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Background: Periventricular nodular heterotopia (PVNH) is caused by abnormal neuronal

migration, resulting in the neurons accumulate as nodules along the surface of the lateral

ventricles. PVNH often cause epilepsy, psychomotor development or cognition problem.

Mutations in FLNA (Filamin A) is the most common underlying genetic etiology. Our pur-

pose is to delineate the clinical and imaging spectrum that differentiates FLNA-positive and

FLNA-negative PVNH patients.

Methods: We included 21 patients with confirmed PVNH. The detailed clinical information,

electroencephalography, and other clinical findings were recorded. Detailed brain MR

imaging was assessed. Mutation analysis of the FLNA gene was used Sanger sequencing or

a next generation sequencing based assay.

Results: FLNA mutations were identified in 9 patients (7 females and 2 males), including two

nonsense, two splice site, three frameshift, and two missense mutations. In FLNA-positive

group, 8 patients had anterior predominant bilateral symmetric presentation and only one

had asymmetrical distribution and dilated ventricles. Extra-cerebral features were more

often observed in FLNA-positive group than FLNA-negative group.
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At a glance commentary
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Conclusion: Genetics of PVNH is heterogenous, and mutations in FLNA gene account for less
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negative patients could guide the clinicians to select relevant genetic testing.
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Nodular heterotopia (NH) is one of the most common malfor-

mations of cortical development (MCD) related to epilepsy [1].

Periventricular nodular heterotopia (PVNH) is the most common

type of NH [2]. The neuronalmigration abnormality results in the

neurons accumulate as nodules along the surface of the lateral

ventricles. Patients with PVNH often had epilepsy with multiple

epileptogenic zone and variable seizure severity, psychomotor

development and/or cognition problem. PVNH is predominantly

observed in women, due to an X-linked dominant mutation

caused by FLNA (Filamin A) [2]. PVNH is often accompanied by

other cerebral malformations such as cerebellar anomaly, ven-

tricular abnormalities, mega cisterna magna and hypoplasia or

agenesis of corpus callosum [2,3]. There are also several associ-

ated extra-cerebral findings, including cardiac valves disease [4],

patent duct arteriosus [3,4], joint hyperextensibility [4], chronic

constipation [3], chronic obstructive lung disease [3,5], or coa-

gulopathy. Hitherto, mutations in FLNA genes account for only

20e30%of PVNHcases inWestern countries [2,6]. Here,we report

the percentage of FLNAmutations inAsian PVNHpatients aswell

as to delineate the clinical and imaging spectrum that differen-

tiates the FLNA-positive and FLNA-negative PVNH patients. By

early detecting the FLNA mutations, we could provide genetic

counseling to the family and offer medical surveillance for other

organ systems to avoid complications.
Materials and methods

Subjects & clinico-imaging phenotyping

The study included 21 patients with radiologically confirmed

PVNH, followed up at or referred by other neurologists to the
Department of Neurology of Kaohsiung Chang GungMemorial

Hospital, Taiwan and Department of Neurology of Malaya

Medical Center, University of Malaya. Most of the patients are

Chinese ethnicity, except one Malay and one Indian. The

detailed clinical information, electroencephalography (EEG),

neurological examination and other associated manifesta-

tions were sourced from medical records. For those who were

using antiseizure drugs (ASMs), types of ASMs and response to

ASMs were detailed recorded. The study was approved by the

local human research ethics committees andwritten consents

were obtained from all subjects. In minors and those with

intellectual disabilities, consents were obtained from their

legal guardian.

Original brain MR imaging was sourced. The morphology,

location, and symmetry of PVNHwere analyzed. We classified

periventricular heterotopia according to the location of het-

erotopic nodules as previously described with modification

[2]. Patients were classified into four groups: 1. The hetero-

topia located bilaterally symmetric along the frontal and the

body of the lateral ventricles, (anterior predominant type); 2.

The heterotopia located in bilateral temporo-occipital and

trigones of the lateral ventricles (Inferior type); 3. Bilateral

asymmetric periventricular nodules with or without subcor-

tical heterotopia; 4. Unilateral focal periventricular nodule

(presence of isolated or multiple nodule heterotopia in a

restricted area adjacent to the ventricle) with or without

subcortical heterotopias [2,7e9]. We also reviewed the pres-

ence of associated abnormalities, including corpus callosum

malformation, mega cisterna magna, white matter lesion,

abnormal cortical gyration/cortical thinning, posterior fossa

abnormality (defined as posterior fossa cysts, brain stem or

cerebellar malformation), dilated ventricle, or intracranial

aneurysms.
Molecular analysis of FLNA

Genomic DNA was extracted from patients’ peripheral blood

leukocytes using QIAGEN DNA extraction kits (Qiagen, Ger-

many). We designed an amplicon-based targeted resequenc-

ing technique covering all 48 coding exons of FLNA gene and

their flanking (at least 10 base pairs) intronic regions. Multi-

plex polymerase chain reactions were used to amplify FLNA

gene. The amplified libraries were sequenced using Illumina

MiSeq platform. Standardized bioinformatics pipeline was

used as previously described [10]. Four prediction programs,

including SIFT (v1.03) [11], PolyPhen-2 (v2.2.2 build r394) [12],

MutationTaster 2 [13], and Combined Annotation Dependent

Depletion (CADD v1.2) [14] were used to prioritize variants.

