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A B S T R A C T   

Objective: Focal cortical dysplasias (FCDs) are a common cause of apparently non-lesional drug-resistant focal 
epilepsy. Visual detection of subtle FCDs on MRI is clinically important and often challenging. In this study, we 
implement a set of 3D local image filters adapted from computer vision applications to characterize the 
appearance of normal cortex surrounding the gray-white junction. We create a normative model to serve as the 
basis for a novel multivariate constrained outlier approach to automated FCD detection. 
Methods: Standardized MPRAGE, T2 and FLAIR MR images were obtained in 15 patients with radiologically or 
histologically diagnosed FCDs and 30 healthy volunteers. Multiscale 3D local image filters were computed for 
each MR contrast then sampled onto the gray-white junction surface. Using an iterative Gaussianization pro-
cedure, we created a normative model of cortical variability in healthy volunteers, allowing for identification of 
outlier regions and estimates of similarity in normal cortex and FCD lesions. We used a constrained outlier 
approach following local normalization to automatically detect FCD lesions based on projection onto the mean 
FCD feature vector. 
Results: FCDs as well as some normal cortical regions such as primary sensorimotor and paralimbic regions 
appear as outliers. Regions such as the paralimbic regions and the anterior insula have similar features to FCDs. 
Our constrained outlier approach allows for automated FCD detection with 80% sensitivity and 70% specificity. 
Significance: A normative model using multiscale local image filters can be used to describe the normal cortical 
variability. Although FCDs appear similar to some cortical regions such as the anterior insula and paralimbic 
cortices, they can be identified using a constrained outlier detection approach. Our method for detecting outliers 
and estimating similarity is generic and could be extended to identification of other types of lesions or atypical 
cortical areas.   

1. Introduction 

Focal cortical dysplasia (FCD) is a relatively common cause of drug- 
resistant focal epilepsy, and particularly of MRI negative (MRI-) epi-
lepsy. Approximately 15–25% of patients being evaluated for epilepsy 
surgery have apparently normal MRIs; FCD is diagnosed pathologically 
in 25–50% of these patients (Blumcke et al., 2017; Lerner et al., 2009; 
Bien et al., 2009). Because post-operative seizure outcomes are signifi-
cantly worse in MRI- compared to MRI positive (MRI+) patients (Téllez- 

Zenteno et al., 2010), improved identification of subtle FCDs is of great 
clinical importance as it may lead to better surgical outcomes. 

FCDs are variable in their histopathological and radiographic ap-
pearances. Pathological abnormalities range from cortical dyslamina-
tion in FCD type I, to the presence of large dysmorphic neurons in type 
IIa (FCDIIa), and balloon cells and more prominent dysmyelination in 
type IIb (FCDIIb) (Blümcke et al., 2011). FCD type I lesions are typically 
difficult to identify radiologically, most often consisting of cortical 
thinning and lobar hypoplasia, at times with blurring of the gray-white 
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junction and changes in T1- or T2-weighted image intensity. FCD type II 
lesions are more easily identified on MRI, with typical findings con-
sisting of increased cortical thickness, blurring of the gray-white junc-
tion, FLAIR/ T2 hyperintensity (including the transmantle sign in FCD 
type IIb), and alterations in gyrification patterns (Adler et al., 2017a; 
2017b;; Kini et al., 2016). These findings, however, appear inconsis-
tently within and across lesions (Hong et al., 2017) and are often subtle, 
with up to 80% of small bottom-of-sulcus dysplasias being missed on 
routine visual inspection (Besson et al., 2008). 

To aid with detection of subtle FCD lesions, a number of post- 
processing methods have been developed. These range from creation 
of synthetic contrasts to highlight areas of interest (such as the 
Morphometric Analysis Program (MAP) (Huppertz et al., 2005)), to 
machine-learning based fully automated detection methods such as 
those described by (Adler et al., 2017a; 2017b;; Ahmed et al., 2015; 
Hong et al., 2014). Across these methods, two key challenges have been 
1) selection of optimal features to describe FCD lesions, and 2) ac-
counting for variability within and across FCD lesions, as well as in 
normal cortex. While a wide variety of features have been investigated, 
most methods have used features derived from either voxel-based 
morphometry (Huppertz et al., 2005; Martin et al., 2017) or surface- 
based morphometry (SBM) (see review in (Kini et al., 2016)). Higher- 
order textural features or local statistics used to describe the local 
characteristics of patches within an image, although well-described in 
computer vision applications (for example, (Portilla et al., 2003)), have 
only occasionally been applied in biomedical imaging (for examples, see 
(Joyseeree et al., 2018; Wang et al., 2018; Zacharaki et al., 2009)), and 
even less often for FCD detection (Antel et al., 2003, Bernasconi et al., 
2001). 

In this work, we describe a novel approach for describing and 
detecting FCD lesions. We first create a model to describe the normal 
variability observed along the cortical sheet in healthy volunteers. This 
model is based on an implementation of 3D multiscale rotationally- 
invariant local image features across multiple MR contrasts, similar to 
those that have been previously shown to efficiently represent the local 
statistics of natural images (Simoncelli and Olshausen, 2001). We use 
these features to create a latent representation of this normative data 
that allows for straightforward outlier detection in our multivariate 
feature space. In healthy volunteers, we show that our outlier detection 
approach identifies cortical regions that are known to have atypical 
underlying cytoarchitectonic and myelination patterns such as para-
limbic and primary sensorimotor cortices. In patients, most FCD lesions 
also appear as outliers, but are similar in their underlying features to 
some normally atypical regions. We show that a constrained outlier 
detection approach in combination with local normalization allows for 
automated detection of FCDs.s 

2. Materials and methods 

2.1. Study participants 

From our surgical epilepsy imaging database, we retrospectively 
identified 15 consecutive patients undergoing presurgical evaluation for 
drug-resistant focal epilepsy from 2014 to 2019 with 1) radiologically 
apparent (MRI+) or histologically proven (MRI+ or MRI-) FCDs; and 2) 
our standard 3 T MRI epilepsy structural imaging protocol. Patients were 
excluded if they underwent other MR imaging protocols or had low 
image quality on visual inspection. The control group consisted of 30 
healthy volunteers (HVs) scanned using the same imaging protocol with 
no previous history of neurologic, psychiatric, or other significant 
medical illnesses that may affect the central nervous system. Data were 
collected at the National Institutes of Health (NIH) Clinical Center 
(Bethesda, MD). All participants were enrolled in an Institutional Re-
view Board-approved research protocol; informed consent was obtained 
from all participants. 

