possible CDAs and further discovered possible

circRNA biomarkers for various complex diseases including

cancers by case studies (Wang CC. et al., 2021). For example,

Lei et al. (Lei et al., 2018) designed a path weighted-based CDA

prediction approach (PWCDA). Li et al. (Li Y. et al., 2019; Li
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J. et al., 2020) explored two CDA identification models

(NCPCDA and DWNCPCDA) based on network consistency

projection. Zhang et al. (Zhang et al., 2019) developed a linear

neighborhood label propagation algorithm for CDA

identification. Deepthi et al. (Deepthi and Jereesh (2020) used

autoencoder and deep neural network and explored an ensemble

model to predict CDAs. Lu et al. (Lu et al. (2021) improved CDA

prediction using convolutional and recurrent neural networks.

Wang et al. (Wang et al., 2020; Wang et al. 2021b; Wang et al.,

2021c) proposed three CDA identification methods (GCNCDA,

MGRCDA, and SGANRDA) based on graph convolutional

network, metagraph recommendation, and semi-supervised

generative adversarial network, respectively. These methods

efficiently predicted possible CDAs.

In this study, inspired by computational CDA prediction

methods, we develop an ensemble model, CDA-RWLRLS, to

find potential circRNA biomarkers for bladder cancer and

bladder urothelial cancer based on known CDAs. CDA-

EnRWLRLS first computes circRNA similarity by

integrating their functional similarity and association

profile similarity, and it computes disease similarity by

integrating their semantic similarity and association profile

similarity. Second, CDA-EnRWLRLS computes the

association probability for each circRNA-disease pair based

on random walk with restart and Laplacian regularized least

squares. Third, the prediction results obtained by these two

models are integrated by the soft voting method. We finally

use the proposed CDA-EnRWLRLS model to identify possible

FIGURE 1
Flowchart of the proposed CDA-EnRWLRLS model.
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circRNAs associated with bladder cancer and bladder

urothelial cancer.

2 Materials and methods

2.1 Materials

2.1.1 Human circRNA-disease associations
circRNA-disease association data can be downloaded from

the circR2Disease database (Fan et al., 2018a). This database

provides 739 experimentally confirmed CDAs from

661 circRNAs and 100 diseases. We remove redundant

elements related to mice and rats and achieve a human

circRNA-disease association dataset containing

650 associations between 585 circRNAs and 88 diseases. In

particular, suppose that C � {c1, c2, . . . , cm} and D �
{d1, d2, . . . , dn} separately denote the sets of m circRNAs and

n diseases, then we construct a binary matrix YϵRm×n to depict

circRNA-disease associations by Eq. 1:

Yij � { 1 If circRNA ci associates withdj

0 otherwise
(1)

2.1.2 Disease semantic similarity
Many studies have computed disease semantic similarity to

screen credible noncoding RNAs for a query disease. Inspired by

these methods, we investigate disease similarity to improve the

prediction performance. Disease semantic similarity can be

computed based on corresponding disease ontology. The disease

ontology is often represented using a directed acyclic graph and can

be downloaded from http://disease-ontology.org/. For two query

diseases and corresponding ontology term sets from the two diseases

di and dj, their semantic similarity can be scored by the “doSim”

function in the DOSE software package, which can be downloaded

from http://www.bioconductor.org/packages/release/bioc/html/

DOSE.html (Yu et al., 2015). Finally, we compute the semantic

similarity matrix Ssemd among n diseases.

2.1.3 circRNA functional similarity
To measure the functional similarity between two circRNAs,

we utilize the semantic similarity of two diseases linking to the

two circRNAs. In particular, suppose that Di and Dj denote the

disease groups linking to circRNAs ci and cj, the functional

similarity between ci and cj can be computed by Eq. 2:

Sfunc � ∑1≤p≤ |Di | S(dp,Dj) +∑1≤p≤ |Dj| S(dq, Di)
|Di| +

∣∣∣∣Dj

∣∣∣∣ (2)

and

S(dp, Dj) � max1≤ t≤ |Dj|(Ssemd (dp, dt)) (3)

where S(dp, Dj) denotes the similarity between disease dp
linking to circRNA ci and disease set Dj linking to circRNA cj.

