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Abstract

A commercial semi‐empirical volumetric dose verification system (PerFraction [PF],

Sun Nuclear Corp.) extracts multi‐leaf collimator positions from the electronic portal

imaging device movies collected during a pre‐treatment run, while the rest of the

delivered control point information is harvested from the accelerator log files. This

combination is used to reconstruct dose on a patient CT dataset with a fast super-

position/convolution algorithm. The method was validated for single‐isocenter multi‐
target SRS VMAT treatments against absolute radiochromic film measurements in a

cylindrical phantom. The targets ranged in size from 0.8 to 3.6 cm and in number

from 3 to 10 per plan. A total of 17 films rotated at different angles around the

cylinder axis were analyzed. Each of 27 total targets was intercepted by at least one

film, and 2–4 different films were analyzed per plan. Film dose was always scaled to

the ion chamber measurement in a high‐dose, low‐gradient area deliberately created

at the isocenter. The planar dose agreement between PF and film using 3%(Global

dose‐difference normalization)/1 mm gamma analysis was on average 99.2 ± 1.1%.

The point dose difference in the low‐gradient area in the middle of every target was

below 3%, while PF‐reconstructed and film dose centroids for individual targets

showed submillimeter agreement when measured on a well aligned accelerator. Vol-

umetrically, all voxels in all plans agreed between PF and the primary treatment

planning system at the 3%/1 mm level. With proper understanding of its advantages

and shortcomings, the tool can be applied to patient‐specific QA in routine radiosur-

gical clinical practice.
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1 | INTRODUCTION

Brain metastases are a common oncological diagnosis1 and intracra-

nial stereotactic radiosurgery (SRS) has evolved as an important

modality of treatment/palliation for that disease.2,3 It was demon-

strated that even with multiple metastases the SRS treatment could

provide reasonable local control,4,5 and a multi‐institutional observa-
tional study suggested that clinical outcomes for patients with 5–10
individual metastases treated by SRS alone may be non‐inferior to

those with 2–4 targets.6,7 While conceptually straightforward in prin-

ciple, multi‐target SRS poses logistical challenges. As the number of

treated metastases increases, the traditional SRS paradigm of one

isocenter per lesion leads to prohibitively long treatment times and

had to be revisited with the goal of simultaneously treating multiple

targets. Interestingly, while dynamic conformal arcs were the main-

stay of linac‐based radiosurgery for years, the feasibility of single‐iso-
center multiple‐target (SIMT) approach was first demonstrated with

a relatively new volumetric modulated arc therapy (VMAT) tech-

nique.8,9 The most recent commercial implementation (HyperArc,

Varian Medical Systems) offers refinements in terms of planning

automation and collision prevention.10 Alternatively, Huang et al.11

proposed a concept of single isocenter dynamic conformal arcs

(SIDCA), whereby each lesion is treated by a dedicated group of

dynamic conformal arcs but all groups share the same isocenter posi-

tioned between all targets. This allows for more efficient dynamic

arc treatment, as only one isocenter setup is necessary, and the

couch angles and arc directions can be optimized for fastest delivery.

A version of SIDCA is commercially implemented in Automatic Brain

Metastases Planning Element software by BrainLab.12,13 It creates a

series of dynamic arcs and each lesion can be covered by all or some

of them, depending on the relative position, to minimize normal tis-

sue irradiation. Both techniques by necessity produce treatment

plans containing complex MLC apertures, and it is prudent to per-

form patient‐specific end‐to‐end test prior to commencing the treat-

ment.14 The number of small, off‐center targets poses a unique

challenge to dosimetry devices commonly used for such tests. The

approach should possess high spatial resolution as the lesions could

be of the order of 1 cm or less in size. At the same time, the targets

could be fairly wide spread, which negates the advantages of dedi-

cated “stereotactic” detector arrays with small detector pitch, that

typically have a relatively small active area under the assumption

that the lesion would be located at isocenter.15 Moreover, the tar-

gets randomly placed in three dimensions naturally call for a 3D veri-

fication approach. The only true 3D dosimeters with high spatial

resolution are radiochromic gels/polymers,16,17 one of which was

successfully used for VMAT‐based SIMT validation.18 However, volu-

metric radiochromic dosimetry is sufficiently cumbersome at this

point to prevent its use for routine patient‐specific quality assur-

ance.19 Therefore, a more practical method is needed that combines

some high spatial resolution measurements with 3D dose recon-

struction over a volume of an adult head. One such approach, which

we validate in this paper, is a hybrid technique whereby information

collected from the accelerator electronic portal imaging device (EPID)

