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MicroRNAs (miRNAs) are essential factors in the reproductive process of poultry. Here, we found miR-302d is a potential
differentiation and negative factor of chicken embryonic stem cells (ESCs) into spermatogonia stem cells (SSCs). The
competition mechanism was carried out for the preliminary exploration to determine the relationship among miR-302d,
lncRNA-341(interacting with miR-302d), and target gene TLE4. The results showed that lncRNA-341 can competitively bind to
miR-302d to decrease the targeted binding of miR-302d and TLE4 which promotes the differentiation of chicken SSCs.
Moreover, it is suggested that miR-302d may participate in the Wnt signaling pathway through TLE4.

1. Introduction

The reproductive performance of chicken production is
affected by many factors, and genetic breeding is one of the
most important factors. How to make use of genetic
improvement to increase the production of chicken breeding
has been the direction that many scholars have devoted to. At
the same time, in the modern commercial production, artifi-
cial insemination (AI) has replaced natural and artificial aux-
iliary mating, greatly improving the production efficiency, to
adapt to the development of modernization; thus, how to effi-
ciently obtain the male germ cells of the cock has become one
of the key techniques.

miRNA constitutes of a single endogenous small RNA
with a length of about 22 nt that is widely found in humans,
animals, plants, and viruses. Mature miRNA does not partic-
ipate in protein coding, but it is an important gene regulatory
factor involved in numerous fields. miRNA generally
achieves posttranscriptional regulation by degrading target

mRNA or blocking the translation of target mRNA affecting
development, such as in cardiovascular formation [1], neural
development [2], stem cell differentiation [3], apoptosis [4],
and tumor formation [5].

Many reports about miRNA in mammalian germ cells
are playing a crucial role in gonadal sex determination, male
reproductive stem cell meiosis, spermatogonial cell differen-
tiation, and other aspects. Fernández analyzed the miRNA
expression patterns of embryonic male and female mouse
primordial germ cells (PGCs), as well as gonadal cells [6],
and found that the differences in the expression regulation
of miR-199-214, miR-182-183-96, miR-34c-5p, and other
key miRNA clusters all have a clear role in gonadal sex deter-
mination. Liu found that miR-34c may regulate the meiosis
of male reproductive stem cells of milk goats and inhibit their
proliferation [7]. miRNA can also coordinate with related
signaling pathways to regulate the production of germ cells.
Hiromitsu analyzed RNA-seq data to identify specific
miRNA (miR-741-3p, miR-871-3p, and miR-880-3p) to
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mouse germ cells that are contiguous and adjacent to each
other on the X chromosome [8] termed XmiRs (X care-
linked miRNA). MiR-871 and miR-880 work together with
WNT/beta-catenin signaling pathways to regulate the occur-
rence of testicular germ cells. Fu et al. found that miR-31-5p
regulates the proliferation [9], DNA synthesis, and apoptosis
of human SSCs through pak1-jazf1-cyclin A2 pathway.

However, the specific mechanism of miRNA function in
birds is not fully understood in how it regulates germ cell
development; thus, there are still many key miRNAs to be
discovered and explored in poultry germ cells. Therefore,
there are still a lot of gaps in the research on miRNA regulat-
ing the differentiation of avian male germ cells.

In the preliminary work, our lab has established the sys-
tem for inducing the differentiation of ESCs into SSCs
in vitro by RA (retinoic acid) and has been working on ways
to improve the induction efficiency of this process. Therefore,
we need to explore the important regulatory factors in this
process, RNA-seq was performed in previous work, and the
differential miR-302d were screened out. In this study, the
function of miR-302d and its target gene were verified
in vivo and in vitro, and the effect on Wnt signaling pathway
has also been preliminarily explored. The ceRNA competi-
tion mechanism was also preliminarily explored to determine
the relationship among miRNA, lncRNA, and target gene
interactions. This study fills in the gap of miRNA in regulat-
ing the differentiation of avian male germ cells and improves
reproductive modelling efficiency.