2.2. Lesion labels 

For MRI+ patients, lesions were traced in the volume using the 
Analysis of Functional NeuroImages (AFNI) software package (Cox, 
1996) by an experienced neurologist using the T1 weighted image, 
informed by the T2 and FLAIR images when necessary. For MRI- pa-
tients, the postoperative T1 was registered to the preoperative T1 in the 
same manner as described below for T2 and FLAIR images; the resected 
region was manually traced using AFNI. Lesion masks were mapped 
onto the smoothed white matter surface using AFNI’s 3dVol2Surf 
function. 

2.3. MRI acquisition protocol 

All participants were scanned on a Philips Achieva 3 T MRI scanner 
in the NIH Clinical Center Radiology Department as follows: 1) 3D T1 
weighted MPRAGE (T1): TR = 6.8–7.2, TE = 3.2 ms, TI = 900 ms, flip 
angle = 90, voxel size = 0.75 × 0.75 × 0.8, acceleration factor 2 in slice 
direction, acquisition time = 7:02 min; 2) 3D T2 weighted FSE (T2): TR 
= 2500, TE = 225–245, voxel size = 1 × 1 × 2 or 1 × 1 × 1, acceleration 
factor 2 in slice and phase directions, acquisition time = 5:03 min; and 
3) 3D FLAIR: TR = 4800, TE = 271–415, TI = 1600, voxel size = 0.9 ×
0.9 × 1, acceleration factor 2 in slice direction, 2.6 in phase direction, 
acquisition time = 6:10 min. All scans were acquired sagittally. 

2.4. Image preprocessing 

For each individual subject, T2 and FLAIR images were co-registered 
to the T1 with an affine transformation using a normalized mutual in-
formation cost function and resampled to the T1 grid using AFNI. 
Registered images were visually assessed for alignment. Cortical 
reconstruction was performed using T1 and T2 images as input to Free-
Surfer’s standard processing pipeline with FreeSurfer v6.0.0 (Dale et al., 
1999; Fischl et al., 1999). Results were visually inspected and manually 
corrected as needed. Cortical surfaces were resampled to a standard 
mesh using the AFNI SUMA package (Cox, 1996) to allow for compar-
ison of corresponding vertices across individuals. 

2.5. SNSNRSNR= SNR aware local image filters 

Next, we constructed SNR-aware local image filters, used subse-
quently both to correct for MRI coil-induced variations in image in-
tensity, and to compute local 3D multi-scale oriented filters that serve as 
the basis for our normative model of cortical variability. We imple-
mented these SNR-aware filters to correct for the impact of the sharp 
boundary between the outer edge of the head and air (seeSupplementary 
Figure S1 for a comparison of Gaussian and SNR-aware image filters). 
These edge effects are a known issue for MRI coil inhomogeneity 
correction approaches that estimate the coil sensitivity profile as a 
blurred version of the image. Most current approaches address this issue 
by using a simultaneous segmentation and bias field estimation (Gan-
zetti et al., 2016). Here, instead of carrying out a full segmentation, we 
created an estimate of signal likelihood, borrowing from the computa-
tional neuroscience literature describing exponentiation (see review in 
(Carandini and Heeger, 2011)). Our signal likelihood estimate is based 
on the assumption that voxels with near zero intensity are most likely 
noise, while those with higher intensities, particularly those near or 
above the average signal intensity, are most likely signal. Signal likeli-
hood can thus be modeled similarly to the output of a single neuron, or 
the positive half of a logistic function, which is an exponential function 
(1 − e(− x/s)) that ranges between 0 and 1. This function has a single free 
parameter, the scale s, which is used to “tune” the curve, such that voxels 
with intensities above the estimated signal mean have high signal like-
lihood, with signal likelihood falling off exponentially with decreasing 
intensity below the mean (Supplementary Fig. 1 top and middle right). 
We then use these signal likelihood estimates to weight our filtered 
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images. 
To create the signal likelihood estimates, we used a data-driven 

iterative process. First, we defined the signal likelihood ws( r→), and 
the noise likelihood wn( r→) for each location r→ in each 3D image heu-
ristically as: 

ws( r→) = 1 − e− f ( r→)/μs

wn( r→) = 1 − ws( r→) = e− f ( r→)/μs  

where f( r→) is the image intensity at location r→, and μs is the global 
signal mean for all voxels with non-zero signal. We defined the signal 
(μs) and noise (μn) means as weighted averages of the image intensity: 

μs =

∑
iws( ri

→)f ( ri
→)

∑
iws( ri

→)
, μn =

∑
iwn( ri

→)f ( ri
→)

∑
iwn( ri

→)

The signal and noise likelihoods at each location and the global 
signal and noise means were computed as follows:  

1. initialize ws( r→) to 1 for all non-zero voxels  
2. iterate:  

– given ws( r→), compute μs  

– given μs, compute ws( r→)

3. compute wn( r→)

4. compute μn. 

Three iterations of step 2 were sufficient to achieve convergence of 
the signal likelihood to 3 digits. 

We then used the signal likelihood function ws( r→) and global signal 
μs and noise μn levels to construct SNR aware local image filters con-
sisting of a set of K Gaussian derivative filters, denoting the kth filter’s 
kernel by Gk( r→). We applied the kth filter to an image f( r→) in analogy to 
a local weighted average to obtain the kth filtered image fk( r→): 

fk( r→) =
Gk( r→) ⊗ (f ( r→)ws( r→) )

Gk( r→) ⊗ ws( r→)

Division in the above expression was regularized using a term pro-
portional to the global signal to noise ratio: 

1
ϕ( r→)

≈
ϕ( r→)

β2 + ϕ( r→)
2  

β = 0.01
μn

μs  

in order to prevent noise amplification in the estimate of fk( r→) in regions 
of the image where the local signal likelihood ws( r→) was very small, e.g. 
outside the head. 