and delivery log files is supplied as input to the independent dose

calculation algorithm that reconstructs the expected deliverable dose

distribution on the patient CT dataset.20

2 | METHODS

2.A | System description

The method evaluated in this paper is a part of PerFRACTION (PF)

software suite (Sun Nuclear Corp, Melbourne, FL) that provides a

number of options for pre‐ and on‐treatment patient‐specific dosi-

metric analysis. We focused on the pre‐treatment patient‐specific
QA (called Fraction 0) and chose the input configuration that, in our

opinion, provided the most advantageous balance between the

empirical and calculation portions of the analysis. The software runs

on a central dedicated Windows server and all routine user interac-

tions occur through a web browser‐based interface. At the heart of

the method is the graphics processing unit‐accelerated superposi-

tion/convolution dose calculation algorithm described and validated

previously.21,22 The beam model can be customized by the vendor

to fit the user's data, although a generic model for the accelerator

class configuration proved sufficient in this work.

The system is compatible with contemporary Varian and Elekta

linacs. The verification process starts with transferring the patient

CT and finalized Plan, Structure, and Dose DICOM RT objects from

the treatment planning system to PF. This establishes a new patient/

plan in the system. The same plan is transferred to the record‐and‐
verify (R&V) system and is then delivered to the EPID operating in a

cine mode. The compressed (MPEG) EPID movies, one per beam, are

stored after the delivery in a specified network directory that is

monitored by PF, automatically transferred to the PF server, and

associated with the individual beam(s) found in the RT Plan object.

The accelerator log files are processed in the exact same fashion.

The EPID image frames are then synchronized to the log files to

determine the exact duration of time when each EPID frame was

acquired. This is achieved by first creating a series of predicted

images based on the projection of the RT Plan fluence to the plane

of the EPID. The predicted images of every segment (or multitude of

segments) are then compared to the measured frames to find the

maximum similarity. The measured frame with maximum similarity is

considered to be acquired during the same segments as the best

matching predicted image.

With the synchronization process completed, the frames are then

analyzed to determine the location of each MLC during that time

period. An edge detection algorithm is used to find the MLC edges

on EPID frames. From this information, an internal RT Plan is

devised, with the control points (CP) created by amalgamation of the

EPID movies and log files. Specifically, the time‐resolved multi‐leaf
collimator (MLC) apertures are derived from the EPID files, indepen-

dent of the accelerator logs. The positions of the rest of the acceler-

ator axes per CP (fractional monitor units (MU), gantry angle, etc.)

are determined from the delivery log files. In addition to MLC posi-

tions, if radiation is detected on regions of the EPID which were
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supposed to be covered by the jaws, corrected jaw positions are

incorporated into the internal RT Plan so that such unexpected radi-

ation is properly accounted for in the final dose calculation. With CP

point information thus complete, the dose calculation is triggered.

The PF calculation voxel size is the larger of the TPS or the mini-

mum set in PF, which was 2.5 mm in this work. This voxel size was

set to obtain a reasonable compromise between the calculation

speed and accuracy and the dose distribution is not distinguishable

from the one calculated with a 2 mm voxel14 at the 1% dose‐differ-
ence/1 mm distance to agreement level. The resulting semi‐empirical

dose distribution can be compared to the planned one by standard

gamma analysis23 and dose‐volume histogram evaluation.

2.B | Planning and delivery

2.B.1 | The phantom

A MultiPlug (Sun Nuclear) phantom is a 15.1 cm diameter Poly

(methyl methacrylate) (PMMA) cylinder, further encased in a PMMA

shell with 26.6 cm outer diameter (Fig. 1). The phantom has inter-

changeable inserts to accommodate either an ion chamber (in this

case, 0.06 cm3 A1SL, Standard Imaging, Middleton, WI) or a

13.2 × 16.5 cm2 piece of radiochromic film. The film insert has small

sharp points at five locations to imprint fiducial marks on the film.

Those were augmented by small amounts of Barium paste to provide

high‐contrast but low‐artifact fiducials for eventual cone‐beam CT

(CBCT) alignment on a linear accelerator. The plug with the film

insert can be freely rotated in the shell around the cylinder axis. The

phantom was scanned on a 16‐slice Big Bore scanner (Philips Medi-

cal, Cleveland, OH) according to our standard SRS protocol (sequen-

tial scans with 1.25 mm slice thickness), with four different film

plane orientations: coronal, sagittal, and ±45° obliques. The plane

angular positions were established directly with a digital level. These

scans served as the baseline datasets for CBCT alignment of the

phantom with the film holder in different orientations.