2. Materials and Methods

2.1. Bioinformatics Analysis. The ESCs at specific days (day 0,
day 4, and day 10) induced by RA were collected, and RNA
sequencing was performed. According to the RNA-seq data,
differential miRNAs were screened (∣log 2:Fold change ∣ >8
was the screening criteria). miR-302d, which plays an impor-
tant role in germ cell differentiation, was identified as the
research object. The target genes of gga-miR-302d (referred
to as miR-302d) were analyzed and screened with online
bioprediction software: http://www.targetscan.org/vert_71/
(Targetscan); http://www.mirdb.org/(miRDB); we performed
a Venn analysis of the screening results from these two data-
bases and identified four common target genes. lncRNA

transcripts were screened by exon number screening, length
screening, known annotation screening, expression volume
screening, and encoding potential screening of CNCI (Cod-
ing-Non-Coding Index), CPC (Coding Potential Calculator),
PFAM (pfamscan), etc., lncRNA and miR-302d interaction
analysis online bioprediction software: http://www.mirbase
.org/(miRBase).

2.2. Vector Construction.miR-302d lentivirus expression vec-
tor and interference vector are provided by the Genomedi-
tech Company (Shanghai, China). The expression vector
was named miR-302d mimics, and the interference vector
was named miRNA-inhibitor. Sequences were listed in sup-
porting Table 1 and Table 2. The construction methods of
TLE4 3′UTR wild-type and mutant pMIR-REPORT vector
refer to the vector system protocol. pMIR-REPORT vector
was purchased from Applied Biosystems (http://www
.appliedbiosystems.com). Sequences were listed in support-
ing Table s8.

2.3. ESC Isolation and Induction Culture. ESCs were isolated
from freshly fertilized eggs as previously described [10, 11].
ESCs were induced by medium containing 10-5mol/L RA,
and viruses were added with a titer of 5 × 108 TU/mL on
D0 induction. Cell morphology was observed every 2 days,
and cells were collected from day 0, day 4, and day 10 for
RNA, and cells were collected from day 4 and day 10 for
immunofluorescence (IF) and flow cytometry (FCM). 30
eggs per treatment in 3 separate repeats of the experiment.

2.4. Embryo Injection Experiment. When the chicken
embryos developed normally for 2.5 days, the blunt end
was sterilized with 70% ethanol, and embryos were opened
for microinjection into vessels. Each embryo was injected
with 5 × 108 TU/mL virus diluent of 2μL in total. After injec-
tion, 20μL of 1% penicillin and streptomycin were dropped
into the injection site, sealed with medical tape, and incu-
bated under normal conditions. The embryonic genital
ridges were collected at 4.5 days, and testes separated at
18.5 days after incubation for RNA, Periodic Acid-Schiff
stain (PAS), FCM, Western blot and other tests.

Table 1: pri-miR-302d primer sequences.

Primer Primer sequence (5′-3′) Size/bp

F GAACCGGTGCGGCCGCCTGGATGTTGGAACAGAAGAAC 38 bp

R CGATCGCAGATCCTTGTAGCCGAGAAGGATGAAAACC 37 bp

Table 2: shRNA oligo primer sequences for miR-302d.

Primer Primer sequence (5′-3′) Size/bp

F
GATCCGACGGCGCTAGGATCATCAACCAACTAAAACATGATCTGAAGCACTTACAAGTATTCTGGTCACAG

AATACAACCAACTAAAACATGATCTGAAGCACTTACAAGATGATCCTAGCGCCGTCTTTTTTG
134 bp

R
AATTCAAAAAAGACGGCGCTAGGATCATCTTGTAAGTGCTTCAGATCATGTTTTAGTTGGTTGTATTCTGT

GACCAGAATACTTGTAAGTGCTTCAGATCATGTTTTAGTTGGTTGATGATCCTAGCGCCGTCG
134 bp
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2.5. Luciferase Reporter Assay. DF-1 cells were cotransfected
with pMIR-REPORT™ recombinant plasmid and pRL-TK
at a ratio of 10 : 1. After 24 hours, remove the old medium,
wash with PBS, add trypsin for digestion, and collec cells.
Cells were suspended by 1× passive lysis buffer and moved
into a 96-hole opaque/round bottom, enzyme-labeled plate.
Luciferase assay substrate addition preceded reader analysis
for firefly enzyme fluorescent value determination. STOP-
PING buffer was added accordingly for further fluorescent
values of the kidney. For specific operations, refer to the
instructions of the double luciferase reporter assay kit of Pro-
mega company. Finally, the relative fluorescence activity of
the firefly value/renal value was calculated.