2.2 Methods

In this manuscript, we develop circRNA-Disease Association

prioritization method (CDA-EnRWLRLS) by an Ensemble of

Random Walk with restart and Laplacian Regularization Least

Squares. First, CDA-EnRWLRLS measures circRNA functional

similarity and disease semantic similarity. Second, it computes

association profile similarity of circRNAs and diseases,

respectively. Third, functional similarity and association profile

similarity of circRNAs are combined to obtain the final circRNA

similarity. Similarly, disease similarity is fused. Fourth, randomwalk

with restart and Laplacian regularization least squares are used to

score each circRNA-disease pair. Fifth, the final association score

matrix is obtained by integrating the results from randomwalk with

restart and Laplacian regularization least squares based on the soft

voting strategy. Finally, CDA-EnRWLRLS is applied to find possible

circRNA biomarkers for bladder cancer and bladder urothelial

cancer. The flowchart of CDA-EnRWLRLS is shown in Figure 1.

2.2.1 Association profile similarity of circRNAs
and diseases

For two diseases with known ontology terms, we can

compute their semantic similarity based on their ontology

terms. However, semantic similarity computation may fail for

two diseases without ontology terms. Thus, we introduce

association profile similarity to further complement similarity

measurement of circRNAs and diseases.

Suppose that the association profile Y(i, : ) of a circRNA ci is

represented as the ith row of a CDA matrix Y . Y(i, : ) describes
information from all diseases associated with ci. Association

profile similarity between two circRNAs (i.e., (ci, cj)) can be

computed by Eq. 4:

Sapc (ci, cj) � exp(−γc����Y(i, : ) − Y(j, : )����2)
γc � γ′c/⎛⎝ 1

m
∑m
k�1

‖Y(k, : )‖2⎞⎠ (4)

where γ′c is bandwidth parameter and set as the default value of 1.

Similarly, association profile similarity between two diseases

(i.e., (di, dj)) can be computed by Eq. 5:

Sapd (di, dj) � exp(−γd����Y(: , i) − Y(: , j)����2)
γd � γ′d/⎛⎝1

n
∑n
k�1

‖Y(: , k)‖2⎞⎠ (5)

where γ′d indicates bandwidth parameter and set as the default

value of 1.

Frontiers in Genetics frontiersin.org04

Su et al. 10.3389/fgene.2022.1001608

http://disease-ontology.org/
http://www.bioconductor.org/packages/release/bioc/html/DOSE.html
http://www.bioconductor.org/packages/release/bioc/html/DOSE.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1001608


2.2.2 Similarity fusion
circRNA functional similarity Sfunc , disease semantic

similarity Ssemd , and association profile similarity of

circRNAs and diseases (Sapc and Sapd ) are fused to obtain the

final circRNA similarity matrix SC and disease similarity SD by

Eqs 6, 7:

SC � αcS
fun
c + (1 − αc)Sapc (6)

SD � αdS
sem
d + (1 − αd)Sapd (7)

The parameter αc is used to balance the importance between

functional similarity and association profile similarity of

circRNAs in Eq. 6 and αd is used to balance the important

between semantic similarity and association profile similarity of

diseases in Eq. 7.

2.2.3 Random walk with restart for CDA
prediction

Random walk algorithm has been widely used and obtained

better performance in various association prediction fields (Peng

et al., 2021a). In this study, we utilize RandomWalk with Restart

for CDA prediction on the heterogeneous circRNA-disease

network (CDA-RWR). We first train the random walk with

restart model on the CDA dataset and screen possible CDAs

with the highest association probability from unknown circRNA-

disease pairs on the dataset.

