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Abstract

The relative contributions of additive versus non-additive interactions in the regulation of

complex traits remains controversial. This may be in part because large-scale epistasis has

traditionally been difficult to detect in complex, multi-cellular organisms. We hypothesized

that it would be easier to detect interactions using mouse chromosome substitution strains

that simultaneously incorporate allelic variation in many genes on a controlled genetic back-

ground. Analyzing metabolic traits and gene expression levels in the offspring of a series of

crosses between mouse chromosome substitution strains demonstrated that inter-chromo-

somal epistasis was a dominant feature of these complex traits. Epistasis typically accounted

for a larger proportion of the heritable effects than those due solely to additive effects. These

epistatic interactions typically resulted in trait values returning to the levels of the parental

CSS host strain. Due to the large epistatic effects, analyses that did not account for interac-

tions consistently underestimated the true effect sizes due to allelic variation or failed to

detect the loci controlling trait variation. These studies demonstrate that epistatic interactions

are a common feature of complex traits and thus identifying these interactions is key to under-

standing their genetic regulation.

Author summary

Most complex traits and diseases are regulated by the combined influence of multiple

genetic variants. However, it remains controversial whether these genetic variants inde-

pendently influence complex traits, and therefore the impact of each variant could be sim-

ply added together (additivity), or whether the variants work together to influence trait

variation, in which case the combined impact of multiple variants would differ from the

summed impact of each individual variant (epistasis). In this study in mice, we discovered

that the genetic regulation of blood sugar levels and gene expression in the liver were pre-

dominantly controlled by non-additive interactions, whereas body weight was predomi-

nantly controlled by additive interactions. Remarkably, the expression level of nearly 25%

of all genes in the liver was controlled by non-additive interactions. The non-additive

interactions typically acted to return trait values to the levels detected in control mice, thus
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contributing to a reduction in trait variation. We also demonstrated that not accounting

for non-additive interactions significantly underestimated the phenotypic effect of a genetic

variant on a particular genetic background, suggesting that many previously identified risk

loci may have significantly larger effects on disease susceptibility in a subset of individuals.

These studies highlight the importance of understanding interactions between genetic vari-

ants to better understand disease risk and personalize clinical care.

Introduction

The genetic basis of complex traits and diseases results from the combined action of many

genetic variants [1]. However, it remains unclear whether these variants act individually in an

additive manner or via non-additive epistatic interactions. Epistasis has been widely observed

in model organisms such as S. cerevisiae [2,3], C. elegans [4], D. melanogaster [5] and M. mus-
culus [6]. However, it has been more difficult to detect in humans, potentially due to their

diverse genetic backgrounds, low allele frequencies, limited sample sizes, complexity of inter-

actions, insufficient effect sizes, and methodological limitations [7,8]. Nonetheless, a number

of genome-wide interaction-based association studies in humans have provided evidence for

epistasis in a variety of complex traits and diseases [9–15]. However, concerns remain over

whether observed epistatic interactions are due to statistical or experimental artifacts [16,17].

To better understand the contribution of epistasis to complex traits, we studied mouse chro-

mosome substitution strains (CSSs) [18]. For each CSS, a single chromosome in a host strain is

replaced by the corresponding chromosome from a donor strain. This provides an efficient model

for mapping quantitative trait loci (QTLs) on a fixed genetic background. This is in contrast to

populations with many segregating variants such as advanced intercross lines [19], heterogeneous

stocks [20], or typical analyses in humans. Given the putative importance of genetic background

effects in complex traits [21,22], we hypothesized the fixed genetic backgrounds of CSSs can pro-

vide a novel means for detecting genetic interactions on a large-scale [18,23]. Previous studies of

CSSs with only a single substituted chromosome suggested that non-additive epistatic interactions

between loci were a dominant feature of complex traits [6]. However, to identify the interacting

loci, or at least their chromosomal locations, requires the analysis of genetic variation in multiple

genomic contexts [24]. We thus extended the analysis of single chromosome substitutions by ana-

lyzing a series of CSSs with either one or two substituted chromosomes, collectively representing

the pairwise interactions between genetic variants on the substituted chromosomes. This experi-

mental design can directly identify and map loci that are regulated by epistasis by analyzing the

phenotypic effects of genetic variants on multiple fixed genetic backgrounds. Here we report the

widespread effects of epistasis in controlling complex traits and gene expression. The detection of

true epistatic interactions will improve our understanding of trait heritability and genetic architec-

ture as well as provide insights into the biological pathways that underlie disease pathophysiology

[25]. Knowing about epistasis will also be essential for guiding precision medicine-based decisions

by interpreting specific variants in appropriate contexts.

Results

Contribution of epistasis to metabolic traits

Body weight and fasting plasma glucose levels were measured in a total of 766 control and CSS

mice (S1 and S2 Tables, S1 Fig). The CSSs included 240 mice that were heterozygous for one

A/J-derived chromosome and 444 mice that were heterozygous for two different A/J-derived
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chromosomes, both on otherwise B6 backgrounds. The CSSs with two A/J-derived chromo-

somes represented all pairwise interactions between the individual A/J-derived chromosomes.

For example, comparisons were made between strain B6, strains (B6.A3 x B6)F1 and (B6 x B6.

A10)F1 which were both heterozygous for a single A/J-derived chromosome (Chr. 3 and 10,

respectively), and strain (B6.A3 x B6.A10)F1 which was heterozygous for A/J-derived chromo-

somes 3 and 10 (S2 Fig). A complete list of the strains analyzed is shown in S2 Table. Quantita-

tive trait loci (QTLs) were identified for both body weight and plasma glucose levels that were

due to main effects and interaction effects. Of note, due to the nature of the CSS experimental

design, the regions defined by the identified QTLs correspond to the entire substituted chro-

mosome and contain many allelic variants that may contribute to trait regulation. Addition-

ally, due to the study design, only QTLs with dominant or semi-dominant effects could be

assessed.

Joint F-tests for main effects on body weight indicated that the chromosome substitutions

influenced body weight (males p = 0.0028; females p = 0.0008; meta p = 1.4e-05). Similarly,

joint F-tests tests for main effects on plasma glucose levels demonstrated a significant effect of

the chromosome substitutions (males p = 0.0082; females p = 0.00011; meta p = 1.4e-05).

