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Abstract

The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined

and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloro-

plast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp,

respectively. The gene contents and orders among 12 Caryophyllaceae species are consis-

tent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR)

regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to

partial or entire gene duplications. Additionally, rearrangements of the LSC region were

caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three

times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular

duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed

39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addi-

tion, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S.

capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the

12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding

genes using both maximum parsimony and likelihood methods.

Introduction

Chloroplasts are important photosynthetic organelles that provide energy for the synthesis of

glucose, fatty acids, and amino acids [1,2]. The chloroplast genome is the smallest of the plant

genomes, ranging from 135 to 160 kb in most plants [3–5]. Most angiosperm chloroplast

genomes have a quadripartite circular structure and contain two copies of inverted repeat (IR)

regions, separating a large single copy (LSC) region and small single copy (SSC) region [5].

Recently, with the rapid development of next-generation sequencing platforms, many chloro-

plast genome sequences have been reported and used to help resolve plant phylogenies [6,7].

Chloroplast genomic data are widely used in various studies, such as those on molecular
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phylogeny, molecular identification (DNA barcoding), and genetic diversity [8–10]. The struc-

ture and gene order of the chloroplast genome are stable, and the rates of nucleotide substitu-

tion are generally slow in angiosperms [11–14].

Rearrangements in the chloroplast genome were considered to have occurred rarely enough

in evolution that they can be used to demarcate major groups [4]; however, recently some line-

ages have revealed various patterns of changes in chloroplast genomes, for example large-scale

rearrangements, gene duplications, and even loss of IR regions [15–20]. Scattered angiosperm

lineages show extensive rearrangement of plastid genomes, and these gene order changes are

correlated with increased rates of nucleotide substitutions and gene and intron losses [6]. Rear-

rangements of the chloroplast genome are often associated with repeated sequences [5].

The family Caryophyllaceae consists of 75–80 genera and approximately 2,000 species,

which are widely distributed, mainly in the temperate or warm-temperate regions of the north-

ern hemisphere [21]. The genera Lychnis and Silene are sister genera belonging to tribe Sile-
neae, but the taxonomic identities and limitations between these two genera remain unclear

[21–23], which is why the genus Lychnis was nested within Silene using nuclear ribosomal

internal transcribed spacer (nrITS), five chloroplast genes, and intergenic spacers (IGS) [24].

Previous studies have shown that the Sileneae underwent accelerated plastid genome evolution,

including inversions, shifts in IR boundaries, large indels, intron losses, and rapid rates of

amino acid sequence substitution [25,26]. Interestingly, the psaA-ycf3:psaI-ycf4 inversion and

intron losses in clpP-1 and clpP-2 were suggested to be independent events that occurred three

times [26].

A total of ten Caryophyllaceae chloroplast genomes have been reported [25–28]. In the

genus Lychnis, only the chloroplast genome of L. chalcedonica has been reported [26], whereas

in Silene, chloroplast genomes from a total of six species have been reported [25,26]. Therefore,

in this study, we sequenced the complete chloroplast genomes of L. wilfordii and S. capitata
and then analyzed them to identify their genetic characteristics and differences compared with

other Caryophyllaceae species. The specific goals of the present study were to (1) present the

complete chloroplast genome sequences of two Sileneae species, (2) investigate any significant

characteristics suggesting extensive genome rearrangement in this tribe, and (3) explore signif-

icant changes in gene content and intron losses in the tribe Sileneae.

Materials and methods

Plant materials, DNA extraction, sequencing and genome assembly

Leaf materials from Lychnis wilfordii and Silene capitata were obtained from living plants by

seed germination in a greenhouse at the Korean Botanical Garden. The voucher specimens of

L. wilfordii (NIBRVP0000542331) and S. capitata (NIBRVP0000542433) were deposited in the

National Institute of Biological Resources Herbarium (KB). Total genomic DNA was extracted

using the Genome Wizard kit (Promega, Madison, WI, USA). Sequencing libraries were pre-

pared using the NEXTflex Rapid DNA-seq kit (Bioo Scientific, Austin, TX, USA). Paired-end

sequencing libraries containing insert sizes of approximately 350–450 bp were sequenced on

the Illumina Hiseq 2500 platform (Illumina Inc., San Diego, CA, USA) at the National Instru-

mentation Center for Environmental Management (Seoul, South Korea), yielding 27,739,600

reads from L. wilfordii and 22,127,152 reads from S. capitata, each with a read length of 250 bp.