2.6. Quantitative Reverse Transcription PCR (qRT-PCR).
Total RNAs were extracted using Trizol, the FastQuant RT
Kit (with gDNase), and the SuperReal PreMix Plus (SYBR
Green) (TIANGEN Beijing, China). A 7500 qRT-PCR instru-
ment system from Applied Biosystems (Carlsbad, California,
USA) was used followed by Microsoft Excel software to ana-
lyze the data by 2−ΔΔCt relative quantification method.

2.7. Immunofluorescence (IF). The cells were fixed with 4%
formaldehyde 10min at room temperature (RT), washed 3
times with PBS for 5 mins each, 0.1% Triton X-100 for
10min at RT, blocked for 60min with 1% BSA at RT, incu-
bated in primary antibody solution for overnight at 4°C,
rabbit-CVH (dilution concentrations 1 : 400), mouse-ITGβ1
(1 : 500) (all from Abcam, Cambridge, UK), washed 3 times
with PBS for 5 mins each, incubated in secondary antibody
solution for 2 hours at RT in the dark, goat anti-rabbit IgG
(TRITC labeled, 1 : 1000), goat anti-mouse IgG (TRITC
labeled, 1 : 2000) (all from Abcam, Cambridge, UK), washed
3 times with PBS, and stained with DAPI for 15min. Images
were captured with fluorescence microscope.

2.8. Flow Cytometry (FCM). Cells were stained with antibod-
ies against CVH, to assess the changes in PGC-related gene
expression. To assess the level of SSC-related gene expres-
sion, cells were stained with ITGβ1 (all from Abcam, Cam-
bridge, UK). Samples were analyzed by BD FACS Aria flow
cytometer (BD Biosciences, provided by the testing center
of Yangzhou University).

2.9. PAS Staining. Embryos were fixed prior to performing
gradient dehydration with different ethanol concentrations.
The embryos were further transparentized with xylene,
immersed in paraffin, and embedded with paraffin. Paraffin
sections were dewaxed with xylene and rehydrated with dif-
ferent ethanol concentrations, then stained with PAS staining
kit (Solarbio, Beijing, China) according to the manufacturer’s
instructions. More details can be found in our previous arti-
cles [10].

2.10. Statistical Analyses. Differences between groups were
examined for statistical significance using Student’s t-test or
one-way ANOVA. P value < 0.05 was regarded as significant,
and P value < 0.01 was regarded as extremely significant.

3. Results

3.1. Screening of miRNA-302d during RA-Induced ESC
Differentiation into SSCs. To explore the miRNA in RA-
induced ESC differentiation into SSCs, ESCs, and SSCs, ESCs
were treated with RA for 10 days. Cells were then processed
for RNA sequencing. It was found that the miRNAs involv-
ing in the differentiation process were classified into four cat-
egories (Figures 1(a) and 1(b)). To identify specific groups
involved in SSC differentiation, GO analysis was performed,
and we found that the miRNA in the Cluster1 can be signif-
icantly enriched in the relevant GO items of germ cell devel-
opment (Figure 1(c)). Comparing with other groups, miRNA
in the Cluster1 mainly involved in the formation of SSCs. To
further clarify the functions of miRNA in various groups, we
conducted KEGG pathway enrichment analysis. We found
that the miRNA in the Cluster1 is significantly enriched in
the SSC formation of related signaling pathways, such as
Wnt signaling pathway [12], JAK-STAT signaling pathway
[13], and MAPK signaling pathway [14] (Figure 1(d)), show-
ing that among the four miRNA clusters, miRNAs in the
Cluster1 were more likely to participate in the SSC formation
process. Meanwhile, we found these signaling pathways are
regulated by miRNA302d target genes. And qRT-PCR
showed that the expression of miRNA302d in ESCs was
higher than that of SSCs (Figure 1(e)), suggesting that miR-
NA302d may play an important role in SSC formation.