2.B.2 | Treatment planning

The datasets were transferred to the TPS (Pinnacle v. 14.0, Philips

Radiation Oncology Systems, Fitchburg, WI) and the isocenter was

placed based on the known locations of the film fiducials visible on

CT scans. The next step was devising regions of interest (ROI) for

planning. Six plans of two types were created. The first three plans

in Table 1 contain only three spherical target ROIs each, with the

goal of creating conformal plans without additional constraints. Each

target is intersected in the middle by at least one film plane. Plans

4–6 are rooted in real patient datasets. The patient RT Structure

DICOM objects were processed to make transfer to the phantom

CT possible. The organs‐at‐risk (OAR) had to be moved some to

ensure that they were positioned within the cylinder. The targets

were also nudged to intersect with at least one film plane each. An

example arrangement can be seen in Fig. 1A, which shows the tar-

gets (red) above, below, and intersecting the coronal plane. Two to

four planes were measured per plan. Overall, 17 films intersecting

27 targets were analyzed. In addition to those, each plan contained

a 2 cm diameter spherical structure (green in Fig. 1A) drawn at the

isocenter and planned to achieve uniform 18 Gy dose for normaliza-

tion purposes.

VMAT optimization employed two full coplanar and two partial

(164° rotation) non‐coplanar (±25° table rotation) arcs. The flat

caudal edge of the phantom precluded the use of vertex beams

common in SRS, which however should not affect the generality of

the tests. All plans used A 6 MV flattening filter free beam with

the maximum repetition rate of 1400 MU/min and were calculated

with 2° CP increment and a 2 mm isotropic dose grid resolution.

(a) (b)

F I G . 1 . (a) A CT‐based coronal plane cut through the center of the assembled phantom. The inner cylinder, the outer shell and the film
rectangle in the middle (coronal orientation) can all be appreciated. An example of ROI arrangement is presented, with multiple targets (red),
normal structures (blue) and a central 2 cm target sphere (green) for ion chamber normalization, the latter common to all plans. (b) A
photograph of the MultiPlug with the partially inserted film holder and ion chamber. Note that for the actual measurements the ion chamber
insert replaced film at the isocenter.
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The prescriptions followed RTOG 0320 protocol,24 depending on

the target size: 24 Gy to the planning target volume (PTV) <2 cm,

18 Gy to the PTV between 2.1–3 cm, and 15 Gy to the 3.1–4 cm

PTV. Plans 4‐6 also employed common OAR objectives from the

same protocol.

2.B.3 | Beam delivery

All experiments were performed on a TrueBeam v.2.5 linear accel-

erator (Varian Medical Systems, Palo Alto, CA) equipped with a

standard 120‐leaf Millennium MLC, a 6 degree of freedom (6DOF)

couch, and an aS1000 EPID. The EPID pixel size is 0.39 mm,

which translates into 0.26 mm effective size at isocenter when

the EPID is positioned 150 cm from the source. Prior to measure-

ments the alignment of mechanical, MV, and kV isocenters of the

accelerator were verified by two methods. First, the built‐in IsoCal

verification routine25 was employed. It demonstrated the maximum

MV isocenter deviation of 0.42 mm (with no couch rotation) and

negligible translational and angular misalignment of the kV and

MV imagers. Second, an independent MLC‐based Winston‐Lutz
test with 12 angular combinations covering the full range of accel-

erator motions confirmed the maximum treatment isocenter devia-

tion of 0.41 mm.

The plan information was transferred to the accelerator through

Mosaiq v. 2.4 (Elekta Impac, Sunnyvale, CA) R&V system. Before

delivery, the phantom was first leveled and then aligned in 3D by

CBCT to the film fiducials in the desired plane orientation with the

help of the 6DOF couch.

2.C | Dose comparison

The core of this work is dosimetric comparisons between PF

reconstructed dose and film measurements. The strategy was to

convert the relative dose measured by calibrated film to absolute

by normalization to the ion chamber dose at isocenter. To that

end, the ion chamber reading in the MultiPlug phantom was col-

lected under the standard conditions (parallel‐opposed horizontal

10 × 10 cm2
fields) and converted to dose by comparison with

Pinnacle point dose in the same geometry. Subsequently, an ion

chamber measurement was performed for each plan and the

resulting dose at isocenter was used to scale dose for the films

belonging to that plan.