2.6. Local intensity correction 

Intensity correction for each 3D image was carried out by dividing 
each image by an estimate of its local mean image intensity, computed 
by applying an SNR-weighted 3D Gaussian filter of width 64 mm 
(Supplementary Fig. 1 bottom). This filter width was selected as it 
appeared to provide correction of coil-induced inhomogeneities, as can 
be seen through the narrower distribution of intensities, compared to the 
raw image (Supplementary Fig. 2) while preserving some separation 
between gray and white matter intensities (see the two distinct peaks in 
Supplementary Fig. 2, level 5, corresponding to a filter width of 64 mm). 
The use of smaller radius filters leads to a narrower distribution of 
observed intensities at the cost of diminished distinction between gray 
and white matter voxel intensities. 

2.7. Feature generation 

To represent the characteristics of the local neighborhood sur-
rounding each voxel in a manner that was insensitive to the local 
orientation of the cortical sheet, we created a set of rotationally 
invariant 3D multi-scale local image filters analogous to the multi-scale 
oriented filters that have been shown to be: 1) an efficient representation 
of natural image local statistics; 2) an accurate model of neurons in the 
mammalian visual system; and 3) a reliable model commonly used in 
computer vision applications to create a robust, efficient, generic basis 
set for applications such as texture synthesis (Simoncelli and Olshausen, 
2001). 

Using the SNR-weighted filters described above, for each image we 
computed zeroth, first, and second order derivatives of the Gaussian at 
three spatial scales (2, 4, and 8 times lower resolution or blurring):  

• zeroth order: 1 image, scalar, {g}
• first order: 3 images, vector, {gx, gy, gz}

• second order: 6 images, tensor, {gxx, gxy,gxz,gyy, gyz, gzz}

where gx is the derivative of the gaussian in the x-direction, etc. At each 
spatial scale, we then combined the gradient filtered images to form 
rotationally invariant feature images. The zeroth order Gaussian blurred 
image is a scalar. The first order gradient images form a vector, and we 
consider only its magnitude. The second order gradient images form a 
symmetric tensor, and we consider only its trace (Laplacian of Gaussian) 
and magnitude of the Hessian, resulting in four images at each spatial 
scale: 

G = g

M =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2

x + g2
y + g2

z

√

L = gyy + gyy + gzz

H =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2

xx + 2g2
xy + 2g2

xz + g2
yy + g2

yz + g2
zz

√

This resulted in a 39 dimensional feature vector at each voxel 
(Fig. 1). 

2.8. Prediction of typical features 

Because these features theoretically represent an efficient and over- 
complete representation of the local features of each image, we hy-
pothesized that we should be able to predict the values of other 
commonly used local features such as curvature, sulcal depth, cortical 
thickness, and gray/white contrast (as calculated using FreeSurfer) or 
measures of myelination, here calculated by dividing the T1 by the T2 
intensity, as in (Glasser and Essen, 2011), sampled onto the gray-white 
junction surface. Using scikit-learn, our feature set served as the input to 
ordinary least-squares regression models (polynomial order 2), pre-
dicting each target feature. We trained on the data from half of the HVs 
and tested on the other half. 

2.9. Normative model generation 

Next, we sought to create a normative model to represent the ex-
pected variability seen across the cortical sheet in healthy volunteers in 
our feature space (see overview in Fig. 2). This normative model pro-
vides an estimate of the probability distribution for each feature in this 
reference population. Individual patient data can be compared to this 
distribution, providing the basis for our constrained outlier detection 
approach to FCD identification. The typical MR findings of FCDs tend to 
be centered around the gray - white matter junction (GWJ), with char-
acteristic alterations described in the signal intensity in the cortical gray 
matter and underlying white matter as well as GWJ blurring. Since our 
features are designed to represent the local neighborhood surrounding 
each voxel, we hypothesized that these characteristic FCD-related 
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Fig. 1. Features. For each of the intensity-corrected T, T2, and FLAIR images (left), four 3D rotationally-invariant derivative-based local image filters were computed, 
consisting of the Gaussian, magnitude of the gradient, Laplacian of Gaussian, and magnitude of the Hessian (middle). Each was computed at three spatial scales or 
levels (2, 4, and 8 times lower resolution), shown for the T1 image contrast (right), resulting in a 39-feature vector for each voxel. 

Fig. 2. Methods Overview. 1) Raw T1, T2, 
and FLAIR images were intensity cor-
rected, 2) local image filters were 
computed in the volume then 3) sampled 
onto the gray-white junction surface; each 
feature was standardized within each 
subject. 4) Across healthy volunteers, 
dimensionality reduction was carried out 
using PCA, resulting in 14 features 
explaining 90% of the variance. 5) Itera-
tive Gaussianization was used to non-
linearly convert each feature to a 
multivariate Gaussian distribution, 
creating a normative model of cortical 
variability. 6) An average FCD vector was 
computed across all visually identifiable 
FCDs in our patient sample. Similarity to 
the average FCD vector was assessed by 
projecting each patch onto the average 
FCD unit vector. Local normalization was 
performed for each cortical location by 
subtracting the mean across homotopic 
patches in healthy volunteers at each 
location. The purple HV homotopic 
patches can be seen to become centered 
around 0 following local normalization, 
while the FCD location becomes more 
atypical along both the FCD PC1 and PC2 
directions. 7) Similarity maps were created 
based on the projection onto the mean FCD 
unit vector at each cortical location. These 
maps were thresholded at 1%, retaining 
clusters of > 5 vertices. An optimal 
threshold was defined using mean simi-
larity across each remaining cluster to 
distinguish between true positive FCD 
clusters and false positive clusters in 
healthy volunteers. Clusters above this 
threshold are detected as FCDs. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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abnormalities could be sufficiently identified by multiscale local image 
filters centered on the voxels at the GWJ. Additionally, other approaches 
have successfully utilized surface-based approaches to FCD detection 
(such as in (Hong et al., 2014; Jin et al., 2018; Adler, 2017a; 2017b;; 
Ahmed et al., 2015; Thesen et al., 2011)). We therefore sampled our 39 
feature vector onto the FreeSurfer generated smooth white matter sur-
face. Each feature was standardized within each subject. This was fol-
lowed by dimensionality reduction and whitening using principal 
component analysis (PCA) of all cortical vertices across all HVs imple-
mented in scikit-learn in Python (Pedregosa et al., 2011), retaining 14 
components explaining 90% of the variance. 

