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Radiation-induced gliomas represent H3-/IDH-wild
type pediatric gliomas with recurrent PDGFRA
amplification and loss of CDKN2A/B
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Long-term complications such as radiation-induced second malignancies occur in a subset of

patients following radiation-therapy, particularly relevant in pediatric patients due to the long

follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in

patients after treatment with cranial irradiation for various primary malignancies such as

acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive

(epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n= 23)

and ALL (n= 9). Our study reveals a unifying molecular signature for the majority of RIGs,

with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic

hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic

markers and potentially actionable targets.
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Radiation therapy (RT) constitutes an essential element in
the standard treatment of many cancers, improving clinical
outcomes of patients with childhood malignancies includ-

ing leukemia and central nervous system (CNS) tumors1. How-
ever, radiation-induced malignancies are observed post-RT in a
subset of patients2,3, especially in pediatric patients due to their
prolonged follow-up in case of long-term survival4,5.

Radiation-induced gliomas (RIGs) are known to arise in a
subset of patients receiving cranial RT for the treatment of dif-
ferent primary malignancies including acute lymphoblastic leu-
kemia (ALL) and medulloblastoma (MB), occurring after a
variable latency ranging from 2.5 to 35 years after irradiation
(Table 1)6–18.

RIGs commonly display an aggressive clinical course associated
with poor prognosis, making early and precise diagnosis
(including distinguishing RIGs from recurrences of the primary
tumor) crucial for optimal treatment planning7,8. This is parti-
cularly challenging in cases where putative recurrent CNS tumors
are not biopsied or resected, and where material for histological
or molecular confirmation is therefore lacking.

Histopathologically, most RIGs present as high-grade gliomas
(HGG) reminiscent of their sporadic counterparts7,8,13,14,19, and
histopathological features to distinguishing them from de-novo
HGG are missing6,7. A report of morphological features of both
MB and HGG within secondary tumors led to the hypothesis of
transformation from MB (stem-)cells as a possible route for RIG
development11, while the higher genetic homogeneity of RIGs
compared to de-novo pediatric HGG is suggestive of a common
origin for RIGs7. Genetic alterations including gain of chromo-
some arm 1q, loss of CDKN2A/B, and PDGFRA amplification or
overexpression have been frequently observed in RIGs13,20–22,
and—in contrast to sporadic pediatric HGG—recurrent somatic
hotspot mutations in genes encoding histone 3 variants or IDH1/
2 were found to be uncommon13,20–22. To date, however, most
series have been relatively small, and there remains some lack of
clarity about the origin of RIGs and the underlying molecular and
biological mechanisms leading to their formation.

Recent studies have shown that DNA methylation profiling
represents a robust and reproducible approach to classify CNS
tumors into clinically meaningful entities23–26. Thereby, pediatric
HGG represent a heterogeneous group of CNS tumors, clearly
distinguishable from their adult counterparts21,27–29, that can be
classified into distinct subgroups with characteristic genetic and
epigenetic alterations and clinical associations30–33. Next-
generation sequencing and transcriptomic profiling approaches
represent complementary tools for molecular characterization of
tumorigenic processes.

Here, we performed comprehensive molecular characterization
of RIGs to detect distinctive, (epi-)genetic features which might
predict or explain their formation after RT, and/or which may act
as diagnostic or therapeutic markers.

Results
Clinical characteristics. Patients in our series developing a
radiation-induced glioma (RIG, n= 32) were previously treated
with cranial irradiation for MB (MB-RIG, n= 23) or ALL (ALL-
RIG, n= 9). A variety of different RT regimens was administered,
including craniospinal radiotherapy in MB patients or prophy-
lactic cranial irradiation in ALL patients. In line with a higher
probability of RIG occurrence in areas receiving a higher effective
radiation dose, most MB-RIG tumors were encountered in the
cerebellum (20/23, 87% vs. 3/23 in the cerebral hemisphere), the
location with the highest dose in RT. ALL-RIG tumors pre-
dominantly appeared in the cerebral hemisphere (7/9, 78%, vs 3/
23 in MB-RIGs, p < 0.01; Fig.1a), with only two cases arising in

the posterior fossa. The gender ratio was slightly shifted towards
males (male:female ratio: 1.28:1) (Fig. 1b). The latency for RIG
occurrence ranged from 2 to 30 years in MB patients (n= 23,
median: 5 years) and from 3–17 years in ALL patients (n= 9,
median: 8 years; Fig. 1c).