2.C.1 | Film measurements

Extended range Gafchromic film (EBT‐XD, Ashland Inc., Bridgewater,

NJ) was chosen because of the wide dynamic range,26,27 well‐suited
for SRS verification. An additional benefit is greatly reduced scanner

lateral response artifact.26 Both calibration and measurement film

pieces were scanned in the same orientation with respect to the

original sheet they came from. Templates sized to fit the calibration

(smaller) and measurement films were made out of black paper to

reproducibly position the films in the center of the flatbed document

scanner (Expression 11000XL, Epson Seiko Corporation, Nagano,

Japan). Exposed films were scanned 24 h after irradiation, in trans-

mission mode and without any corrections. Resolution was set at 72

dpi (0.35 mm/pixel). Every film was scanned in the same position and

orientation before the exposure to account for any background non‐
uniformity. Film calibration was performed with a 6MV beam in a

water‐equivalent solid phantom in the dose range from 2 to30 Gy.

The films were analyzed with RIT v.6.6 software (Radiologic

Imaging Technology, Inc., Colorado Springs, CO). The film scans were

transferred to RIT as 48 bit color image files. The background cor-

rection was applied using the built‐in routine. The film fiducials

marks were aligned to the pre‐defined geometric template, and the

dose after application of the calibration curve was further scaled to

match the ion chamber dose at the isocenter. The film dose was

averaged for scaling over 13 central pixels in the craniocaudal direc-

tion, corresponding approximately to the chamber active volume

length. There is no direct interface for importing dose in arbitrary

plane from PF to RIT. Instead, volumetric dose was exported from

PF as a DICOM RT Dose file and then imported to Pinnacle using a

custom script. After that, planar doses in required orientations could

be extracted from Pinnacle on a 1 mm grid using the built‐in IMRT

QA tool and imported into RIT. Three types of tests were performed

using RIT. First, an overall dose comparison was done using gamma

analysis with 3% (global dose‐difference normalization), 1 mm dis-

tance to agreement, and 10% low‐dose cutoff threshold criteria. The

RIT digital gamma analysis routine modeled after Depuydt et al28

was used. For completeness, the same analysis was performed for

Pinnacle. Second, the point doses in the low‐gradient region near

the center of each target were extracted from the film dose profiles

(averaged over 3 pixels, or about 1 mm) and compared to PF. The

distribution of dose‐differences was tested for normality by D'Agos-

tino & Pearson test implemented in GraphPad Prism statistical

TAB L E 1 The plans, target sizes and positions, and film plane orientations. The maximum filed sizes (jaws) for each plan are also presented.

Plan
No. of
Targets Targets max dimensions, cm Target center distance from isocenter, cm

Max. field size
(X × Y), cm2

Measurement
planes orientation

1 3 1.3, 1.2, 2.1 3.6, 5.0, 5.5 10.1 × 12.0 Cor.,Obl.45°,Obl.135°

2 3 1.1, 1.2, 2.4 5.8, 5.9, 6.2 12.7 × 15.0 Cor.,Sag.,Obl.135°

3 3 1.3, 1.2, 2.9 5.5, 4.5, 4.7 11.1 × 13.0 Obl.45°,Obl.135°

4 3 2.2, 1.1, 0.8 4.3, 3.6, 5.4 11.3 × 10.5 Obl.45°,Obl.135°

5 5 2.2, 1.1, 0.8, 3.6, 2.3 4.3, 3.6, 5.4, 4.7, 4.0 10.9 × 12.5 Cor.,Obl.45°,Ob1.135°

6 10 2.2, 1.1, 0.8, 3.6, 2.3, 1.4, 1.4, 0.9, 1.2, 1.1 4.3, 3.6, 5.4, 4.7, 4.0, 4.0, 5.1, 6.3, 3.4, 6.3 12.2 × 12.5 Cor.,Sag.,Obl.45°, Obl.135°
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package (v. 7.0, GraphPad Software, La Jolla, CA). Finally, paramount

to radiosurgical applications, the alignment of measured and recon-

structed profiles at the 50% level (dose centroid) was evaluated.