3.2. miR-302d Inhibits the Differentiation of Chicken ESCs
into SSCs. To further determine the role of miRNA-302d in
regulating ESC differentiation into SSCs, we also used RA
induction system which could induce ESC differentiation
into SSCs. We observed cell morphology every 2 days, and
marker genes were detected during embryonic bodies (EBs)
and SSC-like cell formation (Figure 2(a)). Since the EBs
appear on day 4 and the SSC-like cell appears on day 10
in vitro, we choose these two timepoints. Briefly describe:
we treated ESCs with miRNA-302d inhibitor or miRNA-
302d mimics and measure maker gene expression. EBs in
the inhibitor group were significantly more than other
groups, but the mimics group showed the opposite results
(Figure 2(b)). The expression of reproductive marker genes
was significantly increased in the cells treated by miRNA-
302d inhibitor and decreased in the cells treated with
miRNA-302d mimics (Figure 2(c), Table s1). In IF, the
expression of marker proteins in the mimics group
decreased, while in the inhibitor group, it was increased
(Figure 3(a)). Flow cytometry analysis (FCM) showed that
the positive cell rate in the mimics group was significantly
lower than that in the control group, while the inhibitor
group had no significant difference compared with the
control group but had an upward trend (Figure 3(b)). The
above results indicated that miR-302d inhibits the
differentiation of chicken ESCs into SSCs in vitro.

We then injected miRNA-302d inhibitor or miRNA-
302d mimics viruses into 2.5-day-old chicken embryo vessels
(Figure 4(a)). 4.5-day-old chicken embryos were harvested
for PAS. Genital ridges were observed and developed nor-
mally. The number of PGCs increased in the inhibitor group
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Figure 1: Screening of miRNA-302d during RA-induced ESC differentiation into SSCs. (a) Differential miRNA thermogram. (b) Box
diagram analysis of K-means clustering. (c) GO analysis results. (d) KEGG analysis results. (e) Expression trends of miR-302d in ESCs
and SSCs.
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and decreased in the mimics group compared with the control
group (Figure 4(b)). We harvested 4.5-day-old genital ridges
and 18.5-day-old testes and examined the mRNA expression
of reproduction-related genes cvh, c-kit, integrin α6, and integ-
rinβ1. The miRNA-302d mimics significantly inhibited the
expression of these marker genes (Figure 4(c), Table s2).
Likewise, FCM showed that the number of marker-protein-
positive cells in the mimics group was significantly lower
than that in the control group (Figure 4(d)). The above
results indicated that miR-302d had an inhibitory effect on
SSC differentiation in chicken.

3.3. miR-302d Can Bind to the 3′UTR of Target Gene TLE4
and Regulate Its Expression. According to gga-miR-302d
(MIMAT0003360) sequence, UAAGUGCUUCCAUGUU
UUAGUU, we used multiple online biological software to
analyze target genes and ranked them by scores
(Figure 5(a)). Among these, four common target genes were
identified: MYT1L, ELAVL2, TLE4, and HLF (Table s3).

TLE4, which has the highest target score of 96, is a target
gene that maintains stem cell pluripotency. We speculated
that it may play an important role in the process of chicken
SSC differentiation. Therefore, we carried out targeted
verification on TLE4.

According to the expression profile results (Figure 5(b)),
miR-302d and TLE4 showed opposite expression trends in
ESCs, PGCs, and SSCs. miR-302d had the highest expression
in ESCs, but TLE4 expressed more in SSCs than ESCs and
PGCs. In the dual-luciferase reporting assay (Figure 5(c)).
The results indicated that miR-302d inhibited the expression
of TLE4 mRNA, but when the binding site of miR-302d and
TLE4 was deleted, reducing the binding of miR-302d and
TLE4 and making up for the inhibition of TLE4 mRNA
expression. In conclusion, TLE4 is the target gene of miR-
302d, and miR-302d suppresses its expression.

3.4. TLE4 Promotes the Differentiation of Chicken SSCs. We
examined the function of TLE4 in vitro and in vitro and
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Figure 4: miR-302d function verification in vivo. (a) Experimental scheme in vivo. (b) PAS staining of day 4.5 embryos, in the oval is the
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in vivo. We treated ESCs with virus for overexpression and
inhibition. We then observed cell morphology every two
days, and marker genes were detected. EBs in overexpression
(OE) group were significantly more than that of other groups
(Figure 6(a)). The qRT-PCR results also showed that the
expression of marker genes in the OE group was significantly
higher than that in other groups, while the SH group was sig-
nificantly downregulated (Figure 6(b), Table s4). In IF, the
expression of marker proteins in SH group was decreased,
while that in the OE group was increased (Figure 7(a)). FCM
showed that the amount of CVh+ and integrin+ cells in the
SH group was significantly lower than that in the control
group and OE group, while the OE group was significantly
higher than that in the control group on day 10 (Figure 7(b)).
The above results indicated that TLE4 promotes the
differentiation of chicken ESCs into SSCs in vitro.