QTLs with main effects on body weight were mapped to chromosomes 8 (main effect: 1.23g;

average effect: 1.02g) and 17 (main effect: -1.13g; average effect: -1.11g) (S3 Table). Note that

we define main effects as the effect of a chromosome substitution as estimated by a model

which includes all pairwise interaction terms, thus taking into account context-dependent

genetic background effects. In contrast, the average effect is estimated using a model that does

not include any interaction terms; the latter is similar to the analyses performed in a typical

GWAS study. QTLs with main effects on fasting glucose were mapped to chromosomes 3

(main effect: 25.0 mg/dL; average effect: 9.61 mg/dL), 5 (main effect: 15.6 mg/dL; average

effect: 6.02 mg/dL), and 4 (main effect: 17.5 mg/dL; average effect: 6.61 mg/dL) (S3 Table).

Joint F-tests for interaction effects on body weight were not significant (males p = 0.19;

females p = 0.83; meta p = 0.44), and therefore epistatic interactions on body weight were not

further investigated. However, joint F-tests for interaction effects on plasma glucose demon-

strated the importance of epistasis in regulating this trait (males p = 0.002; females p = 0.003;

meta p = 8.99e-05). In fact, among the males and females respectively, epistasis accounted for

43% (95% confidence interval: 23%-75%) and 72% (95% confidence interval: 37%-97%) of the

heritable effects on plasma glucose levels. The discrepant results for the contribution of inter-

actions to body weight and plasma glucose are likely reflected in the difference between

whether QTLs for these traits were detected using the main effect model or the average effect

model (S3 Table). For plasma glucose, only 1 of the 3 QTLs identified using the main effect

model was also identified using the average effect model, and no new QTLs were identified

with the average effect model. In contrast, both of the QTLs for body weight identified using

the main effect model were also identified using the average effect model, and 2 new QTLs

were identified on chromosomes 6 and 10. This suggests that for a trait regulated by epistatic

interactions, the ability to successfully identify QTLs is greatly enhanced by accounting for

these interactions. However, for a trait regulated primarily by additive effects, a model incor-

porating interactions can be detrimental to QTL identification.

To identify specific epistatic interactions, we tested explicit hypotheses for inter-chromo-

somal pairwise interactions on plasma glucose levels. Among the 15 CSS crosses analyzed, 5

crosses demonstrated inter-chromosomal epistatic interactions that altered plasma glucose lev-

els (Fig 1, S3 and S4 Figs). Interestingly, in all 5 crosses demonstrating interactions, one chro-

mosome substitution increased fasting glucose levels relative to the control B6 strain. These

main effects raised plasma glucose levels by an average of 12.3 mg/dL in males and 17.8 mg/dL

in females. However, in all 5 observed interactions the average plasma glucose levels in the
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double CSSs were closer to the control B6 strain than any single CSS was. Furthermore, in 4 of

the 5 interactions, the plasma glucose levels in the double CSS did not differ statistically from

the control strain B6 (p value > 0.1). Thus, the chromosome substitution driving the increase

in plasma glucose on a B6 background had no effect on glucose levels when the genetic back-

ground was altered by the second chromosome substitution.

Regulation of gene expression by epistasis

As hepatic gluconeogenesis is a key determinant of plasma glucose levels in healthy insulin-

sensitive mice [26], the hepatic gene expression patterns of control and CSS male mice were

analyzed to better understand the molecular mechanisms underlying the epistatic regulation

of plasma glucose. The RNA-Seq data was filtered for genes expressed in the liver, leaving

13,289 genes that were tested for differential expression associated with both main and interac-

tion effects. A total of 6,101 main effect expression QTLs (meQTLs) were identified

(FDR< 0.05) (Fig 2, S4 Table). Those meQTL genes located on the substituted chromosome

were classified as cis-meQTLs (Fig 2, red) whereas the meQTL genes not located on the substi-

tuted chromosome were classified as trans-meQTLs (Fig 2, blue). Among all possible genes

regulated by a cis-meQTL, on average 11.48% of these genes in each strain had a cis-meQTL

(range: 5.54% - 22.09%) (S5 Table). Similarly, among all possible genes regulated by a trans-

meQTL, on average 5.42% (range: 0.08% to 19.26%) of these genes were regulated by a trans-

meQTL (S5 Table). The percentage of cis- and trans-meQTLs in each strain demonstrated a

strong positive correlation (Spearman’s r = 1.0) but the proportion of cis-eQTLs was always

greater than the proportion of trans-eQTLs. Strain (B6 x B6.A8)F1 had both the highest per-

centage of genes with cis-meQTLs (22.09%) and trans-meQTLs (19.26%), whereas strain (B6 x

B6.A5)F1 had both the lowest percentage of genes with cis-meQTLs (5.54%) and trans-

meQTLs (0.08%). This suggests that trans-meQTLs are being driven by the cumulative action

of many cis-effects rather than a single or small number or major transcriptional regulators

(S5 Fig). Among the genes regulated by a meQTL(s), 41.98% (1615 out of 3847) were regulated

by multiple meQTLs (Range: 2–6) (S6 and S7 Tables). For example, Brca2 is regulated by 5

trans-meQTLs mapped to chromosomes 4, 6, 8, 10 and 14 (S6 Fig, S7 Table), demonstrating

that hepatic Brca2 expression is regulated by allelic variation throughout the genome. In addi-

tion to the well-known role of Brca2 in breast cancer susceptibility, Brca2 has been implicated

in hepatocellular carcinoma risk [27–29].

In addition to the meQTLs regulated by substitution of a single chromosome, the analysis

of double CSSs enabled the detection of eQTLs with additive and interaction effects between

the substituted chromosomes. The expression of Zkscan3 represents an example of additivity,

with the substitution of A/J-derived chromosomes 8 and 17 each individually increasing the

expression of Zkscan3 relative to control B6 mice (S7A Fig). In the double CSS strain (B6.A17

x B6.A8)F1, the effects of each individual chromosome substitution are combined in an addi-

tive manner to result in yet higher expression than either of the single CSSs (S7A Fig). The

additive effects of the Zkscan3 meQTLs detected by RNA-Seq were confirmed by quantitative

reverse transcription PCR (S7B Fig), as were 4/5 additional meQTLs demonstrating additivity

(S8 Table).