Horizontal and vertical profiles were drawn in RIT through the cen-

ter of each target on every film image. The vertical profile always

corresponded to the craniocaudal direction. The horizontal profile

anatomical direction varied with film orientation, anywhere from

anteroposterior to lateral, and the results were segregated accord-

ingly. The metric was, in most cases, the difference in the coordi-

nates of the midpoints between the 50% level dose profile points. In

a few instances where the targets were too close to each other to

produce clearly isolated dose peaks on the film, the 65% profile

points were used to calculate the dose centroid.

3. | RESULTS

3.A | Gamma analysis results

The gamma analysis results (3%G/1 mm) are detailed in Table 2.

Excellent agreement is observed for PF, with the lowest passing

rate of 96.1%. Pinnacle results are also solid, although for two

films the passing rate slipped just below 90%. The 95% confidence

intervals were 98.7–99.8% for PF and 95.2–98.4% for Pinnacle,

indicating that both systems can be considered in agreement with

experiment by current standards.29 It is therefore not surprising

that volumetric gamma analysis comparison between the two algo-

rithms demonstrated 100% agreement for all plans at the 3%/

1 mm level.

Fig. 2 illustrates the patterns of gamma analysis failures for the

films with the lower passing rates. While some minor discrepancies

in the target areas are present, the majority of the disagreement for

both PF and Pinnacle, which is already quite small in absolute terms,

is confined to the low‐ or intermediate‐dose regions. The latter are

sometimes prominent when a film plane glances the target and some

of the peripheral target dose is still evident on the film. In that case,

there is a high‐dose gradient in the direction perpendicular to the

film, leading to dosimetric discrepancies due to residual geometric

misalignments. Those errors are not accounted for in the distance‐
to‐agreement since the gamma analysis is performed in two dimen-

sions (the film plane).

3.B | Peak target dose

Both PF and Pinnacle show agreement with measurement largely to

within ±3%, which is satisfactory, particularly for the targets less

than 1 cm in size. For all targets, the average dose‐errors were

−0.4% ± 1.3% (range −2.2 to 2.4%, 99% CI −1.1 to 0.3%) and

0.1% ± 1.6% (range −2.7 to 3.2%, 99% CI −0.8 to 1.0%) for PF and

Pinnacle respectively. Both distributions did not show significant

deviation from normal by the D'Agostino & Pearson normality test (P

≥0.2). There was no correlation between the dose‐error and the tar-

get size (Pearson correlation coefficient r = 0.23 and 0.21 for PF and

Pinnacle, respectively). Similarly, there was no correlation between

the dose‐error and the target distance from isocenter (r = 0.1 and

−0.1 for PF and Pinnacle, respectively).

3.C | Profile alignment

The results of dose profiles alignment between PF and film are

presented in Table 3. Within the range of accelerator motions

employed in the plans, submillimeter average displacements between

the reconstructed and planned dose distribution centroids can

be inferred.

4. | DISCUSSION

While the recent AAPM TG‐218 report29 prescribes the error

thresholds and action levels for gamma analysis comparison between

measured and planned dose distributions, there is no such clear

guidance for purely calculational or semi‐empirical verification. We

chose to retain the 3% dose‐error threshold from TG‐218, which is

also similar to the point‐dose verification recommendations for com-

plex non‐IMRT beams.30 Given the tight SRS spatial accuracy expec-

tations, a 1 mm distance‐to‐agreement threshold seemed desirable.

Finally, the TG‐218 report unequivocally justifies global dose‐error
normalization for routine patient‐specific QA. With these criteria, the

system in question — PerFRACTION — was able to achieve on

average 99.2 ± 1.1% agreement rates with absolute film measure-

ments. Volumetrically, all voxels in all plans agreed between PF and

TAB L E 2 Planar gamma analysis passing rates (3%G/1 mm) for PF
and Pinnacle vs. film.

Plan No. of Targets Planes

Gamma passing rate (%)

PF vs. Film Pinnacle vs. film

100 97.7

Obl.45° 96.1 89.4

Obl.135° 99.1 99.0

2 3 Cor. 100 98.1

Sag. 99.4 95.7

Obl.135° 99.8 99.3

3 3 Obl.45° 100 98.3

Obl.135° 99.9 99.2

4 3 Obl.45° 100 97.1

Obl.135° 100 99.4

5 5 Cor. 99.4 89.9

Obl.45° 99.7 98.6

Obl.135° 97.3 94.5

6 10 Cor. 98.3 94.3

Sag. 99.6 99.0

Obl.45° 99.3 97.5

Obl.135° 99.4 98.4

Ave 99.2 96.8

SD 1.1 3.1
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the TPS at the same 3%/1 mm level. The point doses near the target

center agreed between PF and film to better than 3%, for the target

sizes ranging from 0.8 to 3.6 cm. The reconstructed dose centroid

positions derived from the EPID‐measured MLC apertures on a well‐
aligned accelerator showed on average sub‐millimeter displacements

from film measurements. The studied system is thus sufficiently

accurate in the radiosurgical setting for routine semi‐empirical dose

reconstruction.