For 16/23 MB-RIG and 5/9 ALL-RIG patients with available
follow-up data, we observed an aggressive clinical course that was
as bad as or even slightly worse than histone 3 K27M-mutant
tumors – with 13 out of 16 MB-RIG and four out of five ALL-RIG
patients showing fatal outcome during the follow-up period (OS:
6 months, range: 3–10 months vs 8.5 months, range: 2–18 months
in MB-RIG patients; Suppl. Table 1). One ALL-RIG (RIG_09,
follow-up period: 3 months) and 3 MB-RIG patients diagnosed at
the age of 14 year (RIG_22, follow-up period: 9 months), 15 years
(RIG_30, follow-up period: 3 months), and 39 years (RIG_14,
follow-up period: 18 months) were known to be alive at last
follow-up, with the latter showing signs of progression after
12 months (Fig. 2).

DNA methylation profiling of radiation-induced gliomas and
primary medulloblastomas. DNA methylation patterns of both
MB- and ALL-RIGs were analyzed by unsupervised clustering
and t-SNE alongside 120 reference samples from pediatric HGG
subgroups with known molecular features. The majority of RIGs
after both primary indications closely resembled those of
pedGBM_RTK1 tumors (29/32, 91%; Fig. 3a, b)32. Two MB-RIG
and one ALL-RIG showed a methylation pattern more similar to
pleomorphic xanthoastrocytomas (PXA) (Fig. 3b). Thus, RIG
DNA methylation patterns suggest a high degree of similarity
(and likely common origins) between tumors, and were clearly
distinct from any other HGG DNA methylation class.

The 11 pre-RIG primary MBs for which DNA was available
were also profiled, and found to represent all four major MB
subgroups (MB-WNT: 1/11; MB-SHH: 3/11; MB-Group 3: 2/11,
MB-Group 4: 5/11), with no obvious enrichment for a particular
primary subtype relative to their overall incidence rate. DNA
methylation and CNV profiling confirmed the distinct biological
nature between the primary MB and secondary RIG using t-SNE
and copy-number analyses (Fig. 4a, b). Histological staining for
hematoxylin and eosin (Fig. 4c) of two paired primary
medulloblastoma and radiation-induced glioma couples (MB/
RIG_28, MB/RIG_29) display distinct morphological
characteristics.

RIGs display recurrent PDGFRA amplification and loss of
CDKN2A/B. Amplification of PDGFRA (6/9 ALL-RIG; 11/23 MB-
RIG) and loss of CDKN2A/B (4/9 ALL-RIG; 17/23 MB-RIG)
represented the most common copy-number alterations (CNAs) in
RIGs, with 2/8 ALL-RIG and 8/23 MB-RIG patients exhibiting co-
occurrence of both (Fig. 5). This is in keeping with the methylation
profile of these tumors matching to the pedGBM_RTK1 group,
where both changes are also well-known characteristic features.
Indeed, the overall frequency of PDGFRA amplification in the RIG
cohort (17/32, 55%) is higher than in an unselected pedHGG
cohort, but is not significantly higher than that reported in the
pedGBM_RTK1 subgroup (33%, p= 0.14)32. Amplification of
MET (9/32, 28%; previously also linked to MET fusion in pediatric
GBMs34) and CDK4 (5/32, 16%) were frequently encountered in
our cohort. Additional broader chromosomal CNAs included gain
of chromosome arm 1q (16/32, 50%), 1p deletion (19/32, 59%), 6q
deletion (18/32, 56%), 13q deletion (23/32, 72%), and 14q deletion
(16/32, 45%) (Fig. 5). A more focused analysis was performed to
illustrate the potential discrepancies between RIGs (n= 32) and
the non-RIG pedGBM_RTK1 tumors (n= 20) regarding their
respective characteristic copy-number changes, with both groups
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exhibiting a similar pattern of chromosomal gains and losses
(Suppl. Fig. 1a, c). The number of chromosomal breakpoints in
RIGs and non-RIG pedGBM_RTK1 tumors were further visually
determined to estimate the extent of genomic rearrangement
caused by double-strand DNA breaks. Overall, RIGs display a
significantly wider range and a higher number of chromosomal
breakpoints (median: 38.5, range: 4–134) compared to non-RIG
pedGBM_RTK1 tumors (median: 23, range: 13–51; two-sided t-
test: p < 0.04) (Suppl. Fig. 1 d).