These paired-end reads were aligned with sequences from Silene vulgaris (JF715057). After

screening these paired-end reads through alignment with S. vulgaris plastid genome, 585,206

(2.1%) reads of L. wilfordii and 661,807 (2.9%) reads of S. capitata were extracted with mean of

coverage 980× and 1082×, respectively. De novo assembly was performed using Geneious v.

7.1.3 (Biomatters, Auckland, New Zealand). The consensus sequences were extracted and gap-
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filled by PCR amplification using specific primers based on the gaps between sequences. The

PCR products were purified and sequenced by Sanger sequencing.

Genome annotation and comparative analyses

The initial annotation of the two Caryophyllaceae chloroplast genomes was performed using

Dual Organellar GenoMe Annotator (DOGMA) [29]. From this initial annotation, putative

starts, stops, and intron positions were determined by comparison with homologous genes in

other Caryophyllaceae chloroplast genomes. The tRNA genes were annotated using DOGMA

and tRNAscan-SE [30]. The circular chloroplast genome map was drawn using the OGDraw

program [31]. The complete chloroplast genomes of L. wilfordii and S. capitata were compared

with those of ten other Caryophyllaceae species using the mVISTA program in Shuffle-

LAGAN mode (Table 1) [32]. Agrostemma githago (KF527884) was used as a reference.

Repeat sequence analysis

Simple sequence repeats (SSRs or microsatellites; mono-, di-, tri-, tetra-, penta-, and hexanu-

cleotide repeats) were detected using Phobos v. 3.3.12 [33] with thresholds of ten repeat units

for mononucleotide SSRs, five repeat units for di- and trinucleotide SSRs, and three repeat units

for tetra-, penta-, and hexanucleotide SSRs. REPuter [34] was also used to analyze the repeat

sequences, which included forward, reverse, palindromic, and complementary sequences with a

minimal length of 30 bp and 90% sequence identities (Hamming distance of three). Moreover,

we constructed a phylogenetic trees based on the sequences of the pairs of repeat regions to

investigate the relationship between the distributions of repeat sequences and structural inver-

sions. Maximum parsimony (MP) analysis was conducted using PAUP v. 4.0a150 [35], and

branch support was assessed using 1000 bootstrap replicates.

Phylogenetic analysis

Phylogenetic analyses based on 73 protein-coding genes were also performed for 12 Caryo-

phyllaceae species, using two Amaranthaceae species (Beta vulgaris and Salicornia europaea) as

the outgroup (Table 1). Among 77 whole protein-coding genes, ycf1, ycf2, accD, clpP genes

were excluded from data matrix, since those genes were reported fast evolving genes with high

Table 1. GenBank accession numbers and references used in this study.

Family name Scientific name Accession numbers Reference

Caryophyllaceae Agrostemma githago KF527884 Sloan et al., 2014

Colobanthus quitensis KT737383 Kang et al., 2015

Dianthus longicalyx KM668208 Gurusamy et al., 2016

Lychnis chalcedonica KF527886 Sloan et al., 2014

Lychnis wilfordii KT727929 In this study

Silene capitata KT727930 In this study

Silene conica JF715054 Sloan et al., 2012

Silene conoidea KF527885 Sloan et al., 2014

Silene latifolia JF715055 Sloan et al., 2012

Silene noctiflora JF715056 Sloan et al., 2012

Silene paradoxa KF527887 Sloan et al., 2014

Silene vulgaris JF715057 Sloan et al., 2012

Amaranthaceae Beta vulgaris KR230391 Stadermann et al., 2015

Salicornia europaea KJ629116 Unpublished

doi:10.1371/journal.pone.0172924.t001
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substitution rate within tribe Sileneae [26]. Consequently, a total of 54,271 bp were aligned

using MAFFT [36]. MP analysis was conducted using PAUP v. 4.0a150 [35], and branch sup-

port was assessed using 1000 bootstrap replicates. Before Maximum likelihood (ML) analysis,

a search for the best fitting substitution model was performed using jModeltest v. 2.1.5 [37].