However, a bigger question remains on the role of calculations

vs. measurements in patient‐specific dosimetric QA. It is a subject of

ongoing debate,31 with the latest TG‐218 report29 acknowledging

but not adjudicating the issue. We characterize the approach

described in this paper as semi‐empirical or hybrid, as some of the

information (MLC apertures) is derived from independent measure-

ments, while other elements are harvested from the accelerator log

files. In addition to the delivered MLC leaf positons, such approach

(a) (b)

(c) (d)

(e)

(f)

F I G . 2 . Gamma maps and isodose
overlays for PF vs. film. (a&b): Oblique 45°
plane from Plan 1, (c&d): Oblique 135°
plane from Plan 5, and (e&f): Oblique 45°
plane from Plan 10.

TAB L E 3 Displacement between PF and film dose profiles centers in different anatomical directions.

Direction Craniocaudal Anteroposterior Lt‐Rt Obl. 45° Obl. 135°

No. analyzed 27 4 3 11 7

Δ ±1SD (mm) −0.3 ± 0.4 0.0 ± 0.6 −0.1 ± 0.4 −0.2 ± 0.7 0.0 ± 0.4

656 | AHMED ET AL.



definitively tests the integrity of the data transfer chain all the way

from the TPS to the accelerator, which is one of the most important

aspects of the patient‐specific end‐to‐end tests. The beam model

quality, which is the frequent culprit in the end‐to‐end head and

neck phantom irradiation failures32 is also tested, but not by direct

dose measurements. We would argue that this level of scrutiny is

acceptable for routine QA (as opposed to system commissioning),

and furthermore 3D reconstruction with small voxels is more com-

prehensive than, for example, experimental planar sampling with

large detector pitch arrays. Studying the sensitivity of the method to

induced MLC errors is outside the scope of this work, but it is likely

to be similar to the results demonstrated by others in the related

work with high‐resolution systems.33,34 While the risk of a false pos-

itive findings (an error reported when there is none) is easily miti-

gated by measurement if necessary, a potential false negative (no

error reported when there is one) is more likely to slip through. The

risk of accelerator absolute calibration changes after the morning

checkout has always been considered sufficiently mitigated in con-

ventional treatments by the redundancy of the dosimetry chain, and

the TG‐218 specifically recommends the IMRT QA measured dose

to be normalized to the daily output29 to exclude the influence of

the fluctuations, which could otherwise consume a substantial part

of the error budget. Thus, the remaining weakest link in the tested

PF configuration (and there are other options, not described in this

work) is the lack of independent verification of the accelerator axes

positions (fractional MU, gantry angle, etc.) other than the MLC. If

an accelerator fails in such a fashion that the log files reflect the

intended plan that diverges from the delivered treatment, a dosimet-

ric error may go unnoticed. It should be, however, argued that a ran-

dom accelerator failure during treatment by definition cannot be

reliably caught by pre-treatment measurements in the first place,

while any gradual parameter drift is more appropriately addressed by

an ongoing comprehensive QA program. Regarding systematic deliv-

ery deficiencies, with modern digital accelerators, the known issues

such as the overshoot phenomenon35 are largely considered miti-

gated.20 For example, for the TrueBeam accelerator with its 20 ms

controller interrogation cycle and strict delivery linearity enforce-

ment inside each control point,36 even the gantry acceleration trajec-

tory is highly predictable and reproducible.37 Therefore, while not

going as far as endorsing the log file analysis as a “premier SRS/SBRT

QA tool,”38 we nevertheless suggest that coupled with thorough

TPS commissioning and comprehensive ongoing accelerator QA pro-

gram, the hybrid verification method validated in this paper is a

viable tool that could be applied in clinical practice.

5. | CONCLUSIONS

A semi‐empirical volumetric dose verification system extracts MLC

positions from the EPID movies, while the rest of the delivery con-

trol point information comes from the accelerator log files. This

combination is used to reconstruct dose on a patient CT dataset

with a fast superposition/convolution algorithm. The method was

comprehensively validated for single‐isocenter multi‐target VMAT

SRS treatments against absolute film measurements. With proper

understanding of its advantages and shortcomings, the tool can be

used in routine clinical practice.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Sun Nuclear Corp.