Genomic profile of radiation-induced gliomas. RNA sequencing
(n= 9), gene panel (n= 5), and whole-exome (n= 13) sequen-
cing with matched blood samples were performed for a subset of
RIG samples. None of the RIGs harbored somatic hotspot
mutations in genes encoding histone 3 variants, IDH1/2, BRAF,
or in the TERT promoter region. Four out of 18 tested samples
(22%) exhibited somatic mutations in the TP53 gene. Additional
somatic mutations included CBL, PDGFRA, NTRK2, EGFR,
RAF1, ATRX, and BCOR (Suppl. Table 1). One patient (RIG_25)
harbored a TP53 germline splice site mutation. One patient
(RIG_14) was clinically diagnosed with Li-Fraumeni syndrome,
but tumor material was insufficient for molecular testing. Further
germline alterations associated with cancer predisposition syn-
dromes were absent in the remainder of cases with germline
material available (n= 13).

Analysis of RNA sequencing data (n= 9) revealed relevant
gene fusions including PTPRZ1:MET (RIG_11, RIG_25), CAP-
ZA2:MET (RIG_09), FYCO1:RAF1 (RIG_08), and GFAP1:NTRK2
(RIG_13) (Fig. 6). Interestingly, the FYCO1:RAF1 and
GKAP1:NTRK2 fusions were detected in two of the three tumors
from the PXA-like subgroup based on DNA methylation profiling
(Fig. 3). Both rearrangements are predicted to lead to a
constitutive activation of the kinase domain, via loss of the
N-terminal regulatory domain (RAF1) or constitutive dimeriza-
tion (NTRK2). Deriving from a complex structural rearrange-
ment, PRPRZ1:MET fusion proteins harbor an almost full length
MET protein driven by the highly active PTPRZ1 promoter. All
MET-fused cases (RIG_09, RIG_11, RIG_25) demonstrated
amplification of MET on copy-number profiles derived from
DNA methylation arrays. While all four genetic rearrangements,
which result in aberrant MAPK/ERK pathway activation, were
reported in high-grade gliomas, none of them were previously
discovered in RIGs34–36.

Transcriptional profiling of radiation-induced gliomas. Array-
based gene expression analysis was performed on seven RIG
samples as well as 24 additional tumors representing the H3/
IDH-wildtype pediatric HGG pedGBM_RTK1 (n= 5),
pedGBM_RTK2 (n= 3), pediatric HGG MYCN (n= 8)32, and
PXA (n= 8) subgroups. Unsupervised hierarchical clustering
analysis based on the 100 most differentially expressed genes
recapitulated the methylation-defined subgrouping, with the lar-
gest fraction of the RIGs forming a homogenous expression
pattern, resembling pedGBM_RTK1 tumors. Two cases (RIG_08,
RIG_13), previously categorized into the PXA methylation group,
also displayed an expression profile similar to PXAs (Fig. 7). The
level of expression glioma-characteristic genes (e.g. CD34, GFAP,
OLIG2, MAP2, MKI67, RBFOX3, SOX2, SYN; Suppl. Fig. 2)
between RIGs and sporadic H3/IDH-wildtype pediatric HGGs
did not reveal any notable differences, supporting the conclusion
of a general similarity in their pathway activation.