First, circRNA similarity network Nc, disease similarity

network Nd, and CDA network Na are used to build a

heterogeneous circRNA-disease network.Sc, Sd, and Y

correspond to adjacency matrices of the three networks,

respectively. Consequently, the heterogeneous circRNA-disease

network can be represented as:W � [ SC Y
YT SD

], where YT is the

transpose of Y .
Second, we compute the transition probability of random

walk on the heterogeneous circRNA-disease network. Suppose

thatW � [Wcc Wcd

Wdc Wdd
] denote the transition matrix, whereWcc

and Wdd separately indicate the walk within the circRNA

network and the disease network, Wcd and Wdc separately

represent the jump from the circRNA network to the disease

network and the disease network to the circRNA network. For a

known jumping probability μ from the circRNA network to the

disease network or from the disease network to the circRNA

network, the transition probability from circRNAs ci to cj can be

calculated by Eq. 8:

Wcc(i, j) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SC(i, j)∑m
k�1SC(i, k)

if ∑n

k�1Y(i, k) � 0

(1 − μ)SC(i, j)∑m
k�1SC(i, k)

otherwise

, (8)

The transition probability from circRNA ci to disease dj can

be calculated by Eq. 9:

Wcd(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μY(i, j)∑n
k�1Y(i, k)

if ∑n

k�1Y(i, k) ≠ 0

0 otherwise

, (9)

The transition probability from diseases di to dj can be

calculated by Eq. 10:

Wdd(i, j) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sd(i, j)∑n
k�1Sd(i, k)

if ∑m

k�1Y(k, i) � 0

(1 − μ)Sd(i, j)∑n
k�1Sd(i, k)

otherwise

, (10)

The transition probability from disease di to circRNA cj can

be calculated by Eq. 11:

Wdv(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μY(j, i)∑n
k�1Y(k, i)

if ∑n

k�1Y(k, i) ≠ 0

0 otherwise

, (11)

For a query circRNA/disease, it can either stay in the current

network with a restart probability β ∈ (0, 1) or jump to another

network graph. Consequently, we can compute association

probability for each circRNA-disease pair at the (t + 1)-th
step by Eq. 12:

pt+1 � βWpt + (1 − β)p0, (12)

where pt denotes the association probability matrix at the t-th

step, p0 denotes the initial probability and p0 � [ λu0
(1 − λ)v0 ],

where u0 and v0 indicate the initial probability on the circRNA

and disease network, respectively. When we want to discover

possible circRNAs associated with a query disease di, it is

regarded as a seed in the disease network. Consequently, di is

assigned as 1 and other disease nodes are 0, thereby building the

initial probability matrix of the disease network v0. All nodes in

the circRNA network u0 are assigned as an equal probability

whose sum is 1. The parameter β is used to balance the

importance of the circRNA network and the disease network.

2.3 Laplacian regularized least squares for
CDA prediction

We can calculate association probability for each circRNA-

disease pair based on random walk with restart. However, for

random walk with restart, the jump probability is measured by

known CDAs and the circRNA and disease similarity matrices.
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For a circRNA ci in a CDA network, if two other circRNAs cj and

ck have the equal similarity with ci, cj and ck will contribute to the

jump between nodes at an equal probability. However, the

circRNA that exhibits lower similarities with other circRNAs

should have more contribution to the jump. Thus, we further use

Laplacian regularized least squares (Shen et al., 2022) to compute

association probability for each circRNA-disease pair.

First, we compute the circRNA Laplacian matrix Lc and the

disease Laplacian matrix Ld by Eqs 13, 14:

Lc � (Ac)−1/2(Ac − Ac)(Ac)−1/2 (13)

Ld� (Ad)−1/2(Ad − Ad)(Ad)−1/2 (14)

where Ac/Ad indicates the diagonal matrix of circRNA/disease

similarity matrix and Ac(i, i)/Ad(j, j) is the summation of the

i-th/j-th row of SC/SD.
Second, we define the loss functions of Laplacian

regularization least squares in the circRNA and disease spaces

based on the Laplacian matrices Lc and Ld by Eqs 15, 16,

respectively:

min
Fc

[����YT − Fc

����2F + γc
����Fc · Lc · (Fc)T

����2F] (15)

FIGURE 2
The AUC values of CDA-EnRWLRLS and other three method.