CONFLICT OF INTEREST

SA is a graduate student supported by an SNC grant and VF is the

PI on the project. JK is an SNC employee.

REFERENCES

1. Nussbaum ES, Djalilian HR, Cho KH, Hall WA. Brain metastases.

Histology, multiplicity, surgery, and survival. Cancer. 1996;78

(8):1781–1788.
2. Nieder C, Grosu AL, Gaspar LE. Stereotactic radiosurgery (SRS)

for brain metastases: a systematic review. Radiat Oncol. 2014;9:

155–155.
3. Smith ML, Lee JY. Stereotactic radiosurgery in the management of

brain metastasis. Neurosurg Focus. 2007;22(3):E5.

4. Likhacheva A, Pinnix CC, Parikh NR, et al. Predictors of survival in

contemporary practice after initial radiosurgery for brain metastases.

Int J Radiat Oncol Biol Phys. 2013;85(3):656–661.
5. Hunter GK, Suh JH, Reuther AM, et al. Treatment of five or more

brain metastases with stereotactic radiosurgery. Int J Radiat Oncol

Biol Phys. 2012;83(5):1394–1398.
6. Yamamoto M, Serizawa T, Higuchi Y, et al. A multi‐institutional

prospective observational study of stereotactic radiosurgery for

patients with multiple brain metastases (JLGK0901 study update):

irradiation‐related complications and long‐term maintenance of mini‐
mental state examination scores. Int J Radiat Oncol Biol Phys.

2017;99(1):31–40.
7. Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery

for patients with multiple brain metastases (JLGK0901): a multi‐insti-
tutional prospective observational study. Lancet Oncol. 2014;15

(4):387–395.
8. Clark GM, Popple RA, Young PE, Fiveash JB. Feasibility of single‐iso-

center volumetric modulated arc radiosurgery for treatment of

multiple brain metastases. Int J Radiat Oncol Biol Phys. 2010;76

(1):296–302.
9. Audet C, Poffenbarger BA, Chang P, et al. Evaluation of volumetric

modulated arc therapy for cranial radiosurgery using multiple non-

coplanar arcs. Med Phys. 2011;38(11):5863–5872.
10. Ruggieri R, Naccarato S, Mazzola R, et al. Linac‐based VMAT radio-

surgery for multiple brain lesions: comparison between a conven-

tional multi‐isocenter approach and a new dedicated mono‐isocenter
technique. Radiat Oncol. 2018;13(1):38.

11. Huang Y, Chin K, Robbins JR, et al. Radiosurgery of multiple brain

metastases with single‐isocenter dynamic conformal arcs (SIDCA).

Radiother Oncol. 2014;112(1):128–132.
12. Gevaert T, Steenbeke F, Pellegri L, et al. Evaluation of a dedicated

brain metastases treatment planning optimization for radiosurgery: a

new treatment paradigm? Radiat Oncol. 2016;11:13.

13. Mori Y, Kaneda N, Hagiwara M, Ishiguchi T. Dosimetric study of

automatic brain metastases planning in comparison with conven-

tional multi‐isocenter dynamic conformal arc therapy and gamma

knife radiosurgery for multiple brain metastases. Cureus. 2016;8

(11):e882.

AHMED ET AL. | 657



14. Halvorsen PH, Cirino E, Das IJ, et al. AAPM‐RSS Medical Physics

Practice Guideline 9.a. for SRS‐SBRT. J Appl Clin Med Phys.

2017;18:10–21.
15. Poppe B, Stelljes TS, Looe HK, Chofor N, Harder D, Willborn K. Per-

formance parameters of a liquid filled ionization chamber array. Med

Phys. 2013;40(8):082106.

16. Doran SJ. The history and principles of chemical dosimetry for 3‐D
radiation fields: gels, polymers and plastics. Appl Radiat Isot. 2009;67

(3):393–398.
17. Baldock C, De Deene Y, Doran S, et al. Polymer gel dosimetry. Phys

Med Biol. 2010;55(5):R1–R63.
18. Thomas A, Niebanck M, Juang T, Wang Z, Oldham M. A comprehen-

sive investigation of the accuracy and reproducibility of a multitarget

single isocenter VMAT radiosurgery technique. Med Phys. 2013;40

(12):121725.