The cutoff value of CADD was set at 20. All identified patho-

genic or likely pathogenic variants were confirmed by Sanger

sequencing. The pathogenicity of the variants was classified

according to the ACMG/AMP guideline [15].

https://doi.org/10.1016/j.bj.2021.05.003
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Statistical analysis

Fisher exact or Chi-Squared test was used to compare the

clinical and genetic features between the FLNA positive and

negative groups.
Results

Patients

Among 21 patients with PVNH, FLNA mutations were identi-

fied in 9 (9/21, 42.9%) patients, including two nonsense mu-

tations (case 1& 2), two splice sitemutations (case 3& 4), three

frameshift mutations (case 5, 6, & 7), and two missense mu-

tations (case 8 & 9). The identified FLNA mutations were

detailed in Table 1. Among the FLNA positive patients, seven

were females and two were male. As for the remaining 12

patients without FLNA mutations, 6 were females and 6 were

males. There was no gender difference between the two

groups (p ¼ 0.367).

The most common FLNA mutations were loss-of-function

mutations (7/9, 77.8%), such as nonsense, frameshift and

splicing, which were predictive to reduce the expression level

of filamin A. Additionally, there were two missense muta-

tions: p. Thr608Met and p.Glu1661Lys, which is located in the

fourth and 15th repeat of Rod 1 domain, respectively. Both

missense variants were predicted to deleterious bymultiple in

silico prediction algorithms. All of the variants were not pre-

sented in ExAc or gnomAD database and classified as patho-

genic or likely pathogenic according to ACMG guideline.

Interestingly, both missense mutations were identified in

male patients in hemizygous status. In patient 8, themutation

was passed on to an affected daughter (heterozygous status)

who has epilepsy but normal brain MRI.

The clinical spectrum, epileptic features and neuro-

imaging findings were summarized in Table 2 (FLNA-positive)

and Table 3 (FLNA-negative). All patients in both groups had

epilepsy. Among patients with FLNA positive, most (8/9,

88.9%) patients had anterior predominant bilateral PVNH

(type 1) on MRI except one had bilateral asymmetric PVNH

with adjacent subcortical heterotopia (type 3). None of FLNA

positive had inferior type or unilateral PVNH (type 2 and 4). In

the FLNA negative group, there were two patients had ante-

rior predominant type (type 1), 4 patients had inferior PVNH

(type 2), and 2 patients had type 3 (bilateral asymmetric). Four

patients had type 4, including three with unilateral focal

nodular PVNH without subcortical heterotopia and one pa-

tient had unilateral focal nodule PVNH combined with

subcortical heterotopia.

We then compared the associated intracerebral malforma-

tion between FLNA positive and negative group. With regard to

intracerebral malformations, corpus callosum abnormalities

were seen in 3/9 (33.3%) FLNA positive versus 3/12 (25%) nega-

tive cases (p ¼ 1); mega cisterna magna in 3/9 (33.3%) positive

versus 3/12 (25%) negative cases (p¼ 1). Besides, posterior fossa

abnormality was seen once in both groups (1/9, 11.1% versus 1/

12, 8%). Dilated lateral ventricles tend to be more frequent in
FLNA negative group (8/12, 66.7% versus 1/9, 11.1%) compared

to FLNA positive group (p ¼ 0.0244).

As for the systemicmanifestations, the FLNA positive group

frequently have variable systemic findings and connective

tissue manifestations (7/9, 77.8%), including dysmorphic fea-

tures, cardiovascular disease, skin and joint abnormality and

intestinal dysfunction. On the contrary, therewas no systemic,

internal organ or connective tissuemanifestations observed in

FLNA negative group (0/12, p ¼ 0.0003).

In terms of seizure outcome, the FLNA positive group had

five (5/9) patients withmedical refractory epilepsies, while the

FLNA negative group had six (6/12) medical refractory patients

(p ¼ 0.8) [16].
Discussion

In our PVNH cohort, pathogenic variants in FLNA gene ac-

count for 43% of all cases. Most FLNA positive cases were

female with loss-of-function variants; the neuroimaging

showed anterior predominant bilateral PVNH. Patients with

pathogenic FLNA variants were also more likely to have

systemic manifestations, such as dysmorphism, cardiovas-

cular disease, skin and joint abnormality, and intestinal

dysfunction.