In addition to examples of additivity, interaction expression QTLs (ieQTLs) were identified

that were jointly regulated by genetic variation on two substituted chromosomes. The ieQTLs,

similar to the meQTLs, were divided into cis-ieQTLS and trans-ieQTLs, with cis-ieQTLs

defined by differentially expressed genes located on either one of the two substituted chromo-

somes and trans-ieQTLs representing differentially expressed genes that are not located on

either substituted chromosome. A total of 4,283 ieQTLs were identified (S9 Table). Among all
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possible genes regulated by a cis-ieQTL or trans-ieQTL, 2.01% and 2.16% of genes were regu-

lated by a cis- or trans-ieQTL respectively (Table 1). The combination of A/J-derived chromo-

somes 8 and 14 yielded the most ieQTLs (n = 2,305) including cis-ieQTLs regulating the

Fig 1. Inter-chromosomal epistasis between chromosomes 5 and 6 regulates fasting plasma glucose levels in mice. Plasma glucose levels were

measured in 5-week-old (A) female and (B) male mice that were fasted overnight. Each dot represents the glucose level of a single mouse. “Others”

represents the data from all mice in this study excluding the other 4 strains shown in that panel. The black horizontal line indicates the mean glucose level

for each group. The red horizontal line indicates the predicted trait level based on a model of additivity.

https://doi.org/10.1371/journal.pgen.1007025.g001

Fig 2. Identification of meQTLs that regulate hepatic gene expression. A circos plot of meQTL locations in the genome where

each layer of the circle represents the comparison between a CSS strain and control B6 mice. From the inner circle, the CSS

strains are (B6 x B6.A5)F1, (B6.17 x B6)F1, (B6.A3 x B6)F1, (B6.A6 x B6)F1, (B6 x B6.A10)F1, (B6 x B6.A4)F1, (B6.A14 x B6)F1

and (B6 x B6.A8)F1. Cis-meQTLs and trans-meQTLs are marked with red and blue, respectively. The width of each chromosome

is proportional to its physical size. The height of each meQTL bar is proportional to the number of meQTLs in that genomic interval.

https://doi.org/10.1371/journal.pgen.1007025.g002
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expression of 17.56% of all genes on chromosomes 8 or 14 and trans-ieQTLs regulating the

expression of 17.32% of all genes throughout the remainder of the genome. Overall, the

ieQTLs demonstrated a similar positive correlation as the meQTLs (Spearman’s r = 0.92) (S8

Fig), although there was no enrichment for cis-ieQTLs. Among the genes regulated by an

ieQTL(s), 32.35% (945 out of 2921) were regulated by multiple ieQTLs (Range: 2–7) (S10 and

S11 Tables). For example, Agt expression is decreased in strain (B6.A8 x B6)F1 relative to con-

trol B6 mice; however, interactions between one or more alleles on chromosome 8 and chro-

mosomes 6, 3, 17, and 14 all result in expression levels of Agt that did not differ from the

control strain (Fig 3).

Context-dependent effects on gene expression

We next tested whether the interaction effects on gene expression were synergistic (positive

epistasis) or antagonistic (negative epistasis) (S9 Fig). Synergistic refers to an increased differ-

ence in gene expression levels between the double CSS and the control B6 strain beyond that

expected based on an additive model, whereas antagonistic refers to a decreased difference. The

regulation of Agxt was an example of an antagonistic interaction, with main effects from substi-

tuted chromosomes 6 and 8 each individually decreasing Agxt expression, whereas this effect

was lost in the double chromosome substitution strain (Fig 4A). In contrast, the regulation of

Table 1. Interection effects on gene expression.

Cross Cis-ieQTLs Trans-ieQTLs Subtypes of ieQTLs

Percentage

of genes

with cis-

ieQTL

Number

of cis-

ieQTLs

Number of

genes on

substituted

chromosomes

Percentage

of genes

with trans-

ieQTL

Number

of trans-

ieQTLs

Number of

genes on other

chromosomes

Percentage

of genes

with

synergistic

ieQTLs

Number of

synergistic

ieQTLs

Percentage

of genes with

antagonistic

ieQTLs

Number of

antagonistic

ieQTLs

A14:

A8

17.56% 199 1133 17.32% 2106 12156 6% 129 94% 2176

A6:A8 6.81% 96 1409 5.89% 700 11880 2% 15 98% 781

A14:

A4

3.86% 48 1244 3.57% 430 12045 6% 31 94% 447

A6:

A10

1.81% 24 1325 0.58% 69 11964 1% 1 99% 92

A14:

A10

1.62% 17 1049 2.05% 251 12240 1% 3 99% 265

A6:A4 0.86% 13 1520 0.58% 68 11769 0% 0 100% 81

A3:A8 0.77% 11 1434 0.77% 91 11855 2% 2 98% 100

A3:

A10

0.44% 6 1350 0.56% 67 11939 0% 0 100% 73

A17:

A8

0.23% 3 1329 0.00% 0 11960 0% 0 100% 3

A17:

A4

0.14% 2 1440 0.48% 57 11849 2% 1 98% 58

A17:

A10

0.08% 1 1245 0.03% 4 12044 0% 0 100% 5

A14:

A5

0.00% 0 1410 0.17% 20 11879 0% 0 0% 0

A17:

A5

0.00% 0 1606 0.00% 0 11683 0% 0 0% 0

A3:A5 0.00% 0 1711 0.00% 0 11578 0% 0 0% 0

A6:A5 0.00% 0 1686 0.00% 0 11603 0% 0 100% 20

All 2.01% 420 20891 2.16% 3863 178444 4% 182 96% 4101

https://doi.org/10.1371/journal.pgen.1007025.t001
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Cyp3a16 represented an example of synergistic interaction with the detection of an ieQTL in

the absence of a meQTLs (Fig 4B). Among the ieQTLs, antagonistic interactions accounted for

96% (n = 4101) while synergistic interactions accounted for 4% (n = 182) (Table 1). Remark-

ably, for 80% of the antagonistic interactions (3285/4101), gene expression in one or both of the

single CSSs differed from the control B6 strain (a meQTL), whereas expression in the double

CSS reverted to control levels (p> 0.1 relative to strain B6). To again validate the RNA-Seq data

using an independent method, RT-qPCR was performed for a subset of genes with antagonistic

(n = 13) and synergistic (n = 10) interactions. Replication by RT-qPCR confirmed the detection

of epistasis in 61% (p<0.05) of the genes tested (Antagonistic: 8/13; Synergistic: 6/10) (S8

Table).