19. Jursinic PA, Sharma R, Reuter J. MapCHECK used for rotational

IMRT measurements: step‐and‐shoot, TomoTherapy, RapidArc. Med

Phys. 2010;37(6):2837–2846.
20. Lin MH, Li J, Wang L, et al. 4D patient dose reconstruction using

online measured EPID cine images for lung SBRT treatment valida-

tion. Med Phys. 2012;39(10):5949–5958.
21. Jacques R, Wong J, Taylor R, McNutt T. Real‐time dose computa-

tion: GPU‐accelerated source modeling and superposition/convolu-
tion. Med Phys. 2011;38(1):294–305.

22. Ahmed S, Hunt D, Kapatoes J, et al. Validation of a GPU‐Based 3D

dose calculator for modulated beams. J Appl Clin Med Phys. 2017;18

(3):73–82.
23. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the

quantitative evaluation of dose distributions. Med Phys. 1998;25

(5):656–661.
24. Sperduto PW, Wang M, Robins HI, et al. A phase 3 trial of whole

brain radiation therapy and stereotactic radiosurgery alone versus

WBRT and SRS with temozolomide or erlotinib for non‐small cell

lung cancer and 1 to 3 brain metastases: Radiation Therapy

Oncology Group 0320. Int J Radiat Oncol Biol Phys. 2013;85

(5):1312–1318.
25. Chiu TD, Yan Y, Foster R, Mao W. Long‐term evaluation and cross‐

checking of two geometric calibrations of kV and MV imaging sys-

tems for Linacs. J Appl Clin Med Phys. 2015;16(4):306–310.

26. Grams MP, Gustafson JM, Long KM, Santos LEF. Technical Note:

initial characterization of the new EBT‐XD Gafchromic film. Med

Phys. 2015;42(10):5782–5786.
27. Miura H, Ozawa S, Hosono F, et al. Gafchromic EBT‐XD film:

dosimetry characterization in high‐dose, volumetric‐modulated arc

therapy. J Appl Clin Med Phys. 2016;17(6):312–322.
28. Depuydt T, Van Esch A, Huyskens DP. A quantitative evaluation of

IMRT dose distributions: refinement and clinical assessment of the

gamma evaluation. Radiother Oncol. 2002;62(3):309–319.
29. Miften M, Olch A, Mihailidis D, et al. Tolerance limits and method-

ologies for IMRT measurement‐based verification QA: recommenda-

tions of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53–e83.
30. Stern RL, Heaton R, Fraser MW, et al. Verification of monitor unit

calculations for non‐IMRT clinical radiotherapy: report of AAPM Task

Group 114. Med Phys. 2011;38(1):504–530.
31. Siochi RA, Molineu A, Orton CG. Point/Counterpoint. Patient‐specific

QA for IMRT should be performed using software rather than hard-

ware methods. Med Phys. 2013;40(7):070601.

32. Kerns JR, Stingo F, Followill DS, Howell RM, Melancon A, Kry SF.

Treatment planning system calculation errors are present in most

Imaging and Radiation Oncology Core‐Houston phantom failures. Int

J Radiat Oncol Biol Phys. 2017;98(5):1197–1203.
33. Masahide S, Noriyuki K, Kiyokazu S, et al. Comparison of DVH‐

based plan verification methods for VMAT: ArcCHECK‐3DVH sys-

tem and dynalog‐based dose reconstruction. J Appl Clin Med Phys.

2017;18(4):206–214.
34. Zhuang AH, Olch AJ. Sensitivity study of an automated system for

daily patient QA using EPID exit dose images. J Appl Clin Med Phys.

2018;19(3):114–124.
35. Ezzell GA, Chungbin S. The overshoot phenomenon in step‐and‐

shoot IMRT delivery. J Appl Clin Med Phys. 2001;2(3):138–148.
36. TrueBeam Developer Mode User's Manual v. 2.0. Palo Alto, CA: Varian

Medical Systems; 2013.

37. Feygelman V, Stambaugh C, Zhang G, et al. Motion as a perturba-

tion: measurement‐guided dose estimates to moving patient voxels

during modulated arc deliveries. Med Phys. 2013;40(2):021708.

38. Hillman Y, Kim J, Chetty I, Wen N. Refinement of MLC modeling

improves commercial QA dosimetry system for SRS and SBRT

patient‐specific QA. Med Phys. 2018;45(4):1351–1359.

658 | AHMED ET AL.