FIGURE 3
The AUC values of CDA-EnRWLRLS and CDA-RWR and CDA-LRLS.
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min
Fd

[‖Y − Fd‖2F + γd
����Fd · Ld · (Fd)T

����2F] (16)

where YT, (Fc)T, and (Fd)T separately indicate the transposes of

Y , Fc, and Fd, ‖·‖F indicates the Frobenius norm, and γc and γd
indicate trade-off parameters. The Laplacian regularized least

square models (15) and (16) can be solved by Eqs 17, 18:

Fc � SC(SC + γc · Lc · Sc)−1YT (17)
Fd � Sd(Sd + γd · Ld · Sd)−1Y (18)

Finally, the association probability for each circRNA-disease pair

by Laplacian regularized least squares can be computed by Eq. 19:

F � 1
2
(Fc + Fd) (19)

2.4 Ensemble learning for CDA prediction

Ensemble learning integrates multiple results from individual

models and demonstrates better performance compared to

individual models (Zhou et al., 2021a; Peng et al., 2022b).

Therefore, in this study, we develop an ensemble learning

model by combining random walk with restart and Laplacian

regularized least squares to improve the CDA’s prediction

performance by Eq. 20:

Ypre � P + θF (20)

where Ypre denotes the predicted final CDA score matrix, P and

F denote the computed CDA probability matrices based on

random walk with restart and Laplacian regularized least

squares, respectively. θ is used to weigh the importance of

results computed by the above two models.

3 Experiments

3.1 Experimental settings

For similarity computation, the weights between

biological feature similarity and association profile

similarity αc and αd are set as 0.5. For random walk with

restart, the restart probability β is set as 0.2, and λ and μ are set

as 0.1 and 0.6, respectively. For Laplacian regularized least

squares, both γc and γd are set as 0.95 and 0.2, respectively. For

ensemble learning model, θ is set as 0.3. The parameters in

other three comparative methods are set as defaults provided

by the corresponding methods. We conduct 5-fold cross

validation for 10 times. The final prediction performance is

from the average value of the 10 experiments. AUC (area

under the receiver operating characteristic curve) has been

widely used to evaluate the performance of CDA prediction

methods. Larger AUC denotes better performance. Thus, we

use AUC to measure the performance of our proposed

method.

3.2 Performance comparison with five
CDA prediction methods

Several comparative experiments are conducted to measure

the performance of our proposed CDA-EnRWLRLS model. CD-

LNLP (Zhang et al., 2019), DWNN-RLS (Yan et al., 2018),

KATZHCDA (Fan et al., 2018b), and CDA-EnRWLRLS are

conducted on the preprocessed CDA dataset. CD-LNLP

(Zhang et al., 2019) is a linear neighborhood label

propagation-based algorithm for CDA prediction. DWNN-

RLS (Yan et al., 2018) used regularized least squares to predict

FIGURE 4
The effect of θ on the prediction performance for CDA-EnRWLRLS.
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possible CDAs. KATZHCDA (Fan et al., 2018b) discovered CDA

candidates based on the KATZ measurement (Zhou et al., 2020).

Figure 2 shows the AUC values computed by these four CDA

prediction methods.

From Figure 2, we can find that CDA-EnRWLRLS is

significantly better than CD-LNLP (Zhang et al., 2019),

DWNN-RLS (Yan et al., 2018), and KATZHCDA (Fan

et al., 2018b) based on the AUC value. Compared to the

three models, CDA-EnRWLRLS obtains the highest AUC of

0.8654, outperforming 7.60%, 24.86%, and 0.25%,

respectively. In particular, DWNN-RLS used regularized

least squares with Kronecker product kernel for CDA

prediction. Disease similarity was computed by their

semantic similarity and Gaussian association profile

similarity. Meanwhile, circRNA similarity was computed by

their Gaussian association profiles. CDA-EnRWLRLS uses an

ensemble model to identify possible CDAs. Similar to

DWNN-RLS, CDA-EnRWLRLS computes disease similarity.

However, CDA-EnRWLRLS computes circRNA similarity by

their functional similarity and Gaussian association profile

similarity. Furthermore, CDA-EnRWLRLS still computes

association score between each circRNA-disease pair using

random walk with restart except Laplacian regularized least

squares and integrates the results from the two models by the

soft voting technique. Therefore, CDA-EnRWLRLS

outperforms DWNN-RLS, which demonstrates its powerful

CDA prediction ability.