Discussion
RIGs represent a fatal long-term side effect of cranial
irradiation2,3,19,37–43. A better understanding of the occurrence ofT
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these tumors and their molecular background is therefore of
important clinical relevance. Our study supports the findings that
RIGs harbor recurrent genetic alterations converging on an
aberrant activation of the MAPK/ERK pathway (particularly via
PDGFRA) together with loss of cell cycle control, facilitating
tumorigenesis7,20,35,36. Importantly, we show that RIGs harbor a
largely homogenous genetic and epigenetic profile, closely
resembling sporadic pediatric GBM RTK1 tumors32. This sug-
gests that both radiation-induced and sporadic pedGBM_RTK1
tumors might share a common cell of origin, which could be
particularly vulnerable to ionizing radiation. However, the out-
come of RIG patients is particularly poor, and worse than what
has previously been described for sporadically occurring
PDGFRA-amplified, 9p21-deleted pediatric GBM RTK1
tumors32. The discrepancy could suggest that additional onco-
genic mechanisms might play a role during RIG formation, e.g.
the trend towards greater genomic instability in the RIG cohort,
as indicated by the elevated frequency of chromosomal break-
points compared to their sporadic counterparts, potentially
caused by radiation-induced DNA double-strand breaks. On the
other hand, the RIG patient cohort also typically represents
children with a long history of often aggressive prior treatment
for their primary malignancy, which means that certain treatment
options typically available at first diagnosis of GBM (e.g. radio-
therapy) may no longer be an option for RIG patients44,45. It is
also anticipated that the general health status of RIG patients is
likely to be worse than that of primary-diagnosis counterparts.

Further, some RIGs arising after MB were treated with an MB
relapse protocol on the assumption that the new lesion was a
recurrence of the primary tumor in the absence of biopsy con-
firmation, posing a possible risk that these protocols may be less
efficacious against high-grade glioma than upfront GBM proto-
cols. Thus, there are a number of key clinical reasons why an
inferior survival might be expected, in addition to molecular
mechanistic differences.

A small subset of RIGs with a more PXA-like profile harbored
potentially druggable alterations in RAF1 and NTRK2, and it will
be of interest to investigate the precise characteristics of this
group in larger cohorts. Our findings also do not at present
suggest a substantial contribution of germline alterations in
known tumor-associated genes in the occurrence of RIGs.
However, further comprehensive germline analyses with matched
blood samples are required to elucidate in full the potential role of
hereditary predisposition in RIG formation.

RIG following MB of various subtypes as well as after ALL
displayed converging fingerprints, despite the diversity of applied
radiation protocols (MB-RIGs arose mostly at the site of local
boost, while ALL-RIGs occurred throughout the cranial radiation
field). All of the four main molecular MB subgroups were
represented in the primary lesions, with no recurrent alterations
observed in the primary MBs. Our findings unfortunately suggest
that no conclusions can currently be drawn regarding predictive
features in the patient or primary tumor for assessing the prob-
ability of subsequent RIG formation. An important question to
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brackets indicating group size. MB-RIG patients displayed a wider distribution regarding the age at RIG diagnosis and latency period. RIG radiation-induced
glioma, MB-RIG post-medulloblastoma RIG, ALL-RIG post-ALL RIG.
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address in future will be the precise role of radiotherapy protocols
(craniospinal vs local boost, fractionation schema, photons/pro-
tons/heavy ions) in determining the risk of secondary
malignancy46–50.

The ALL-RIGs included in our series were all diagnosed with
their second tumor between 9 and 18 years of age, suggesting a
particularly vulnerable but relatively narrow time frame for RIG
occurrence after ALL. If confirmed in larger series, this could be
an important variable for the planning of surveillance in this
patient population. In contrast, both the age at diagnosis and
latency after the primary tumor were much more varied for
medulloblastoma. The earliest RIG occurred after a latency period
of only 2 years following treatment for MB – within a timeframe
which could easily allow misidentification as a recurrence of the
primary tumor. Molecular characterization of 31 clinically-
presumed relapse MBs within the prospective INFORM study51

revealed that 6/31 ‘relapsed’ MBs (19%) were in fact secondary
HGG (unpublished data). In light of their aggressive clinical
course and fundamentally different biology, it is essential to
distinguish newly-arising RIGs from true recurrences in order to
adjust treatment planning as early as possible to increase treat-
ment efficacy. Thus, biopsy of recurrent lesions after MB is clearly
warranted and should be considered whenever surgically feasible.
Furthermore, the observation that a subset of prognostically
favorable MBs (e.g. the MB-WNT subgroup) are also at risk of
developing RIGs, highlights the urgency of current efforts to

further examine the application of alternative treatment mod-
alities (e.g. proton/heavy ion beam therapy) or the general de-
intensification of radiation therapy in these patients47,52–58.