Next, in order to facilitate more straightforward multivariate outlier 
detection, we implemented a rotation-based iterative Gaussianization 
(RBIG) procedure to transform the data into a latent representation with 
a known probability density function (PDF), in this case a multivariate 
Gaussian distribution (Fig. 2) (Laparra et al., 2011). This is a form of 
representation learning similar to an auto-encoder, in which the data 
undergoes a nonlinear transformation for the purposes of facilitating 
more straightforward statistical inferences (Bengio et al., 2013). 
Amongst the many available methods such as other types of autoen-
coders or deep learning methods, we elected to use RBIG specifically to 
facilitate multidimensional outlier detection based on deviation from 
the expected values in the healthy population. The RBIG procedure 
consists of 10 iterations of a pair of sequential transformations: 1) a non- 
linear univariate Gaussianization transformation applied to each of the 
data matrix columns (marginals) that converts percentile scores 
computed using the rank transformation to standard scores (scikit- 
learn’s QuantileTransformer); and 2) a linear orthogonal transformation 
applied to the entire data matrix using PCA, retaining all components 
after each iteration (Laparra et al., 2011). Source code for generating the 
features and model is publicly available on GitHub as part of the JEM 
python package (http://github.com/InatiLab/jem). 

2.10. Outlier detection 

Using our normative model of cortical variability, we wished to 
identify whether vertices within FCD lesions appeared as global outliers 
compared to non-lesional vertices in healthy volunteers. To smooth the 
data and facilitate comparisons across subjects, we created patches 
centered at every vertex, including all neighboring vertices within a 5 
mm radius, and used this smoothed data for all subsequent analyses. 
This radius was selected to be small enough to identify changes within 
specific gyri/sulci, and large enough to minimize local noise and arti-
facts, and is similar to the smoothing size used in similar studies, for 
example (Adler et al., 2017a; 2017b). For each patch p, the center mp 

was computed by averaging the feature vectors of the vertices within the 
patch: mp =

∑
x∈pf(x). The direction ûp, the unit vector pointing in the 

direction of the patch’s center, was computed by dividing the patch’s 
mean feature vector by its length ûp = mp/‖mp‖. For each normal or 
pathological ROI, we defined the center and direction as the average 
across patches within that ROI. To create an average FCD vector, we 
computed the average across patches within each MRI+ patient’s FCD 
mask (n = 11), then averaged across patients to give each lesion equal 
weighting regardless of size. 

In our feature space, outliers can be defined by the Mahalanobis 
distance, MD, or the distance from the origin to the patch’s center, as the 
probability of finding a patch with a given average feature vector mp 
depends only on the magnitude of the feature vector ‖mp‖ and not on its 
direction, with MD2 following a cumulative chi-squared distribution. 
Across healthy volunteers, we explored whether some normal cortical 
regions appeared as outliers in our model. We arbitrarily defined 
patches with an average distance from the center (MD) of > 2.7 as 
outliers, corresponding to the top ~ 5% of patches (p = 0.043). We 
retained all resulting clusters with > 30 vertices in order to eliminate 
isolated atypical patches, as we were seeking to identify outlier regions 

at larger spatial scales as described by studies of cortical cyto- and 
myeloarchitecture. Of the resulting clusters, we selected two of the three 
most outlying regions of interest (ROI) as exemplars (insula and pre-
central regions). We then explored to what extent FCD patches were 
outliers in our feature space. We measured the Mahalanobis distance 
(MD) of 1000 randomly sampled patches from randomly sampled 
normal cortex across HVs and 1000 patches selected from FCD lesion 
masks in patients and compared these to our normal cortex exemplar 
outlier regions. 

2.11. Similarity estimation 

Having observed significant overlap in outlierness between FCDs and 
some normal cortical regions, we explored the similarity in underlying 
features between FCDs and normal cortex. To assess similarity between 
cortical patches pi and pj without regard to degree of outlierness, we 
assessed the angle between their feature vectors, as well as the cosine 
similarity between their directions sij = ûi⋅ûj. Using these metrics, 
patches with similar relative combinations of underlying features will 
have a smaller angle between them and will appear more similar 
regardless of their distance from the center of the distribution. We first 
wished to explore the similarity between our outlier ROIs and FCDs. To 
aid with visualization, we plotted the mean feature vectors for the 
insula, precentral, and FCD ROIs in 2D using the insula and precentral 
ROI directions as axes, then using the first two FCD PCA components as 
axes. We also measured the angles between the mean FCD vector and the 
mean vectors of the normal cortical outlier regions. In a related 
approach, we created similarity maps for each outlier ROIs and for FCDs 
by computing the scalar projection of the mean feature vector for each 
cortical patch onto the ROI average unit vector and projecting it onto the 
cortical surface (see Fig. 2). This metric identifies cortical regions that 
are outliers with similar underlying features to the exemplar ROI. 

Lastly, based on known patterns of cortical variability, we hypoth-
esized that local image features would vary across the cortical sheet in a 
somewhat reproducible fashion across HVs and therefore patches in the 
same locations would appear more similar to each other than patches in 
different locations. We defined patches as being in homotopic (same) or 
heterotopic (different) locations as defined by the standard surface mesh 
and computed the cosine similarity between 1000 randomly sampled 
heterotopic patches and 1000 homotopic patches across HVs. To 
determine how similar FCD lesions appeared to normal cortex, we then 
compared the cosine similarity of 1000 non-overlapping FCD patches to 
each other, as well as to 1000 randomly selected heterotopic and then 
homotopic patches across HVs. 