Significant contribution of epistasis to trait heritability

Given that the ieQTLs regulated approximately 2% of all genes expressed in the liver (Table 1),

we sought to quantify the contribution of genetic interactions to the heritable component of all

genes. First, an empirical Bayes quasi-likelihood F-test identified 6,684 genes out of the 12,325

genes expressed in the liver for which there was evidence of genetic control within the popula-

tion of CSSs (FDR<0.05). The average proportion of heritable variation attributable to interac-

tions across these genes was 0.56 (1st quartile: 0.43 – 3rd quartile: 0.68) (Fig 5A). When the

same analysis was restricted to only genes with a statistically significant (FDR<0.05) contribu-

tion of interactions to gene expression levels (n = 3,236 genes), the proportion of heritable

Fig 3. Identification of 4 ieQTLs that regulate the hepatic expression of Agt. Gene expression levels of Agt in the liver are shown for strain B6, 5

single CSS strains, and 4 double CSS strains. Each dot represents Agt expression in an individual mouse. The mean value for each strain is indicated

by a solid line. The expected expression level of Agt in the double CSS strains based on a model of additivity is indicated with a red line. The Agt gene

is located on mouse chromosome 8.

https://doi.org/10.1371/journal.pgen.1007025.g003
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variation attributable to interactions increased to 0.66 (1st quartile: 0.56, 3rd quartile: 0.74) (Fig

5B). For comparison, a simulation study was conducted using artificial data to model pure

additivity in the absence of interactions, with a resulting estimate of heritability of 0.13 (1st

quartile: 0.05, 3rd quartile: 0.19) (Fig 5C), which provides an estimate of the background noise

in this measurement. Thus, genetic interactions are a major contributor to the regulation of

gene expression.

Discussion

CSSs, which have a simplified and fixed genetic background, were used to identify widespread

and likely concurrent epistatic interactions. This systematic analysis of mammalian double

CSSs demonstrated that epistatic interactions controlled the majority of the heritable variation

in both fasting plasma glucose levels and hepatic gene expression (Fig 5). Among genes

expressed in the liver, the expression level of 24% were regulated, at least in part, by epistasis

(Fig 5). This number is remarkable considering that only dominant or semi-dominant effects

were tested, only a single tissue and time point were examined, allelic variation from only two

inbred strains of mice were included, and only 15 pairwise strain combinations of CSSs were

tested out of a possible 462 combinations of double CSSs. The prevalence of epistatic interac-

tions provides a potential molecular mechanism underlying the highly dependent nature of

complex traits on genetic background [21,22,30,31]. Interpreting the effect of individual allelic

variants will thus be severely limited by population-style analyses that fail to account for possi-

ble contextual effects. Nonetheless, progress is being made in this field, including in diseases

such as multiple sclerosis (MS), which is a complex genetic disease whose risk is highly associ-

ated with family history [32]. For example, MS risk alleles in DDX39B (rs2523506) and IL7R

(rs2523506A) together significantly increase MS risk considerably more than either variant

independently [15]. Based on the considerable number of interactions detected in the CSS

crosses, context-dependent interactions such as that between DDX39B and IL7R in MS are

likely widespread and may therefore represent a significant source of missing heritability for

complex traits and diseases [33,34].

Although epistasis was a dominant factor regulating fasting glucose levels, the same effect

was not detected in the regulation of body weight. It is not clear if this is due to different

genetic architectures between these two traits or whether this was due to the limited genetic

variation between the B6 and A/J strains. The body weight studies were conducted in mice fed

a standard rodent chow, whereas differences in body weight between strains B6 and A/J are

significantly more pronounced when challenged with a high-fat diet [35,36]. Alternately, a

recent meta-analysis of trait heritability in twin studies identified significant variation in the

role of additive and non-additive variation among different traits, with suggestive evidence for

non-additive effects in 31% of traits [37]. Among the traits analyzed, genetic regulation of neu-

rological, cardiovascular, and ophthalmological traits were among the most consistent with

solely additive effects, whereas traits related to reproduction and dermatology were more often

consistent with non-additive interactions. Among the metabolic traits studied, 40% of the 464

traits studied were consistent with a contribution of non-additive interactions [37]. It is inter-

esting to speculate whether some traits that may have a more direct effect on fitness (e.g. repro-

duction) are more likely to involve multiple non-additive effectors in order to maintain a

narrow phenotypic or developmental range [38].

Although many inter-chromosomal non-additive interactions were identified in mice, it

remains unclear whether these interactions are attributable to bigenic gene-gene interactions

or to higher-order epistasis involving multiple loci located on a substituted chromosome. Stud-

ies in yeast that dissected the genetic architecture of epistasis demonstrated that gene-gene
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Fig 4. Examples of synergistic and antagonistic ieQTLs. Each dot represents the gene expression data from

one mouse. The horizontal bar indicates the mean value for each strain (A) An antagonistic ieQTL regulates the

expression of Agxt in the liver. (B) A synergistic ieQTL regulates the expression of Cyp3a16 in the liver. The red

horizontal line indicates the predicted trait level based on a model of additivity.

https://doi.org/10.1371/journal.pgen.1007025.g004
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Fig 5. Contribution of epistasis to the genetic regulation of hepatic gene expression. Diagrams

representing the estimated proportion of genetic variation due to interactions for (A) all genes expressed in the

mouse liver whose expression was under genetic control in the CSS strains studied, (B) the same data

segregated based on the statistical evidence supporting an effect of interaction on gene expression, and (C) a

comparison of the genes with the most significant evidence for regulation by genetic interactions (FDR < 0.05)

and a simulation study with artificial data that model the absence of any genetic interactions.