In summary, our findings demonstrate that RIGs are an
aggressive, relatively homogenous group of CNS tumors with
recurrent amplification of PDGFRA and loss of CDKN2A/B in the
absence of somatic H3/IDH hotspot mutations. Our study
uncovers possible similarities in origins with the pedGBM_RTK1
group of sporadic HGG, which will be important for further
understanding the mechanisms by which these secondary
tumors arise.

Methods
Patient population and tumor samples. Criteria for patient selection adapted
from Cahan et al.59,60 included (1) a glioma emerging from the previously irra-
diated field, and (2) a non-glial primary malignancy, in this series MB (n= 23) and
ALL (n= 9), to exclude potential tumor progression/recurrence not directly related
to radiotherapy61–63.

This study is covered by the ethical approval of the Heidelberg University’s
medical faculty. Additional clinical data and tumor material were collected by
international collaborating centers according to local ethical and institutional
review board approval and collected at the German Cancer Research Center
(DKFZ, Heidelberg, Germany). Informed consent for molecular profiling was
obtained from all patients and their legal representatives.

DNA methylation profiling. The Illumina Infinium HumanMethylation450
(450k) array and Illumina Infinium MethylationEPIC (EPIC) array were used to
obtain genome-wide DNA methylation profiles, according to the manufacturer’s
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instructions (Illumina, San Diego, USA). Data were generated at the Genomics and
Proteomics Core Facility of the DKFZ (Heidelberg, Germany) and St. Jude Chil-
dren’s Research Hospital (Memphis, USA). DNA methylation data was generated
from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue
samples. On-chip quality metrics of all samples were carefully controlled.

Copy-number variation (CNV) analysis from 450k and EPIC methylation array
data was performed using the conumee Bioconductor package version 1.12.0.

All computational analyses were performed in R version 3.4.4 (R Development
Core Team, 2019). Raw signal intensities were obtained from IDAT-files using the
minfi Bioconductor package version 1.24.0. Illumina EPIC and 450k samples were
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merged to a combined data set by selecting the intersection of probes present on
both arrays (combineArrays function, minfi). Each sample was individually
normalized by performing a background correction (shifting of the 5th percentile
of negative control probe intensities to 0) and a dye-bias correction (scaling of the
mean of normalization control probe intensities to 10,000) for both color channels.
Subsequently, a correction for the type of material tissue (FFPE/frozen) and array
(450k/EPIC) was performed by fitting univariate, linear models to the log2-
transformed intensity values (removeBatchEffect function, limma package version
3.34.5). The methylated and unmethylated signals were corrected individually.
Beta-values were calculated from the retransformed intensities using an offset of
100 (as recommended by Illumina).

Before further analysis, the following filtering criteria were applied: Removal of
probes targeting the X and Y chromosomes (n= 11,551), removal of probes
containing a single-nucleotide polymorphism (dbSNP132 Common) within five
base pairs of and including the targeted CpG-site (n= 7998), probes not mapping
uniquely to the human reference genome (hg19) allowing for one mismatch
(n= 3965), and 450k array probes not included on the EPIC array. In total, 428,230
probes were kept for downstream analysis64–66.

To perform unsupervised dimension reduction, the remaining probes were used
to calculate the 1-variance weighted Pearson correlation between the samples. The
resulting distance matrix was used as input for t-SNE analysis (t-Distributed
Stochastic Neighbor Embedding; Rtsne package version 0.13). The following non-
default parameters were applied: theta= 0, pca= F, max_iter= 2500
perplexity= 20.

To perform unsupervised hierarchical clustering, the 10.000 probes with highest
standard deviation were selected to calculate the Euclidean distance between
samples, followed by applying Wards linkage method for sample clustering. In the
heatmap, representation probes were reordered by complete linkage hierarchical
clustering of the Euclidean distance between probes.

To evaluate focal amplifications and deletions and chromosomal gains and
losses, we visually inspected copy-number profiles of each case. Candidate genes
and their 3′ and 5′ intergenic neighborhood were further investigated using the
Integrative Genomic Viewer (IGV) for the presence of breakpoints, as an
indication for potential gene fusions.