3.3 Performance evaluation of ensemble
learning model with individual models

Our proposed CDA-EnRWLRLS model is an ensemble of

two state-of-the-art models (i.e., random walk with restart

and Laplacian regularized least squares). To evaluate the

performance of ensemble learning model and individual

models, we conducted 5-fold cross validation experiment

for CDA-EnRWLRLS and random walk with restart

(CDA-RWR) and Laplacian regularized least squares

(CDA-LRLS) on the CDA dataset. Figure 3 shows the

AUC values computed by CDA-EnRWLRLS, CDA-RWR,

and CDA-LRLS. From Figure 3, we can find that CDA-

EnRWLRLS obtains better AUC than two individual

models, CDA-RWR and CDA-LRLS, which shows that the

proposed ensemble learning-based model can outperforms

individual models.

3.4 Evaluation of parameter sensitivity

In this study, we ensemble two individual models, random

walk with restart and Laplacian regularized least squares.

However, the two models may have different effects on the

CDA prediction performance. To evaluate their effect on the

performance, we consider θ in the range of [0.1, 0.9] with stride of

0.1. The results are shown in Figure 4.

TABLE 1 The inferred top 30 circRNAs associated with bladder cancer.

Rank circRNAs Evidence

1 hsa_circ_0000172 circRNADisease

2 hsa_circ_0002495 circRNADisease

3 Chr22: 28943661 circRNADisease

4 Chr5: 158368701 circRNADisease

5 Chr9: 74522734 circRNADisease

6 circRNA BCRC4/hsa_circ_001598/hsa_circ_0001577 circRNADisease

7 hsa_circ_0003221/circPTK2 circRNADisease

8 hsa_circ_0091017 circRNADisease

9 hsa_circ_0002024 circRNADisease

10 circMylk/circRNA-MYLK/hsa_circ_0002768 circRNADisease

11 circTCF25/hsa_circ_0041103 circRNADisease

12 circFAM169A/hsa_circ_0007158 circRNADisease

13 circTRIM24/hsa_circ_0082582 circRNADisease

14 circBC048201/hsa_circ_0061265 circRNADisease

15 hsa_circRNA_100782/circHIPK3/hsa_circ_0000284 Unconfirmed

16 circZFR/hsa_circRNA_103809/hsa_circ_0072088 Unconfirmed

17 Cir-ITCH/hsa_circ_0001141/hsa_circ_001763 Unconfirmed

18 circSMARCA5/hsa_circ_0001445 PMID: 35712125, 35116915, 34482767

19 hsa_circ_0001649 PMID: 35200157

20 CDR1as/ciRS-7/hsa_circ_0001946 PMID: 29694981, 31131537, 33335899

Frontiers in Genetics frontiersin.org08

Su et al. 10.3389/fgene.2022.1001608

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1001608


From Figure 4, we can find that AUC computed by CDA-

EnRWLRLS gradually increases when the parameter θ is from

0.1 to 0.3. Its computed AUCs gradually decrease when the

parameter θ is from 0.3 to 0.9. In other words, CDA-EnRWLRLS

obtains the best AUC when the parameter θ is 0.3. Thus, the

parameter θ is finally set as 0.3.

3.5 Case study

We consequently compute the association score for each

circRNA-disease pair. In particular, we compute association

abilities between all circRNAs and bladder cancer and bladder

urothelial cancer to analyze any possible associations between

these circRNAs and the two cancers, and to further screen for

potential circRNA biomarkers for them.

3.5.1 circRNA biomarker analysis for bladder
cancer

Bladder cancer is a heterogeneous disease with high

morbidity and mortality rates (Kamat et al., 2016). It has

been estimated that about 73,510 new cases of bladder cancer

were diagnosed in the United States in 2012. During the same

period, about 14,880 patients died from bladder cancer

(Clark et al., 2013). To analyze circRNA biomarkers for

bladder cancer, we compute association between all

circRNAs and bladder cancer after training CDA-

EnRWLRLS. Table 1 gives the top 20 circRNAs that are

predicted to have the highest association scores with

bladder cancer.