https://doi.org/10.1371/journal.pgen.1007025.g005

Widespread epistasis regulates glucose homeostasis and gene expression

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007025 September 29, 2017 11 / 23

https://doi.org/10.1371/journal.pgen.1007025.g005
https://doi.org/10.1371/journal.pgen.1007025


interactions played a minor role among the heritable effects attributable to epistasis, thus pri-

marily implicating higher order interactions [2]. Yet, other studies in yeast that methodically

tested pairs of gene knockouts for interactions identified a number of gene-gene interactions

[39]. Additional evidence for both high-order epistasis with three, four, and even more muta-

tions [40] as well as bigenic gene-gene interactions [41] have been identified, and it seems

likely that both will underlie interactions detected in the CSS studies. This is because the use of

CSSs to study the allelic variation found on an entire chromosome in tandem equally enables

the detection of bigenic and higher-order interactions, although it does not distinguish

between these two possibilities by identifying the number of contributing variants on the

substituted chromosomes without further mapping studies. This property of CSSs may con-

tribute to the robust detection of epistasis using the CSS experimental platform relative to

genetic mapping studies in populations with many independently segregating variants, which

are often underpowered to identify higher-order interactions [42]. However, to formally test

this and determine the relative contribution of each, higher resolution genetic mapping of the

epistatic interactions will be necessary to better understand their molecular nature [43]. Higher

resolution mapping studies should eventually shed light on whether the chromosome-level

properties discovered in this study are consistent with those for SNP-level interactions. Based

on previous studies of complex trait QTLs in single-CSS studies, chromosome-level QTLs

demonstrated a similar genetic architecture as that found in higher resolution QTLs including

large effect sizes, similar direction of effects, and suggestive evidence of widespread epistasis

[23,44]. Thus, it seems likely that discoveries made based on chromosome-level analysis of

epistasis, will apply equally to studies involving individual genetic variants. For example,

genetic variants in Cntnap2 were identified by higher resolution mapping studies of chromo-

some-level QTLs in CSSs, that were associated with opposing effects on body weight depend-

ing on epistatic interactions with intra-chromosomal variation in the genetic background [45].

Perhaps the most significant outcome of the epistasis detected was the high degree of con-

stancy in the light of context dependence, such that the interactions usually returned trait val-

ues to the levels detected in control mice. Remarkably, this is just as Waddington predicted 75

years ago, a phenomenon he referred to as canalization [46] and has been observed in previous

studies[47–51]. Canalization refers to the likelihood of an organism to proceed towards one

developmental outcome, despite variation in the process along the way. This variation can be

influenced by among other things the numerous functional genetic variants present in a typical

human genome, which may contain thousands of variants that alter gene function [52]. We

find that the overwhelming majority of genetic interactions return trait values to levels seen in

control strains, which would act to reduce phenotypic variation among developmental out-

comes. Studies of epistasis in tomato plants detected by analyzing short chromosomal regions

on different genetic backgrounds identified a similar bias towards antagonistic epistasis rela-

tive to synergistic epistasis[50]. A bias towards antagonistic interactions was also detected in

large-scale gene-gene interactions studies in yeast, although with a lower frequency of antago-

nistic relative to synergistic interactions[49,53]. Thus, our results are concordant with other

studies that the majority of epistatic interactions are antagonistic, and together suggest that

when larger tracts of DNA are assessed for interactions the effects are even more likely to be

antagonistic. This robustness in the face of considerable genetic variation is central to the

underlying properties of canalization. These genetic interactions therefore represent a mecha-

nism for storing genetic variation within a population, without reducing individual fitness.

This stored genetic variation could then enable populations to more quickly adapt to environ-

mental changes [54].

Finally, the consistently greater effect sizes of main effects relative to average effects suggests

that GWAS-type studies, in both human and model organisms, consistently underestimate
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true effect sizes in at least a subset of individuals. For example, a large F2 intercross between

inbred mice carrying a mutation that results in a nonfunctional allele of the growth hormone

releasing hormone receptor (Ghrhr) on either a B6 or C3H genetic background identified

widespread antagonistic epistasis, albeit with small contributions to overall trait heritability

relative to additive effects [47]. Similarly, epistatic interactions were identified in the Diversity

Outbred mice resulting in small contributions to the overall heritability of metabolic-related

traits [55]. These studies contrast the large contribution of epistasis to trait heritability identi-

fied using the CSS paradigm (Fig 5), mirroring the contrasting portraits of genetic architecture

identified based on differing genetic structures of these experimental populations [23]. The

CSS paradigm examines context-dependent effects on individual genotypes and typically iden-

tifies QTLs with large effect sizes. Alternatively, GWAS-type studies average effects across a

population of heterogeneous genotypes and typically identify QTLs with small phenotypic

effects. However, perhaps most relevant is that the relatively simpler genotypes of CSSs enable

greater depth analyzing fewer unique genotypes, potentially capturing what would be rare

genotypic combinations in a segregating cross or human population. Therefore, the key to

enabling precision medicine, which like the CSS studies is focused on the effect of a variant

on one specific genetic background, is to identify in which subset of individuals a particular

variant has a significant effect. The consideration of epistasis in treatment, although in its

infancy, remains a promising avenue for improving clinical treatment regimens, including

predicting drug response in tumors [56] and guiding antibiotic drug-resistance [57]. However,

true precision medicine will necessitate a more comprehensive understanding of how genetic

background, across many loci, affects single variant substitutions.

Materials and methods

Ethics statement

All mice were cared for as described under the Guide for the Care and Use of Animals, eighth

edition (2011) and all experiments were approved by IACUC and carried out in an AAALAC

approved facility. The IACUC protocol numbers were 2013–0098 and 2016–0064. Mice were

anesthetized with isoflurane prior to retro-orbital bleeding and subsequently euthanized by

cervical dislocation for tissue collection.