Gene expression profiling. Tumor samples with sufficient high-quality RNA were
analyzed on the Affymetrix GeneChip Human Genome U133 Plus (v.2.0) Array
(Affymetrix, Santa Clara, USA) at the Microarray Department of the University of
Amsterdam, the Netherlands or the Genomics ad Proteomics Core Facility of the
German Cancer Research Center (DKFZ). Subsequent library preparation, hybri-
dization, and quality control was conducted following the manufacturer’s guideline.
Expression data were normalized using the MAS5.0 algorithm. Identification of
significantly differentially expressed genes between subgroups (test: anova;

correction for multiple testing: false discovery rate, transform: z-score) and
unsupervised hierarchical clustering were performed within the R2: Genomics
Analysis and Visualization Platform (http://r2.amc.nl).

Next-generation gene panel, whole-exome, low-coverage whole genome, and
RNA sequencing. For the detection of single-nucleotide variations (SNVs), small
insertions and deletions (indels), and gene fusions, a subset of tumor samples
(n= 5) were analyzed via a customized enrichment/hybrid-capture-based next-
generation sequencing gene panel67. DNA from FFPE tissue was extracted using
the Promega Maxwell device (Promega), sheared on Covaris M220 (Covaris),
according to the manufacturer’s guidelines. Following a successful quality control
using a Bioanalyzer 2100 (Agilent), sequencing was performed on a NextSeq 500
instrument (Illumina). Paired-end sequencing was applied to increase the detection
sensitivity of duplicates and possible gene fusions.

For whole exome (WES; n= 13) and RNA sequencing (n= 9), library
preparation, sequencing and data processing were conducted following the pipeline
established in the INFORM study51. In brief, library preparation for WES was
performed using the Agilent SureSelectXT Human V5 kit. Prepared libraries were
sequenced together with a tumor cDNA library (poly(A)+ RNA, Illumina TruSeq
RNA Kit v2) on an Illumina HiSeq. The 1000 Genomes phase 2 human reference
assembly (NCBI build 37.1) was selected for mapping the sequencing reads using
BWA (version 0.6.2). For detection of SNVs and indels, custom pipelines were
used68. In brief, the computational analysis was performed using SAMtools
mpileup and bctools version 0.1.19 to detect somatic variants. To annotate variants,
ANNOVAR was applied with Gencode version 17. All high confidence coding or
splice site germline variants in a selected panel of cancer predisposition genes were
extracted using a custom Python script. To call short insertions or deletions
(InDels) in tumor and control blood BAM files, the extracted data was annotated
using Platypus (version 0.5.2/0.7.4 with parameters genInDels= 1, genSNPs= 0,
ploidy= 2, nIndividuals= 2). Poor genotype quality and low variant counts in the
tumor were excluded for the subsequent analysis. RNA sequencing data were
analyzed with deFuse to detect gene fusions69.

Potentially relevant somatic and germline alterations were manually assessed
and cross-examined through various databases (http://www.ncbi.nlm.nih.gov/SNP
build 135, http://www.1000genomes.org, http://exac.broadinstitute.org, https://
cancer.sanger.ac.uk/cosmic, https://www.ncbi.nlm.nih.gov/clinvar/).

Statistics. Overall survival (OS) and progression-free survival (PFS) were analyzed
by Kaplan–Meier analysis and tested for significant differences using a log-rank
test. Binary and categorical patient characteristics between different subgroups
were compared by a two-sided Fisher’s exact test. P-values < 0.05 were considered
significant.
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Fig. 6 Alternative genetic rearrangements leading to aberrant MAPK/ERK pathway signaling. Partial deletions of chromosomal arm 3p induce
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rearrangements are predicted to lead to constitutive activation of the kinase domain (KD). Induced by complex rearrangements, CAPZA2:MET (b) and
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Methylation array data from this study have been deposited in GEO: GSE131482. Gene
expression array were deposited in GEO: GSE168457. DNA sequencing data are available
from the European Genome-Phenome Archive (EGA) under accession
EGAS00001005243. Source data are provided with this paper.
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