In the CDA dataset, 15 circRNAs are known to associate

with bladder cancer among 585 circRNAs. From Table 1, we

can find that the 15 circRNAs are predicted to have the

highest association scores with bladder cancer and are

ranked as the top 15. Furthermore, we predict that

circHIPK3 may associate with bladder cancer with the

ranking of 16. Furthermore, circHIPK3 is a promising

cancer-related circRNA (Zhang et al., 2020). It can

regulate cell growth through sponging multiple miRNAs

(Zheng et al., 2016). For instance, circHIPK3 can regulate

cell proliferation and migration in hepatocellular cancer by

sponging miR-124 (Chen X. et al., 2018), modulate

FIGURE 5
Associations between the top 20 circRNAs with bladder cancer. Black lines represent associations that have validated in the CDA dataset. Sky
blue lines represent associations that are unknown in the CDA dataset but can be validated by related literatures. Yellow lines represent association
that are unknown in the CDA dataset and need validation.
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TABLE 2 The inferred top 30 circRNAs associated with bladder urothelial cancer.

Rank circRNAs Evidence

1 hsa_circRNA_100782/circHIPK3/hsa_circ_0000284 circRNADisease

2 circSMARCA5/hsa_circ_0001445 Unconfirmed

3 hsa_circ_0001649 Unconfirmed

4 Cir-ITCH/hsa_circ_0001141/hsa_circ_001763 Unconfirmed

5 CDR1as/ciRS-7/hsa_circ_0001946 PMID: 32658427

6 circZFR/hsa_circRNA_103809/hsa_circ_0072088 Unconfirmed

7 CircDOCK1/hsa_circ_100721 Unconfirmed

8 circRNA_100290/hsa_circ_0013339/hsa_circ_100290 Unconfirmed

9 circPVT1/hsa_circ_0001821 PMID: 34902986

10 hsa_circ_0001313/circCCDC66 Unconfirmed

11 circGFRA1/hsa_circ_005239 Unconfirmed

12 circZNF609/hsa_circ_0000615 Unconfirmed

13 circWDR77/hsa_circ_0013509 Unconfirmed

14 hsa_circ_0000096/circHIAT1/hsa_circ_001013 Unconfirmed

15 circRNA_000167/hsa_circRNA_000167/hsa_circ_0000518 Unconfirmed

16 hsa_circ_0007534 Unconfirmed

17 circPRKCI/hsa_circ_0067934 Unconfirmed

18 hsa_circRNA_103110/hsa_circ_103110/hsa_circ_0004771 Unconfirmed

19 circ-Foxo3/hsa_circ_0006404 PMID: 31903146

20 circFUT8/hsa_circRNA_101368/hsa_circ_0003028 Unconfirmed

FIGURE 6
Associations between the top 20 circRNAs with bladder urothelial cancer. Black lines represent associations that have validated in the CDA
dataset. Sky blue lines represent associations that are unknown in the CDA dataset but can be validated by related literatures. Blue lines represent
association that are unknown in the CDA dataset and need validation.
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autophagy in STK11 mutant lung cancer (Chen et al., 2020),

and promote glioma progression as a prognostic marker (Jin

et al., 2018). The overexpression of circHIPK3 can accelerate

the proliferation and invasion of prostate cancer cells (Cai

et al., 2019). Its inhibition can block angiotensin II-induced

cardiac fibrosis (Ni et al., 2019). In this study, we infer that

circHIPK3 may be a biomarker of bladder cancer and need

experimental validation. Figure 5 shows the association

information between the top 20 circRNAs with bladder

cancer.

3.5.2 circRNA biomarker analysis for bladder
urothelial cancer

Over 90% bladder cancer is bladder urothelial cancer.

Bladder urothelial cancer is a common malignancy with high

morbidity and mortality worldwide (Cancer Genome Atlas

Research Network, 2014). In the United Sates, bladder

urothelial cancer is one of the main histologic subtypes (Clark

et al., 2013). However, no molecularly targeted agent has been

applied to the treatment, until now. To infer potential circRNA

biomarkers for bladder urothelial cancer, we compute association

scores between all circRNAs and bladder urothelial cancer using

CDA-EnRWLRLS. Table 2 gives the top 20 circRNAs that are

predicted to have the highest association scores with bladder

urothelial cancer.