Mice

Chromosome substitution strains (CSS) and control strains were purchased from The Jackson

Laboratory. These strains include C57BL/6J-Chr3A/J/NaJ mice (Stock #004381) (B6.A3),

C57BL/6J-Chr4A/J/NaJ mice (Stock #004382) (B6.A4), C57BL/6J-Chr5A/J/NaJ mice (Stock

#004383) (B6.A5), C57BL/6J-Chr6A/J/NaJ mice (Stock #004384) (B6.A6), C57BL/6J-Chr8A/J/

NaJ mice (Stock #004386) (B6.A8), C57BL/6J-Chr10A/J/NaJ mice (Stock #004388) (B6.A10),

C57BL/6J-Chr14A/J/NaJ mice (Stock #004392) (B6.A14), C57BL/6J-Chr17A/J/NaJ mice (Stock

#004395) (B6.A17) and C57BL/6J (Stock #000664). Mice were maintained by brother-sister

matings. All mice used for experiments were obtained from breeder colonies at Case Western

Reserve University. Mice were housed in ventilated racks with access to food and water ad libi-
tum and maintained at 21˚C on a 12-hour light/12-hour dark cycle. Male mice from strains

B6, B6.A4, B6.A5, B6.A10 strains and B6.A8 were bred with female mice from strains B6, B6.

A3, B6.A6, B6.A14 and B6.A17 strain. The offspring were weaned at 3 weeks of age. The num-

ber of offspring analyzed from each cross is shown in S2 Table for both body weight and

plasma glucose, although glucose levels were not measured in one mouse each from the follow-

ing strains: (B6 x B6.A10)F1, (B6.A14 x B6)F1, (B6.A17 x B6.A10)F1, (B6.A3 x B6.A10)F1, (B6.

A6 x B6.A4)F1, (B6.A14 x B6.A5)F1 and (B6.A6 x B6.A5)F1. The mice analyzed from each
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cross were derived from at least three independent breeding cages. No blinding to the geno-

types was undertaken.

Mouse phenotyping

At 5 weeks of age, mice were fasted 16 hours overnight and body weight was measured. Mice

were anesthetized with isoflurane and fasting blood glucose levels were measured via retro-

orbital bleeds using an OneTouch Ultra2 meter (LifeScan, Milpitas, CA, USA). Mice were sub-

sequently euthanized by cervical dislocation and the caudate lobe of the liver was collected and

immediately placed in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA).

Trait analysis

To analyze the body weight and fasting plasma glucose data, linear regression was used with a

main effects term and a term for each pairwise interaction for the males and females separately.

In the glucose data, 5 observations were Winserized by setting a ceiling of 4 median absolute

deviations from the median. Any values larger than the ceiling (165 mg/dL) were set to the

ceiling. Additionally, interactions where one of the crosses contained less than 5 mice were not

analyzed leading to the removal of the (B6.A4 x B6.A3)F1 mice, the female (B6.A8 x B6.A14)

F1 and the male (B6.A8 x B6.A3)F1 mice. For each trait and for each sex, we estimated a linear

model with the following predictors: (1) maternal substitution, (2) paternal substitution and

(3) the interaction of maternal by paternal substitution. In these models, the reference strain

was B6. The sexes may potentially differ in residual variance and in the effect of the chromo-

some substitutions (i.e. gene by sex interaction). To handle these differences transparently, we

estimated and reported models for each sex separately. Within each of the above models, two

joint linear hypothesis tests were performed of the following hypothesis: (a) there were no

main effects (i.e. terms (1) and (2) in the model above were all 0), and (b) there were no inter-

action effects (i.e. terms (3) in above model were all 0). These linear hypothesis tests were car-

ried out using the “linearHypothesis” function in the “car” package [58] and with the anova

function in R. Fisher’s method was used to combine these p-values from males and females

[59]. Similar results were obtained using a full 3-way interaction model including all interac-

tions between sex, maternal substitution and paternal substitution. In this approach, the test of

the null hypothesis that all main effects in males and females were 0 had a p-value of 3.168e-05

and 1.17e-05 for weight and glucose respectively, while the overall test for interaction had a p-

value of 0.44 and 0.00011 for weight and glucose respectively. Inverse-variance meta-analysis

was used to combine the coefficient estimates from the males and females. If b̂m and b̂ f are

estimated genetic effects for males and females respectively then the IVW estimator is b̂IVW ¼

wb̂ f þ ð1 � wÞb̂m where w ¼ 1=varðb̂ f Þ

1=varðb̂ f Þþ1=varðb̂mÞ
. Thus, while the genetic effects may potentially

differ between males and females, the combined results represent a weighted average of the

effect in males and in females. To account for potential non-normality, heteroscedasticity and

multiple testing, we created 10,000 bootstrap data sets by sampling with replacement from each

cross and sex combination. Studentized bootstraps (i.e. using pivotal statistics) were used to

create confidence intervals for the coefficients and p-values. Multiple tests were adjusted for by

comparing the observed test statistics to the maximum bootstrap test statistic as described else-

where [60]. P-values were adjusted for multiple comparisons separately for each trait and sepa-

rately for the main effects and interactions. As an alternative to the meta-analysis approach, we

also fit a linear model adjusting for sex as a covariate. Results of this analysis are reported in

S12 and S13 Tables. The proportion of the genetic variance explained by interactions was esti-

mated as (RFull−RAdditive)/ RFull where RAdditive and RFull are the adjusted coefficients of
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determination for the model with only main effects and for the full interaction model respec-

tively. The adjusted coefficients of determination are an estimate of the proportion of variation

in the trait which is explained by the model. Note that RFull and RAdditive share the same

denominator (i.e. the total trait variation). Thus, total trait variation cancels out of the quantity

(RFull—RAdditive)/ RFull so that the quantity represents the amount of genetic variation that can-

not be explained by main effects only. Using the adjusted version of the coefficient of determi-

nation helps account for potential overfitting. Bootstrap confidence intervals of this

proportion were calculated.

Sample preparation for RNA-Seq

Liver tissue stored in RNAlater was homogenized using a Tissumizer Homogenizer (Tekmar,

Cincinnati, OH, USA). Total RNA was isolated using the PureLink RNA purification kit

(Thermo Fisher Scientific, Waltham, MA, USA). A sequencing library was generated using the

TruSeq Stranded Total RNA kit (Illumina, San Diego, CA, USA). RNA samples were

sequenced on Illumina HiSeq2500s with single-end 50 base pair reads [61]. Library prepara-

tion and RNA sequencing were performed by the CWRU genomics core (Director, Dr. Alex

Miron). A total of 7,269,450,186 reads were generated across four flow cells, with an average of

47,204,222 ± 928,913 [range: 14,561,990–76,538,825] reads per sample. Sequencing quality was

assessed by FastQC [62], which identified an average per base quality score of 35.46.