Based on the Akaike Information Criterion (AIC) and Akaike Information Criterion with Cor-

rection (AICc), GTR+I+G was the best model. ML analysis was performed using RAxML v.

7.4.2 with 1000 bootstrap replicates and the GTR+I+G model [38]. Bayesian inference was per-

formed using MrBayes 3.2 [39].

Results and discussion

Genome organization and features

The complete sizes of the L. wilfordii and S. capitata chloroplast genomes are 152,320 and

150,224 bp, respectively (Fig 1, Table 2). The size of the L. wilfordii chloroplast genome is the

longest among the reported Caryophyllaceae species. The L. wilfordii and S. capitata genomes

include a pair of IRs of 27,709 bp and 25,371 bp separated by a SSC region of 12,914 bp and

17,313 bp and a LSC region of 83,988 bp and 82,169 bp, respectively (Fig 1, Table 2), similar

to the published Caryophyllaceae chloroplast genomes [25–28]. The L. wilfordii chloroplast

genome contains 110 unique genes, 17 of which are duplicated in the IR region, giving a total

of 127 genes (Fig 1, Table 2, S1 Table). The S. capitata chloroplast genome contains 111 unique

genes, 19 of which are duplicated in the IR region, giving a total of 130 genes (Fig 1, Table 2, S2

Table). The chloroplast genomes of these two species contain 30 distinct tRNAs, seven of

which are duplicated in the IR region. Seventeen genes contain one or two introns: 14 contain

Fig 1. The chloroplast genomes of Lychnis wilfordii and Silene capitata. Genes inside the circle are transcribed clockwise, while genes outside are

transcribed counter-clockwise. The dark gray inner circle corresponds to the GC content and the light-gray circle to the AT content.

doi:10.1371/journal.pone.0172924.g001
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one intron and three (rps12, clpP, and ycf3) two introns. Six of the genes containing one intron

are tRNAs (S1 and S2 Tables).

In addition, while the L. wilfordii and S. capitata chloroplast genomes both have lost the

infA gene, the accD gene was pseudogenized only in L. wilfordii. The lack or pseudogenization

of the infA gene has been discovered in many taxa outside of Caryophyllaceae, such as the

Brassicaceae, Fabaceae, Liliaceae, Malvaceae, and Onagraceae [25,26,40–44]. Loss or pseudo-

genization of the accD gene in the plastid genome or accD gene transfer to the nucleus has also

been reported in various angiosperm lineages, including Poaceae, Orobanchaceae, Ericaceae,

and Primulaceae [45–48].

Comparative chloroplast genomic analysis

We compared gene arrangements in the chloroplast genomes of L. wilfordii and S. capitata with

those of the ten previously reported Caryophyllaceae species (Fig 2). The chloroplast genome of

S. capitata has an identical gene order with those of the genera Agrostemma, Colobanthus, and

Dianthus, but the chloroplast genome of L. wilfordii has unique structural changes compared

with previously reported Caryophyllaceae chloroplast genomes (Fig 2). The gene rearrangements

present in the LSC regions were a result of inversions and/or transpositions (Fig 2). The chloro-

plast genome of L. wilfordii revealed an inversion of the trnV-rbcL region compared with the

genomes of other genera (Fig 2), whereas the L. chalcedonica genome had twice the number of

inversions and transpositions in the accD-psaI and ycf3 regions compared with the genomes of

other genera (Fig 2). Interestingly, truncated partial sequences of clpP-2 and accD were found in

the IGS region between trnV and psaI. The 5’ upstream non-genic region and a partial 348 bp

sequence of the accD gene, as well as the exon 1 and partial intron 1 sequences of clpP-2, have

remained, but the downstream regions of both genes were truncated in the L. wilfordii chloro-

plast genome. Compared with the gene orders in other chloroplast genomes, these disruptions

in the accD and clpP-2 genes may have occurred by inversion of the trnV-rbcL fragment. Thus,

we deduced that duplication of clpP occurred before diversification of L. chalcedonica from L.

wilfordii, and that transposition of psaI-accD and the loss of introns in clpP-1 and clpP-2 in L.

chalcedonica may have occurred after species diversification.