2.12. Local normalization 

Because FCDs were not more globally anomalous and also appeared 
to have similar features to some normal cortical regions, we hypothe-
sized that to be identifiable, FCDs must differ from the expected 
appearance at their underlying location, or homotopic region, in HVs. 
We implemented a local normalization procedure by removing the local 
mean, calculated across homotopic patches in HVs. We expected that 
after local normalization, reproducible regional differences in normal 
cortex should no longer be present. However, the effect on FCDs was 
unknown. Therefore, following normalization, we again compared the 
Mahalanobis distances of normal cortex, the outlier ROIs, and FCDs as 
above, as well as the cosine similarity between FCD patches and het-
erotopic and homotopic normal cortical patches. 

2.13. Automated FCD detection 

We created an automated FCD detection method based on locally 
normalized FCD similarity maps. We used a leave-one-out cross-vali-
dation strategy to build a subject specific model for each FCD patient 
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and HV. In each subject, we computed the scalar projection of the mean 
feature vector for each patch onto the FCD average unit vector (Fig. 2). 
We then applied a threshold to identify the top 1% of vertices and 
retained clusters with 5 or more adjacent remaining vertices, a minimal 
size threshold meant to eliminate isolated outlying vertices. For each 
surviving cluster, we computed the mean FCD similarity. 

2.14. Statistical analysis 

All statistical analyses were carried out in Python. For the feature 
prediction models, performance was evaluated for each model using the 
coefficient of determination r2. To estimate the extent of the differences 
between the measured and predicted models, we report effect size as in 
(Cohen, 1988): r = 0.1 as small; r = 0.3 as medium; and r = 0.5 as large. 
For distance-wise comparisons between patches, we used Welch’s un-
equal variance t-test to assess significance and to estimate the effect size 
of the differences, reported as in (Cohen, 1988): d = 0.2 as small; d = 0.5 
as medium; and d = 0.5 as large. 

Sensitivity of the automated FCD detection procedure was assessed 
initially for MRI+ patients and then for all patients. We calculated a 
receiver operating characteristics (ROC) curve and area under the curve 
(AUC) based on the patients with manual lesion labels that were 
included in the leave-one-out analysis. True positives were defined as 
co-localization of a detected cluster with the manual lesion mask for 
MRI+ patients and as overlap of a detected cluster with the resection 
mask for MRI- patients. False positives were defined as HVs with clusters 
detected above a given threshold. The optimal threshold for the final 
detection was determined using the Youden Index (calculated as 
sensitivity+ specificity − 1 for each threshold) in the patients with 
lesion masks. Lesion detection and number of extralesional clusters 
(outside of the lesion and resection masks or in HVs) were assessed for 
all patients and HVs individually. 

3. Results 

3.1. Study participants 

This study includes 15 patients with drug resistant focal epilepsy and 
FCD (median age 27, range 15–53, 11 females) and 30 healthy controls 
(median age 23, range 8–63, 12 females). FCDs were identified in the 
radiological reports in 6/15 patients; an additional five patients had 
lesions identifiable on post-hoc analysis (MRI+ n = 11) (details in 
Table 1 Patient Demographics. 

3.2. Feature prediction 

To evaluate whether our 14-dimensional Gaussianized local image 
filter feature set encompasses information captured using more typically 
utilized local features, we trained quadratic regression models to predict 
several typical features (Fig. 3). Predictions were accurate with large 
effect sizes for FreeSurfer measures of curvature and sulcal depth (r2 =

0.80 and r2 = 0.73 respectively), gray-white contrast (r2 = 0.61), and 
cortical thickness (r2 = 0.46), as well as myelin contrast (r2 = 0.39). 
Spatial distributions appear similar between measured and predicted 
features when mapped onto the cortical surface. 

3.3. Outlier detection 

In our normative model, outliers can be identified based on their 
distance from the center of the distribution (Mahalanobis distance 
(MD)). Across HVs, we identified twelve and seven consistent outlier 
regions in the left and right hemispheres respectively, located mostly in 
or adjacent to primary sensorimotor cortices or in limbic and paralimbic 
regions (Fig. 4a). We selected two of the top three outlier regions as 
exemplar ROIs, located in the anterior insula and precentral gyrus 
(Fig. 4b). FCDs were significant outliers compared to randomly selected 
cortical patches (FCD MD = 3.53 ± 0.60 versus random patches MD =
2.61 ± 0.57, p < 0.001, d = 1.60), but only to a similar extent as these 
normal outlier regions (precentral MD = 3.46 ± 0.43, d = 0.16, insula 
MD=3.36 ± 0.36, d = 0.41). 

3.4. Similarity estimation 

Next, we assessed the similarity in underlying features, or directions, 
between FCDs and the normally outlying cortical regions. The average 
angle between the mean FCD and outlier region centers was 
81.01 ± 23.30o (minimum: 38.56◦ in the anterior parahippocampal 
gyrus, maximum: 123.16◦ in the post-central gyrus). The insula was 
second closest in angle (42.2◦), while the precentral ROI was close to the 
average difference (80.3◦) (Fig. 4b). This is reflected in the similar 
spatial distributions of the insula and FCD similarity maps, which clearly 
differ from that of the precentral similarity map (Fig. 4c). This suggests 
that FCDs appear similar in both degree of outlierness and underlying 
features to some atypical regions of normal cortex, such as the anterior 
insula and some paralimbic regions. 

Next, we used cosine similarity (cos) to describe how similar patches 
are to each other in their underlying relative combination of features 

Table 1 
Patient Demographics.  