RNA-Seq data analysis

To maximize statistical power, 20 samples were selected for analysis from the control B6

group, 8 samples were selected from the single CSS groups, and 5 samples were selected from

the double CSS groups. A total of 154 control and CSS mice were analyzed, including 20 B6

mice, 63 mice that were heterozygous for one A/J-derived chromosome, and 71 mice that were

heterozygous for two different A/J-derived chromosomes. Only male mice were analyzed to

avoid complications due to sex differences in gene expression. The B6.A4 x B6.A3 and B6.A8 x

B6.A3 crosses were poor breeders and thus we did not obtain 5 samples to analyze from these

crosses.

Reads were aligned using TopHat2 (2.0.10) [63] to the reference mm10 genome with the

GENCODE vM7 annotations as a guide. Because the reference genome is comprised of

sequence from strain B6, sequencing reads from a B6-derived chromosome are more accu-

rately mapped than reads from an A/J-derived chromosome [64]. To avoid potential mapping

biases, we created an “individualized genome” of the A/J mouse strain using the program Seq-

nature [64] with variant calls from the Mouse Genomes Project that were downloaded from

The Sanger Institute [65]. Reads that were not mapped to the B6 genome were then mapped to

the individualized AJ genome with TopHat2. HTSeq-count [66] and the GENCODE vM7

gene annotations[67] were used to count the number of reads for each gene feature. After fil-

tering to remove duplicate reads, unmapped reads, low quality reads, and reads mapped to

non-GENCODE regions of the genome, an average of 16,506,775 ± 439,754 [range: 4,638,701–

30,465,477] reads were mapped to GENCODE regions per sample. There was no significant

difference in the mapping efficiency (number of mapped reads / total number of reads)

between the control B6 samples and any of the CSS strains either genome-wide (S10A Fig) or

on the substituted chromosome (S10B Fig). This suggests that the sequence differences on the

A/J chromosomes did not reduce mapping efficiency in the CSSs.

Graphical depictions of the distribution CPM (counts per million) were used to remove the

following 3 outlier samples: E171, E305, and E570 (S1 Table). Genes where less than 75% of

the samples had a count greater than or equal to 15 were considered to be expressed at low
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levels in liver and were removed leaving 13,289 genes that were considered expressed. To

enhance reproducibility and reduce the dependence between the genes, svaseq [68] was used

to create 5 surrogate variables that served as covariates in subsequent modeling.

EdgeR [69] was used to fit a model with main effects and pairwise interactions between

each chromosome substitution. EdgeR uses a log link function, and thus departure from addi-

tivity in EdgeR is departure from a multiplicative model on the gene expression level. For each

gene an interaction model was fit which included the following terms: (1) maternal substitu-

tion, (2) paternal substitution, (3) the interaction of maternal by paternal substitution, and (4)

the SVA covariates. For all models, “B6” was used as the reference for the categorical chromo-

some substitution predictors.

A stratified FDR approach was used for the analysis of both meQTLs and ieQTLs [70]. For

meQTLs, we tested for associations between every combination of chromosome substitutions

in the study with every unfiltered gene in the RNA-Seq data. These hypothesis tests were strati-

fied by chromosome and cis vs. trans. The method of Benjamini and Hochberg [71] was

applied within each strata to control the false discovery rate. Similarly, the hypothesis tests for

the ieQTLs were stratified by each chromosome combination and cis/trans. The stratified FDR

approach has been shown to be more powerful when the proportion of true hypothesis differs

by strata. The chromosome-chromosome interactions with FDR< 0.05 were divided into the

categories synergistic and antagonistic based on the gene expression differences between the

double CSS strain and the control strain relative to that predicted by an additive model (S9

Fig). Spearman’s r was used to summarize the association between several variables in the anal-

ysis. A Spearman’s r of 1 implies that the rank order of the values for two variables is the same.

To estimate the amount of variation attributable to interaction, we fit an additive model in

EdgeR which did not include any interaction terms. We then calculated for each individual

and gene the fitted values assuming that the individual’s covariates (i.e. the SVA surrogate

variables) were set to 0 and thus do not contribute to the variation. We calculate SSFull as the

sum of the mean centered and squared fitted values for the full model including interaction,

SAdditive was calculated similarly for the additive model. We calculated the proportion of the

genetic variation explained by interactions as (SSFull—SAdditive) / SFull. This proportions is only

meaningful when there is genetic variation to be explained. To filter out only genes with evi-

dence of genetic control, using the full model for each gene, we tested the overall joint null

hypothesis that all mouse strains had the same average expression level using the empirical

Bayes quasi-likelihood F-tests test as implemented in EdgeR. This allowed us to classify some

genes as showing evidence of genetic control. Only these genes were looked at further. The

estimator (SSFull—SAdditive) / SFull may be slightly biased upward due to overfitting. However,

the mean value for this statistic among the genes with no significant interaction (FDR> 0.5)

was 0.25 (1st quartile: 0.20, 3rd quartile: 0.32) (Fig 5B), which gives one estimate of the upper

bound on the possible bias. Here, the overall test that the interaction terms were all 0 was car-

ried out using the Bayes quasi-likelihood F-tests test as implemented in EdgeR. To assess any

potential bias stemming from the arbitrary selection of an FDR> 0.5, we performed a simula-

tion study to independently approximate the upper limit on this bias. Using the fitted values

(i.e. predicted mean) from the additive model described above, we simulated counts for each

gene and individual from a Poisson distribution. The full and additive model was fit to the sim-

ulated data set, and the variance explained (SSFull—SAdditive) / SFull was calculated for each

gene. The simulation was repeated 100 times and the average variance explained by interaction

was averaged across all simulations for each gene. The mean for the amount of genetic variance

explained by interaction under this simulated additive model was 0.13 (1st quartile: 0.05, 3rd

quartile: 0.19) (Fig 5C). This gives another estimate of the upper bound on the possible bias.
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Multiple testing correction

For both the analysis of mouse phenotypes and RNA-Seq data it is necessary to account for

multiple testing in order to avoid a large number of false positive findings. The approaches to

multiple testing for the mouse phenotypes and RNA-Seq data are fundamentally different

because the number hypotheses being tested were very different. For the mouse phenotype

data, there were a relatively small number of targeted hypotheses, and thus the conservative

and more confirmatory approach of controlling the family-wise type I error was applied. In

this case, the genetic scan for each of the small number of traits was considered to be a separate

question (i.e. the main effects for each trait and interaction effects for each trait were consid-

ered a separate “family” of hypotheses). For the large number traits analyzed in the RNA-Seq

data, a less conservative and more hypothesis generating approach known as the stratified

FDR was applied.