In the genus Silene, we identified three types of chloroplast genomes (Fig 2). These are a)

the common type of chloroplast genome observed in most Caryophyllaceae (Agrostemma,

Colobanthus, and Dianthus) (seen in S. capitata, S. latifolia, and S. vulgaris); b) chloroplast

Table 2. Summary of chloroplast genome characteristics of two caryophyllaceae genomes.

Genome features Lychnis wilfordii Silene capitata

Size (bp) 152,320 150,224

LSC length (bp) 83,988 82,169

SSC length (bp) 12,914 17,313

IR length (bp) 27,709 25,371

Number of genes 110 111

Protein-coding genes 76+6 77+8

tRNA genes 30+7 30+7

rRNA genes 4+4 4+4

Number of genes duplicated in IR 17 19

Overall GC content (%) 36.6 36.3

GC content in LSC (%) 34.9 34.2

GC content in SSC (%) 31.2 29.8

GC content in IR (%) 40.5 42.2

doi:10.1371/journal.pone.0172924.t002
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genomes exhibiting an inversion of the ycf3-psaI regions (seen in S. paradoxa, S. conoidea, and

S. conica); c) chloroplast genomes exhibiting transpositions and/or inversions of the psbD-
accD, petL-clpP, trnD-T, and psaI-psbE regions (seen in S. noctiflora). Silene noctiflora currently

has the most complicated chloroplast genome among the Caryophyllaceae.

Overall sequence identity was analyzed with mVISTA program the among the 12 chloro-

plast genomes of Caryophyllaceae, using the Agrostemma githago genome as a reference (Fig

3). The results revealed higher divergence in the LSC regions than in the IRs and SSCs, as a

result of gene rearrangements (Figs 2 and 3), and greater conservation in the coding regions

than in the non-coding regions (Fig 3). The most divergent coding regions were the ycf1, ycf2,

accD, and clpP genes, which are similar to results from previous studies [25,26,49], showing

lower (under 50%) similarity compared with other protein-coding regions (Fig 3). Conse-

quently, we suggest that these genes evolve rapidly in Caryophyllaceae (including the tribe Sile-
neae). These genes are either absent or highly variable in the genomes of Campanulaceae,

Geraniaceae, and Poaceae [6].

Boundaries between single copy and inverted repeat regions

The size variations among angiosperm chloroplast genomes are mostly the result of expansion

or contraction of the IR region [50]. Additionally, the expansion or contraction of the IR

region differs among various plant species [51]. In this study, the LSC-IR and IR-SSC bound-

aries of the 12 sequenced Caryophyllaceae genomes were compared (Fig 4). IR locations have

changed substantially in Lychnis and Silene as a result of movement of the boundaries between

the IR and SC regions (Fig 4). The IR and SC boundaries of S. capitata are consistent with

those of the S. vulgaris and S. latifolia genomes, as well as the Caryophyllaceae genera Agros-
temma, Colobanthus, and Dianthus (Fig 4).

The expansion of the IR at the SSC/IR boundary that duplicates the entire ycf1 gene was

found only in the genome of L. wilfordii and three Silene species (S. conica, S. conoidea, and S.

noctiflora). This event was observed in non-core Caryophyllales [52]. In the S. noctiflora chlo-

roplast genome, the ycf1 and rps15 genes are duplicated within the IR region (Fig 4), and this

species contains the longest IR region (29,891 bp) among the 12 Caryophyllaceae species.

However, the contraction of the IR at the LSC/IR boundary that duplicates a part of the rpl2
gene was found only in Silene (S. conica, S. conoidea, and S. noctiflora) and Lychnis (L. wilfordii
and L. chalcedonica). Lychnis chalcedonica has the shortest IR region (23,540 bp) among 12

Caryophyllaceae species due to contraction of the IR region at the LSC/IR boundary and lack

of expansion of the IR region at the IR/SSC boundary.