Patient # Sex Age Seizure onset Epilepsy duration Lesion lobe Lesion Resection Seizure Outcome Pathological Diagnosis MRI 

1 F 33 1 32 RF Y 1a FCD IIb +

2 F 40 3 37 LC – – transmantle +

3 F 53 12 41 RC – – transmantle +

4 F 21 3 18 RP – – transmantle +

5 F 25 22 3 LF – – – +

6 F 17 11 6 RT – – transmantle +

7 F 43 8 35 RF Partial 3a FCD IIb – 
8 F 40 6 34 LF – – – – 
9 F 47 20 27 RP – – –* – 
10 M 37 19 18 LT – – –* – 
11 F 21 3 18 LF Y 1a FCD IIa – 
12 M 27 9 18 RP Y 1a FCD IIa – 
13 M 26 7 19 LF Y 1a FCD IIb – 
14 M 15 3 12 RF Partial 3 FCD IIa – 
15 F 22 21 1 LC Partial 4 FCD IIa – 

Age and epilepsy duration are reported in years at the time of the scan. Lesion resections are reported as yes (Y) if they were thought to be complete lesionectomies at 
the time of surgery; resections were partial (part) if they were limited by overlap with functional cortex. Seizure outcome is reported as Engel Class at 12 months. 
Transmantle signs were listed if no pathological evaluation was available, as these are thought to be present primarily in FCD type IIb lesions. Lesion lobe abbrevi-
ations: R = right, L = left, F = frontal, C = central, P = parietal, T = temporal. *patients who did not undergo resection (Pt 8) or sufficient pathologic examination of the 
tissue of interest (Pt 9) but were found to have electrographic correlate with the relevant imaging finding on invasive EEG recordings. 
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based on their location (Fig. 5a). We found that across HVs, homotopic 
patches (in the same location on the cortical sheet) appeared more 
similar than randomly selected patches (cos = 0.45 ± 0.28 for homo-
topic versus cos = 0.00 ± 0.29 for heterotopic random patches, 
p < 0.001, d = 1.57). Despite their differing locations, FCD patches 

were more similar to each other in their features (cos = 0.29 ± 0.29) 
than to random HV cortical patches (FCD vs heterotopic patches cos =

0.006 ± 0.29, p < 0.001, d = 0.97), and also appeared quite similar to 
homotopic patches in HVs (FCD vs homotopic patches cos =

0.24 ± 0.31, p = 1.78, d = 0.17), consistent with the fact that these 

Fig. 3. Feature Prediction. We were able to 
predict several commonly used cortical features 
using our 14 normalized multivariate Gaussian 
features from our HVs as inputs into quadratic 
regression models. The top row displays the 
spatial distribution of the measured values of 
each feature; the middle row displays the pre-
dicted features from our models, averaged across 
HVs plotted on the cortical surface; cool-warm 
color scale is used to highlight the spatial con-
sistency of the extrema for each measure. 
Measured versus predicted values for each 
cortical patch are plotted against each other 
(bottom); coefficients of determination (r2) are 
reported for each.   

Fig. 4. FCD Comparison to Normal Cortical 
Outlier Regions. (A) Mahalanobis distances 
(from the center) of each cortical patch averaged 
across 30 HVs is plotted onto the smoothed 
cortical surface, highlighting the variability 
across the cortex. (B) Left: The top ~ 5% of 
outlier patches in HVs were selected and clus-
tered; two exemplar ROIs were selected in the 
anterior insula (green) and precentral regions 
(blue). Patches from the two exemplar ROIs as 
well as from FCDs are global outliers compared 
to randomly selected cortical patches (purple). 
Right: The locations of patches within these two 
ROIs across HVs and the average FCD center 
(red) is plotted in 2D using the primary di-
rections of the centers (larger dots) of each 
exemplar ROI as the axes. (C) Similarity maps are 
shown for each of our exemplar normal cortical 
outlier ROIs, as well as for the first two compo-
nents of the average across FCDs. (For interpre-
tation of the references to color in this figure 
legend, the reader is referred to the web version 
of this article.)   
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Fig. 5. Local Normalization: (A) (Left) Prior to local normalization, 1000 pairs of patches in homotopic (hom) cortical locations across HVs have increased cosine 
similarity compared to 1000 pairs of randomly selected heterotopic (het) patches. Patches across FCD lesions (1000 pairs) (FCD) also have increased cosine similarity 
compared to randomly selected heterotopic patches in HVs. FCD patches and homotopic patches are more similar to each other than to randomly selected patches in 
HVs (FCD-Het vs FCD-Hom). Following local normalization, cosine similarity between pairs of homotopic and heterotopic patches in HVs, as well as between FCD 
patches and HV patches in any location are similar and are centered around 0, while cosine similarity between FCD patches remains elevated. (B) Using the first two 
SVD components from the FCD patches as the axes, we plotted the location of: 1) each FCD patch (light red small dots); 2) the center of each individual FCD lesion 
(larger dots: MRI+ dark red, MRI- light red); and 3) the overall average FCD center across all subjects (black) compared to the insular ROI center (green), precentral 
ROI center (blue), and 1000 randomly sampled HV patches (purple). Following local normalization, the distribution of random cortical patches can be seen to 
become smaller, the insula and premotor ROI centers move to the center, and the FCD patches remain as outliers. (C) The mean feature vector for a single exemplar 
FCD lesion (red) is plotted along with homotopic patches in 30 HVs (purple). FCD similarity is measured by projecting each patch onto the FCD unit vector (light red 
arrow). The same exemplar FCD and its homotopic patches are shown after local normalization; the homotopic patches become centered around the origin and the 
FCD vector moves farther from the center, with a higher value when projected onto the mean FCD direction. (D) FCD similarity map is shown for the patient in (C). 
The frontal lesion appears similar before and after local normalization, while outlying regions such as the anterior insula no longer appear similar after local 
normalization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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often subtle lesions have a fairly typical appearance for their given 
location. 

3.5. Local normalization 

While FCDs can be found in nearly any cortical region, normal 
cortical outlier regions by definition have fairly consistent spatial loca-
tions across HVs. Local normalization allows for detection of differences 
from the expected appearance at any given cortical location. Following 
local normalization, as expected, we found that patches in the outlier 
ROIs appeared more “typical” for their location, now with a similar 
Mahalanobis distance to randomly selected cortical patches (random 
cortex MD = 1.86 ± 0.52 versus precentral MD = 1.92 ± 0.52, d = 0.10, 
and insula MD = 1.59 ± 0.36, d = 0.63). In contrast, following local 
normalization, FCDs remained as significant outliers (MD =

3.55 ± 0.81) compared to both normal cortex and the previously 
outlying ROIs (versus normal cortex d = 2.81, precentral d = 2.78, 
insula d = 4.09). Cosine similarity between FCD patches also became 
significantly higher following local normalization (0.40 ± 0.26) 
compared to non-lesional patches at any location (to homotopic patches 
cos = 0.00 ± 0.30, p < 0.001, d = 1.40, and to heterotopic patches 
cos = 0.00 ± 0.28, p < 0.001, d = 1.44, with no difference between the 
two, p = 0.54) (Fig. 5a). Local normalization, therefore, not only aids 
with global outlier detection by decreasing the outlierness of normal 
cortical regions, but also local outlier detection, by further distancing 
FCDs from the expected appearance at their location in the cortical 
sheet. 