Quantitative PCR (qPCR)

Tissue was homogenized using TissueLyser II (Qiagen, Valencia, CA, USA) and total RNA

was isolated using the PureLink RNA purification kit with TRIzol protocol (Thermo Fisher

Scientific, Waltham, MA, USA). Total RNA was reverse transcribed using the high capacity

cDNA reverse transcription kit (Applied Biosystems, Carlsbad, CA, USA). The sequences for

each primer are listed in S14 Table. The qPCR reactions were performed with the power SYBR

green PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and run on a Bio Rad

CFX Connect Real Time System (Bio Rad, Hercules, CA, USA). Expression levels were calcu-

lated using the ΔΔCt method relative to the Rplp0 control gene.

Supporting information

S1 Fig. Body weight and glucose levels in all CSS and control mice. Body weight and plasma

glucose levels were measured in 5-week-old mice that were fasted overnight. Each dot repre-

sents the data from an individual mouse. Females (F) are shown in red. Males (M) are shown

in blue. Outliers, as described in the Trait Analysis paragraph in the Methods section, are not

shown but all data is available in S1 Table.

(EPS)

S2 Fig. Schematic diagram of CSS and control crosses. Crosses were used to generate con-

trol, single CSS, and double CSS mice to examine main effects and interaction effects on vari-

ous traits and gene expression levels. The four crosses used (top) to generate the control and

CSS offspring (bottom) to study the substitution of chromosomes 3 and 10 are provided as an

example of the crosses that were performed. Each rectangle represents a chromosome, with

the substituted chromosomes 3 and 10 diagramed in this figure, on B6 background in all mice.

The control B6 mice were generated from Cross I. The single CSS mice were generated from

crosses II and III. The double CSS mice were generated from cross IV. M, Male. F, Female.

(EPS)

S3 Fig. Inter-chromosomal epistasis regulates fasting glucose levels. Plots representing four

out of the five CSS crosses that showed significant inter-chromosomal interactions on plasma

glucose levels (The other significant CSS cross is shown in Fig 1). Each dot represents a single

mouse. “Others” represents the data from all mice in this study excluding the 4 strains shown

in that panel. The black horizontal line indicates the mean glucose level for each group. The

red horizontal line indicates the predicted trait level based on a model of additivity.

(EPS)
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S4 Fig. Identification of 5 inter-chromosomal epistatic interactions that regulate fasting

glucose levels in mice. Multiple testing adjusted p-values for interaction effects on fasting

plasma glucose levels among 15 crosses each involving two A/J-derived chromosome substitu-

tions with the substituted chromosomes indicated below the chart. Inverse-variance meta-

analysis was used to combine the effects from males and females. The horizontal line indicates

the significance threshold of 0.05.

(EPS)

S5 Fig. Positive correlation between cis-meQTLs and trans-meQTLs. (A) Scatter plot of the

relationship between the percentage of cis-meQTLs and trans-meQTLs in each of 8 CSS

strains with one substituted chromosome. The strains are labelled on the graph with only their

substituted chromosome, for example strain (B6 x B6.A8)F1 is shown for simplicity as A8.

Data is shown on a log scale. (B) Histogram illustrating the percentage of cis-meQTLs and

trans-meQTLs in each of 8 CSS strains with one substituted chromosome.

(EPS)

S6 Fig. Identification of 5 trans-meQTLs that regulate the hepatic expression of Brca2.

Gene expression levels of Brca2 in the liver are shown for strain B6 and 8 single CSS strains.

Each dot represents Brca2 expression in an individual mouse. The mean value for each strain

is indicated by a solid line. The Brca2 gene is located on mouse chromosome 5. �� indicates

p<0.01 relative to strain B6. ��� indicates p<0.001 relative to strain B6.

(EPS)

S7 Fig. Regulation of hepatic Zkscan3 expression by additive meQTLs. (A) Gene expression

of Zkscan3 in the liver was analyzed by (A) RNA-Seq and (B) RT-qPCR. Each dot represents

Zkscan3 expression levels in an individual mouse. RT-qPCR data shown is relative to the con-

trol gene Rplp0. The mean value for each strain is indicated by a black line. The expected

expression level of Zkscan3 based on a model of additivity is indicated with a red line. The p

value from a test for interactions is shown. A p> 0.05 is suggestive of regulation by additivity

rather than interactions.

(EPS)

S8 Fig. Positive correlation between cis-ieQTLs and trans-ieQTLs. (A) Scatter plot of the

relationship between the percentage of cis-ieQTLs and trans-ieQTLs identified among 15 pair-

wise CSS crosses. The data points are labelled on the graph with the two substituted chromo-

somes for each pairwise cross. Data is shown on a log scale. (B) Histogram illustrating the

percentage of cis-ieQTLs and transieQTLs in each of 15 pairwise CSS crosses.

(EPS)

S9 Fig. Schematic diagram illustrating the categorization of epistasis as either synergistic

or antagonistic. Hypothetical mean expression levels are shown with black lines for the strains

B6 and the two single CSS strains (CSSa x B6)F1 and (B6 x CSSb)F1, where a and b represent

any two different substituted chromosomes. The predicted expression levels based on a model

of additivity in the double CSS strain (CSSa x CSSb)F1 is shown with a red line. Synergistic

epistasis is represented by a difference in trait values between the double CSS and control B6

strain that is greater than that predicted by additivity. Antagonistic epistasis is represented by a

difference in trait values between the double CSS and control B6 strain that is less than that

predicted by additivity. (A) Illustrates the case where only one single CSS strain shows expres-

sion differences relative to the control. (B) Illustrates the case where both single CSS strains

show expression differences relative to the control. (C) Illustrates the case where both single

CSS strains show expression differences relative to the control, but in opposite directions. (D)
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