Among FLNA positive cases, there was an obvious female

predominance (female-to-male ratio: 7:2), and loss of function

variants. Female predominance was reported to be 93e100%

in previous series [2,3,17], and only a few male patients were

identified. In this study, both patients with missense variants

were male, which is probably due to individuals with loss of

function hemizygous FLNA variants are not viable. Previous

reported male patients were all missense or distal truncating

variants that have milder deleterious effect on Filamin A

protein [18e21]. Interestingly, there was suggestion that male

FLNA patients have higher incidence (69% compared to 33.3%

in female and 50% in all FLNA mutations) of cardiac or aortic

abnormality and may not presented with intellectual

disability or epilepsy [3,17,21]. One of our male patients also

had cardiac valve insufficiency. The reason for the prevalence

of cardiac involvement in male patients remains uncertain.

Both of our missensemale patients still had seizures andmild

intellectual disability.

Intriguingly, the missense variant in case 8 was inherited

from the proband to his daughter, who does not have PVNH

but had a few self-limited seizures without the need of anti-

epileptic drug. A previous study also reported a father-

daughter pair with missense FLNA variant and milder

phenotype [2]. For missense variant, the survival of male

patients and mild phenotype in female patients is probably

due to the presence of a normal allele as well as residual

function of missense Filamin A compared to loss of function

variants [18,20,21].

All FLNA positive patients in our cohort had anterior pre-

dominant PVNH except one who had subcortical heterotopia

on the same side of PVNH (the father of hemizygous missense

variant). A few patients with FLNA variants without anterior

predominant PVNH have been reported [2,6,21]. On the

https://doi.org/10.1016/j.bj.2021.05.003
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Table 1 Summary of the genetic and clinical data of FLNA positive patients.

Abbreviations: BTCS: bilateral tonic-clonic seizures; CBZ: Carbamazepine; EEG: electroencephalography; FAS: focal aware seizures; FIAS: focal

impaired awareness seizures; LEV: Levetiracetam; LTG: Lamotrigine; N/A: not applicable; OXC: oxcarbazepine; PVNH: periventricular nodular

heterotopia; VPA: Valproic acid.
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contrary, there were also two (2/10, 20%) of all anterior pre-

dominant PVNH patients were negative for FLNA. Previous

studies also reported that 51e74% of anterior predominant

PVNH were negative for FLNA variants [2,17,22].

As for other associated features, we found that FLNA

positive cases are likely to have more systemic manifesta-

tions (~78%) while none of the FLNA negative patients had

associated internal organ abnormality or cardiovascular

abnormality [23e25]. The most common extracerebral fea-

tures are cardiac abnormalities followed by gut dysfunction

and joint hypermobility. FLNA encodes for Filamin A pro-

tein, which is highly expressed in the arteries, gastrointes-

tinal (esophagus and colon) and urogenital system (uterus

and bladder) based on GTEx data. FLNA is an actin-binding

protein that links actins to membrane glycoproteins,

which plays an important role in the remodeling the
cytoskeleton and cell-cell adhesions. Therefore, it is

possible that the systemic manifestations are due to the

non-CNS expression and function of FLNA. Whereas the

genetic cause of FLNA negative PVNH cases remain un-

known, it is possible that the causative genes have a more

limited expression and function in the brain. On the con-

trary, the intracerebral malformation was not significantly

different in the two groups, except for the enlarged ventricle

which is more prominent in FLNA negative group. This is

informative in the clinics where bilateral anterior predom-

inant PVNH associated with systemic features is more likely

to be positive for FLNA gene screening.

There was no difference of seizure outcomes between the

two groups, and nearly half patients had refractory seizure

using multiple antiseizure medications (ASMs). This is in

accordance with previous studies where near a third patients

https://doi.org/10.1016/j.bj.2021.05.003
https://doi.org/10.1016/j.bj.2021.05.003


Table 2 Clinical and brain MRI features of FLNA positive patients.

Abbreviations: IVS: interventricular septum; LA: left atrial; LV: left ventricle; MR: mitral regurgitation; N: normal; N/A: not applicable; PVNH:

periventricular nodular heterotopia; TR: tricuspid regurgitation; þ: present; -: absent.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 5 4 2e5 4 8546
with FLNA mutations were unable to reach seizure free

despite multiple ASMs [3].

Our FLNA mutation positive rate is higher than previous

reports inWestern countries ranged from 21 to 33% [2,6]. This

is probably because the referral bias. More than half cases

were unsolved and may have hitherto unidentified genetic

causes, which indicates the genetic heterogeneity of PVNH.

Several genes, such as MAP1B, TMTC3, MEN1, NEDD4L,

ACTG1, and ARFGEF2 have been recently associated with

FLNA negative PVNH [26e31]. Our study has some
Table 3 Summary of imaging finding of FLNA negative patient

Abbreviations: N/A: not applicable; þ: present; x: absent.
limitations: first, the patient number is limited due to the

rare occurrence of PVNH. Due to small number in each group,

the statistics may not have the power to show minor differ-

ences. Lastly, we only captured and sequenced the FLNA

gene, deletion or copy number variations of FLNA gene may

be missed. Further studies using advanced techniques, such

as multiplex ligation-dependent probe amplification (MLPA)

or whole genome/whole exome sequencing (WGS/WES), may

be required to identify the underlying genetic cause of un-

solved cases.
s.
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