Repeat sequence analysis and short inverted repeats as inversion

hotspots

We analyzed repeat sequences from the chloroplast genomes of L. wilfordii and S. capitata and

observed forward, reverse, palindromic, and complementary repeats using REPuter. Lychnis

Fig 2. Comparison of gene rearrangements in the large single copy region among 12 Caryophyllaceae.

Genes are indicated in the colored boxes. Green: photosystem; blue: hypothetical chloroplast reading frame

(ycf series); yellow: NADH-dehydrogenase; light orange: ribosomal subunit; dark orange: protease; brown:

rubisco subunit; red: ATP synthase; purple: cytochrome b/f complex; pink: acetyl-CoA carboxylase; gray:

tRNA; white: pseudogene. The larger boxes indicate that the inversion or transposition fragments have been

identified. The arrows to the left of the large boxes indicate the direction of inversion compared with the

ancestral large single copy gene order of this region. The red triangle to the right of the large squares indicates

the breaking point of an 18 kb inversion with intermolecular duplicated sequences.

doi:10.1371/journal.pone.0172924.g002
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wilfordii contains 17 forward repeats and 22 palindromic repeats, whose lengths range from 40

to 462 bp (Fig 5, S3 Table). Silene capitata contains 15 forward repeats, 27 palindromic repeats,

and only one reverse repeat, whose lengths range from 30 to 64 bp (Fig 5, S4 Table). Most of

the L. wilfordii repeats are located in IGS regions (56.4%), and less than half were located in

genes (30.8%; ycf1 and ycf2) and introns (12.8%; ndhA and clpP intron). In contrast, the major-

ity of S. capitata repeats are located in genes (44.0%; ycf2, ycf4, psaA, psaB, ccsA, trnS-GGA,

trnS-GCU, trnS-UGA, trnG-UCC, and trnG-GCC), with fewer located in IGSs (40.0%) and

introns (16.0%; ycf3, rpl16, rpoC1, and ndhA introns).

We then analyzed the SSRs (or microsatellites), which are increasingly evaluated in molecu-

lar genetic studies because of their high reproducibility, ease of scoring, and fast throughput

compared with other marker techniques [53]. In the L. wilfordii and S. capitata chloroplast

genomes, the most abundant SSRs were A or T mononucleotide repeats, which accounted for

approximately 77.6% and 76.8% of the total SSRs, followed by tetranucleotides (10.4% and

16.1%) and dinucleotides (10.4% and 7.1%), respectively (Table 3, S5 and S6 Tables). SSRs in

the chloroplast genome are commonly composed of A or T repeats and rarely G or C repeats

[54,55]. Furthermore, the majority of L. wilfordii and S. capitata SSRs are located in IGS

regions (49.3% and 55.4%), followed by genes (37.3% and 26.8%) and introns (13.4% and

17.9%), respectively (S5 and S6 Tables). SSRs located in coding regions were found mainly in

ycf1 and rpoC2, with the remaining SSRs found in matK, rpoA, psbF, atpB, and atpF. Among

the SSRs in genes, part or all of those in matK, rpoC2, rpoA, psbF, ycf1, and rrn23 were shared

by the two Caryophyllaceae species.

Under the assumption that the common chloroplast types observed in most Caryophylla-

ceae (Agrostemma, Colobanthus, and Dianthus, S. capitata, S. latifolia, and S. vulgaris) are

ancestral, the inversion of the ycf3-psaI fragment might have occurred independently at least

three times: in L. chalcedonica, S. notiflora, and the lineage containing S. conoidea and S. conica,

consistent with previous results [26]. Interestingly, loss of introns in the clpP gene is always

coupled with these inversions. In Caryophyllaceae, all 12 species possess imperfect palin-

dromic repeats on both sides of the ycf3-psaI fragment (Fig 2), whereas only one homologous

sequence corresponding to these repeats was found in the intergenic region between psaI and

ycf4 in two Amaranthaceae species. In all cases, the repeat sequences were overlapped by par-

tial ycf4 coding region sequences (63 bp). Thus, the partial ycf4 and upstream sequences might

have been duplicated in the IGS between psaA and ycf3 before diversification of Caryophylla-

ceae. Even in the repeats between psaA and ycf3, expected to be non-genic sequences, intermo-

lecular duplicated sequences were grouped together in A. githago, C. quitensis, D. longicalix,

and S. paradoxa based on the maximum parsimony tree (Fig 6). The intermolecular duplicated

sequences were not grouped together in the other Silene species. A large fragment inversion

mediated by short IRs was reported in several plant species. The 22 kb inversion in Asteraceae