3.6. Automated FCD detection 

Our automated FCD detection method is based on the post- 
normalization FCD similarity maps, in which the mean feature vector 
for every cortical patch is projected onto the FCD average unit vector 
(Fig. 5c and d). The top 1% of patches were identified in each subject; 
clusters with five or more adjacent remaining vertices were retained. 
The final detection threshold was selected based on the optimal trade-off 
between sensitivity and specificity. We initially evaluated the 11 MRI+
patients (five initially MRI-) included in the leave-one-out analysis, 
resulting in an AUC of 0.91. At the optimal threshold determined from 
this analysis, our classifier correctly identified the lesions in 11/11 
MRI+ patients (100% sensitivity) and 12/15 patients overall (80% 
sensitivity), yielding an eventual AUC of 0.96. Of the three patients 

without detected lesions, one had a true positive (TP) lesion that did not 
reach the threshold; the others had no detected clusters that overlapped 
with their resection masks. Of 13 patients with TP clusters, the known 
FCD had the highest mean cluster weight in 11, with 1–3 clusters 
detected in each patient. One to three presumably false positive clusters 
were identified in 9/30 HVs (70% specificity). Table 2 summarizes the 
results individually for each patient; data for two exemplar patients are 
shown in Fig. 6. 

To evaluate the effects of some model parameters on the accuracy of 
our automated detection, we found that adding or subtracting spatial 
scales did impact the performance. Using only two spatial scales for the 
underlying filters yielded an AUC of 0.77, while utilizing four spatial 
scales yielded an AUC of 0.85. Using the full set of 39 features versus the 
14 features obtained that explained 90% of the variance showed mini-
mal effect on performance, with an AUC of 0.9 versus 0.96, respectively. 

4. Discussion 

We used a novel normative modeling approach to compare local 
features of FCDs to those of normal cortex. We found that FCDs on 
average are global outliers but not more so than some atypical regions of 
normal cortex. In addition, the features seen in FCDs appear quite 
similar to those found in some outlying cortical regions such as the 
anterior insula and paralimbic cortices. After locally correcting for the 
expected appearance at each cortical location, FCD lesions become more 
easily distinguishable from normal cortex, with true positive clusters 
found in 13/15 patients, with 12/15 lesions detected at the optimal 
threshold, allowing for automated detection with 80% sensitivity and 
70% specificity and an AUC of 0.96. 

The performance of any FCD detection method depends on the fea-
tures used to create an effective representation of the data. Here, we 
implemented a generic set of multiscale 3D rotationally-invariant de-
rivative-based filters applied to T1, T2, and FLAIR images. Similar 2D 
filters have been used in computer vision applications such as texture 
synthesis and imaging denoising (Portilla et al., 2003) and occasionally 
in biomedical applications such as brain tumor classification (Zacharaki 
et al., 2009), lung disease segmentation (Joyseeree et al., 2018; Wang 
et al., 2018) and cerebral white matter lesion detection (Selvaganesan 
et al., 2019). Most post-processing approaches to FCD detection to date 
have used features derived from voxel-based or surface-based 
morphometry (see review in (Kini et al., 2016)), including a variety of 
measures of image intensity and blurring of the gray-white junction, 

Table 2 
Patient Results.  

Patient # Lesion lobe Pathological diagnosis Radiology Post-hoc Detection TP Mean TP Rank 

1 RF FCD IIb + + + 2.41 1 / 2 
2 LC transmantle + + + 2.12 1 / 1 
3 RC transmantle + + + 1.97 1 / 2 
4 RP transmantle + + + 1.87 1 / 3 
5 LF – + + + 1.78 1 / 2 
6 RT transmantle + + + 1.69 3 / 3         

7 RF FCD IIb – + + 2.26 1 / 1 
8 LF – – + + 2.05 1 / 1 
9 RP -* – + + 1.85 1 / 1 
10 LT -* – + + 1.73 1 / 1 
11 LF FCD IIa – + + 1.73 2 / 2         

12 RP FCD IIa – – + 1.91 1 / 1 
13 LF FCD IIb – – –  1.6 1 / 1 
14 LC FCD IIa – – –  – - / 3 
15 RF FCD IIa – – –  – - / 1 

Lesion lobe and pathological diagnosis are repeated as in Table 1. MRI detection by visual inspection is reported both according to the initial radiological report and by 
retrospective evaluation based on other imaging and invasive recording results. Automated detection was positive (+) if the mean FCD likelihood across patches in the 
cluster was above the identified optimal threshold. Mean FCD similarity is reported for each true positive cluster. For each patient, the rank of each true positive cluster 
is reported (based on the cluster’s mean FCD similarity), as well as the total number of clusters detected above the optimal threshold. 
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Fig. 6. Individual Patient Examples. Results for two exemplar patients: structural MRI (FL: FLAIR image, T1po: post-operative T1) (left), location of FCD patches 
before and after local normalization (average vector for that patient’s lesion: larger white dot and red arrow, patches within that patient’s lesion: brighter red, 
patches from other FCD lesions: light red, randomly selected normal cortical patches: purple) (top right), FCD similarity maps before and after local normalization 
(middle right), and manually drawn lesion mask and automated FCD detection results (bottom right). 
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similar to our Gaussian blurring and gradient amplitude metrics. The 
filters that we have employed contain information similar to the higher- 
order textural features implemented by Antel et al., who used gray-level 
co-occurrence matrices derived from T1-weighted images at a single 
spatial scale (Antel et al., 2003). Our features extend this work by 
additionally containing information from multiple spatial scales, as well 
as multiple MR contrasts. In our evaluation, we found that these features 
can be used to accurately predict other more commonly described fea-
tures such as cortical thickness and myelination, as well as the 
FreeSurfer-defined metric of blurring of the gray-white junction, sug-
gesting that they do encompass much of this local information. 