In the CDA dataset, only one circRNA, circHIPK3,

associates with bladder urothelial cancer among all

potential 585 circRNAs. We predict that SMARCA5 may

associate with bladder urothelial cancer with the ranking of

2. SMARCA5 is a member of the ISWI family that is involved

in chromatin remodeling. It can regulate chromosome

remodeling through diverse mechanisms, hinder cell

proliferation, and assist apoptosis by sponging miRNAs. Its

expression may boost the susceptibility of cells to

chemotherapy, boost the sensitivity of cancer detection,

promote early diagnosis, and help the treatment of

chemotherapy-resistant cancers (Qin and Wan, 2022). Its

expression level has a certain association with clinical

features of many cancers. For instance, SMARCA5 can

promote cell proliferation in bladder cancer and prostate

cancer (Tan et al., 2019), suppress colorectal cancer

progression (Miao et al., 2020), inhibit tumor metastasis in

cervical cancer (Zhang X. et al., 2021) and inhibit cell

proliferation, migration, and invasion in non-small cell

lung cancer (Wang et al., 2019), and boost cell migration

and invasion as well as inhibit cell apoptosis in bladder cancer

(Kong et al., 2017; Tan et al., 2019). Many studies have

reported that circSMARCA5 plays a key role in the

occurrence and development of cancer. Moreover, it also

serves as a reliable indicator of tumor screening or cancer

prognosis evaluation (Qin and Wan, 2022). Therefore,

SMARCA5 is a diagnostic and prognostic biomarker of

cancer and has obtained wide attention. In this study, we

predict that SMARCA5 may be potential biomarker of bladder

urothelial cancer; however, this needs validation. Figure 6

shows the association information between the top

20 circRNAs with bladder urothelial cancer.

4 Discussion and conclusion

Bladder cancer, including bladder urothelial cancer, is a

common and complex disease. These cancers have caused

high morbidity and mortality. The identification of

biomarkers for bladder cancer and bladder urothelial

cancer can help in their prognosis and treatment. In this

manuscript, we developed an ensemble learning model,

CDA-EnRWLRLS, to discover potential circRNA

biomarkers for the two cancers based on CDA association

prediction.

CDA-EnRWLRLS first computes circRNA similarity and

disease similarity by fusing semantic similarity and association

profile similarity of diseases and functional similarity and

association profile similarity of circRNAs. Second, it scores

each circRNA-disease pair by random walk with restart and

Laplacian regularized least squares, respectively. Third, the

results computed by random walk with restart and Laplacian

regularized least squares are integrated by the soft voting

approach based on ensemble learning. Finally, it is applied to

discover potential circRNA biomarkers for bladder cancer and

bladder urothelial cancer.

CDA-EnRWLRLS is compared to three classical CDA

prediction methods (CD-LNLP, DWNN-RLS, and

KATZHCDA) and two individual models (CDA-RWR and

CDA-LRLS). The results show that CDA-EnRWLRLS

computes relatively better AUC, which demonstrates its

relatively powerful CDA prediction ability. We predict that

circHIPK3 and SMARCA5 may be potential biomarkers of

bladder cancer and bladder urothelial cancer, respectively.

CDA-EnRWLRLS has two advantages: on the one hand, it

better fuses biological features and association features of diseases

and circRNAs; while on the other hand, it combines two

individual classical association prediction models to obtain the

powerful association prediction performance from different

bioinformatics tools. Although CDA-EnRWLRLS computed

better CDA inference ability, the circRNA functional

similarity was calculated indirectly by disease semantic

similarity. Moreover, its prediction performance needs further

improvement. In the future, we will consider biological features

of circRNAs and develop more efficient machine learning,
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especially ensemble learning models (Zhou et al., 2021a; Peng

et al., 2022a) and deep learning models (Peng et al., 2021b; Zhou

et al., 2021b; Sun et al., 2022; Yang et al., 2022) to discover

potential biomarkers for bladder cancer and bladder urothelial

cancer.
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