[56], the 42 kb inversion in Abies of the Pinaceae [57], the 21 kb inversion in Jasminae of the

Oleaceae [16], and the 36 kb inversion in the core Genistoids are thought to be induced by IRs

in tRNAs or repeat elements several base pairs long. These dispersed repeats were shown to

promote inversions via intermolecular recombination [5,58,59]. Thus, we suggest that this

short IR in Caryophyllaceae might mediate intramolecular flip-flop recombination events, and

thus, independent identical inversion events of the ycf3-psaI 18 kb fragment might be facili-

tated independently in different lineages.

Fig 3. Sequence alignment of 12 Caryophyllaceae genomes in mVISTA, using the Agrostemma githago genome as a reference. The vertical

scale indicates the identity percentage, ranging from 50 to 100%.

doi:10.1371/journal.pone.0172924.g003
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Fig 4. Comparison of the large single copy, inverted repeat, and small single copy border regions among 12 Caryophyllaceae chloroplast

genomes.

doi:10.1371/journal.pone.0172924.g004
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Phylogenetic analysis

Both the MP and ML trees of the 12 Caryophyllaceae species and two Amaranthaceae species

based on 73 protein-coding genes showed consistent phylogenetic patterns (Fig 7, S1 Fig). In

Fig 5. Frequency of repeat sequences in the chloroplast genomes of Lychnis wilfordii and Silene capitata using REPuter.

doi:10.1371/journal.pone.0172924.g005

Table 3. The types and number of SSRs in chloroplast genomes of L. wilfordii and S. capitata.

L. wilfordii S. capitata

Mononucleotide repeats 52 43

Dinucleotide repeats 7 4

Trinucleotide repeats 1 0

Tetranucleotide repeats 7 9

Total SSRs in cp genome 67 56

Total SSRs in protein-coding genes 25 14

Penta- and hexanucleotides were not discovered over than three repeats.

doi:10.1371/journal.pone.0172924.t003
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Fig 6. A phylogenetic tree of the inverted repeats at the end of the 18 kb inversion of the psaI-ycf3 fragment. Two intermolecular repeat sequences

on both sides of the inversion were extracted. For two Amaranthaceae species (Salicornia europaea and Beta vulgaris), only one homologous sequence was

present. Gene names in parentheses indicate the intergenic location between the two genes where both repeat sequences are present.

doi:10.1371/journal.pone.0172924.g006
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the ML tree, bootstrap analysis indicated that eight of ten nodes were supported by bootstrap

values� 99% and the other two nodes by values > 65%. In previous studies, the genus Lychnis
was shown to be nested within the genus Silene based on internal transcribed spacer (ITS)

sequences of nuclear genome and chloroplast DNA data [24,60] and based on chloroplast

genome data [26]. Lychnis species were nested within Silene, close to S. paradoxa in the subge-

nus Silene, which is consistent with previous studies [26] (Fig 7). The subgenus Behenantha
and monophyly of sect. Melandrium (S. capitata and S. latifolia) were not supported, whereas

S. conoidea and S. conica of sect. Conoimorpha form a monophyletic group were found to be

closely related to S. noctiflora of sect. Elisanthe (Fig 7). However, we need additional chloro-

plast genome data from more Sileneae species to resolve the relationship between Lychnis and

Silene, as well as the infrageneric relationships of Silene.

Fig 7. Phylogenetic tree of 14 taxa based on 73 protein-coding genes using the maximum likelihood method. Taxa in red are the

new genomes reported in this study. Bootstrap values greater than 50% are shown above the nodes, and the Bayesian posterior

probabilities are shown below the nodes.

doi:10.1371/journal.pone.0172924.g007
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