Detection of subtle cortical lesions is challenging, at least in part due 
to difficulties in accounting for the variability of both the cortex and the 
lesions. Our normative model creates a single overall probabilistic rep-
resentation of normal cortical variability that encompasses information 
from multiple local imaging features, spatial scales, and MR contrasts. 
We found that while FCD lesions are on average global outliers in 
appearance compared to normal cortex as a whole, some normal regions 
are outliers to a similar degree. FCDs also appear similar in their un-
derlying average features to some of these normally outlying regions; 
the first component appears similar to regions such as the anterior insula 
and mesial temporal cortex, the second appears similar to sensorimotor 
and posterior cingulate cortices. These outlying regions generally consist 
of relatively thick agranular or dysgranular cortex (Amunts and Zilles, 
2015; Triarhou, 2007; Zilles and Amunts, 2010) with relatively blurry 
gray-white junctions. However, they are at opposite ends of the known 
gradients in myelination; primary sensorimotor regions are heavily 
myelinated while paralimbic cingulate and parahippocampal cortices 
are lightly myelinated (Glasser and Van, 2011; Nieuwenhuys and 
Broere, 2017; Paquola et al., 2019). Accordingly, the precentral ROI 
similarity map parallels the myelination gradients, extending primarily 
toward the premotor regions, while the insula similarity map identifies 
the lightly myelinated, relatively thick anterior cingulate and para-
hippocampal cortices. Commonalities with the FCD similarity maps are 
likely attributable to these shared features. 

Local normalization corrects for the expected appearance of the 
cortex in a given location, thereby allowing FCDs to be more easily 
distinguished from other normally outlying cortical regions. Interest-
ingly, we observed that FCDs initially share some common features with 
their underlying homotopic cortical regions, with cosine similarities 
between FCDs and their respective homotopic regions being equal to 
that of other FCDs and significantly more similar than to random cortical 
areas. This finding is consistent with the fact that many of these lesions 
differ only subtly from surrounding cortex, which makes them difficult 
to appreciate visually. This is no longer seen following local 
normalization. 

Our automated detection procedure based on these locally normal-
ized FCD similarity maps allows for detection of 80% of FCDs and 100% 
of visually identifiable FCDs with 70% specificity. In patients with true 
positive clusters, the lesion of interest had the highest cluster weight in 
11/13 (85%), thus providing an additional way of identifying lesions of 
higher interest in a given patient, similar to the approach used in Adler 
et al. (Adler et al., 2017a; 2017b). Many are also clearly identifiable by 
visual inspection of the FCD similarity maps, which can be reviewed 
similarly to the maps created using the MAP procedure (Wang et al., 
2015; Wagner et al., 2011). The performance of our automated classifier 
is similar to previously reported machine learning methods, which have 
achieved 58–74% sensitivity, with specificities ranging from not re-
ported to 100% (Adler et al., 2017a; 2017b;; Ahmed et al., 2015; Hong 
et al., 2014; Jin et al., 2018). Numerous factors may affect the perfor-
mance of these methods, including alterations in model parameters, 
conspicuity of lesions studied (MR+ versus MR- patients), and size of the 
patient and healthy volunteer training sets utilized. For supervised 
machine-learning methods, performance appears to improve signifi-
cantly with increasing size of the healthy volunteer and patient training 
sets (as in Jin et al., 2018, from 24 to 74 healthy volunteers, and 11 to 34 

FCD patients), likely through improving modeling of both pathological 
and normal cortical variability. 

Direct comparisons of performance across methods continues to be 
challenging, and to our knowledge, no work to date has directly 
compared the performance of different automated FCD methods in the 
same patient population. There are several challenges to adopting these 
techniques across centers, for research or for clinical use, including: 1) 
MR scanning protocol variability, hardware, and software, which may 
impair generalization of any “learning” across centers; 2) limited 
availability of large patient and normative training sets at single in-
stitutions, particularly with ongoing evolution of acquisition protocols; 
and 3) significant technical expertise required to implement these ap-
proaches. Our work, like others, is limited by the relatively small size of 
normative and lesional training sets. In the future, we hope to carry out a 
clinical validation in a larger group of patients, and to adopt other ap-
proaches to validation that may allow for more rigorous evaluation of 
performance compared to our leave-one-out evaluation approach. Open 
source efforts such as this and the MELD Project (https://meldproject. 
github.io/) will hopefully continue to increase adoption, allow for 
direct comparisons of methods, and allow for pooling of data across 
centers leading to improved performance (Jin et al., 2018). 

Despite these limitations, our current findings do offer some novel 
insights. Our findings that some normal cortical regions are outliers, and 
that some of these regions have similar underlying features to FCDs, may 
explain the lack of specificity of many classification methods. The spatial 
reproducibility of these normal outlier regions also helps to explain why 
local normalization procedures improve the performance of many FCD 
detection methods. Finally, our 2D projections of FCD patches highlight 
the variable appearance of these lesions, again shedding light on why 
increasing the number of training lesions would improve the sensitivity 
of machine-learning based classification procedures and help to avoid 
overfitting. 

5. Conclusions 

We implemented a novel normative modeling approach to FCD 
identification, providing a robust characterization of normal cortical 
variability for comparison with FCD lesions. In keeping with their often 
subtle appearance, FCD lesions are outliers but only to a similar degree 
as some normal cortical regions. In our feature space, FCDs appear quite 
similar to some of these regions, such as paralimbic and anterior insular 
cortices. These similarities should be kept in mind when visually 
inspecting images to detect possible FCDs. They also help to explain the 
utility of local normalization procedures in reducing false positive de-
tections. Our resulting approach to automated FCD detection is 80% 
sensitive and 70% specific, with an AUC of 0.96, similar to or better than 
many previously proposed methods, despite the relatively small size of 
the training and testing data. Our normative modeling approach also has 
the potential to be of use in the detection of other types of pathology or 
to study normal cortical variability. 
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