We harvested 4.5-day-old chicken embryos for PAS
staining. At high magnification, the number of PGCs
increased in the OE group and decreased in the SH group

compared with the control group (Figure 8(a)). We detected
the mRNA expression of reproduction-related genes, and the
results showed that the SH group significantly inhibited the
expression of marker genes, while the OE group promoted
the expression (Figure 8(b)), and the qRT-PCR data is
showed in Table s5. Likewise, FCM showed that the rate of
marker-protein-positive cells in the SH group was
significantly lower than that in the OE group (Figure 8(c)).
The above results indicated that TLE4 had a positive effect
on SSC differentiation in chicken.

3.5. miR-302d Can Affect the Expression of Node Genes
Directly or Indirectly Interacting with TLE4 on the Wnt
Signaling Pathway. It has been shown that TLE4 plays an
important role in the signaling pathway related to germ cell
differentiation [15]. Proteins expressed in certain nodes of
the Wnt pathway have been shown in mice to bind directly
or indirectly to the TLE4 protein [15–17]. To explore
whether miR-302d can target TLE4 and affect the expression
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of node genes in the signaling pathway, related node genes in
Wnt signaling were selected for analysis, including Tcf, Lef,
β-catenin, Axin1, and Apc.

4-day and 10-day cells were harvested and analyzed for
mRNA and protein expression involving miR-302d func-
tional verification in vitro. On day 4, the expression of Lef
and β-catenin was significantly upregulated in miR-302d
mimics group compared with the control group, Apc was sig-
nificantly downregulated in mimics group compared with
the control group, and Tcf and Axin1 had no significant dif-
ference (Figure 9(a); Table s6). Western blot showed that the
expression of β-catenin in the mimics group was more than
the control group (Figure 9(e)). On day 10, Tcf, Lef, and β-
catenin were significantly upregulated in the inhibitor group
compared with the control group, but Axin1 and Apc had no
significant difference (Figure 9(b); Table s6). Western blot
test showed that the expression of β-catenin in the mimics
group to be far less than the control (Figure 9(f)).

In vivo, embryonic genital ridges were harvested for qRT-
PCR test on day 4.5, Tcf, Lef, β-catenin, and Axin1 were sig-
nificantly downregulated in the inhibitor group compared
with the control group, but Apc had no significant difference
(Figure 9(c); Table s7). Western blot analysis showed that
β-catenin expression in the inhibitor group was less than
the control group (Figure 9(e)). Testes were harvested for
qRT-PCR test on day 18.5; Tcf, Lef, and β-catenin were
significantly upregulated in the inhibitor group compared
with the control group, but Axin1 and Apc had no
significant difference (Figure 9(d); Table s7). Western blot
analysis showed the expression of β-catenin in the mimics
group was less than the control (Figure 9(f)). As a result,
miR-302d can affect the expression of node genes directly or
indirectly interacting with TLE4 on the Wnt signaling
pathway, the overexpression of miR-302d made the
expression of Lef, β-catenin, Axin1, and Tcf fluctuate during
the differentiation of ESCs into SSCs.
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3.6. lncRNA-341 Competes with miR-302d to Bind the Target
Gene TLE4. After further RNA-seq database analysis, it was
found that a total of 269 lncRNAs were correlated with the
downregulation of miR-302d expression (Figure S1A). We
predicted and individually analyzed these 269 lncRNAs and
found that two lncRNAs were interacting with miR-302d:
lncRNA-341 and lncRNA-1784 (Figure S1B). We verified
these two lncRNAs and found no difference in the
expression trend of lncRNA-1784 between ESCs, PGCs, and
SSCs. The downregulation trend of lncRNA-341 expression
between ESCs, PGCs, and SSCs was consistent with the
sequencing results, indicating that the regulation mechanism
of lncRNA-1784 expression may not be consistent in
experiments in vivo and in vitro. Therefore, we chose
lncRNA-341 for further investigation.

lncRNA -341 was significantly downregulated between
ESCs, PGCs, and SSCs, which was consistent with the trends
by time in vitro (Figure 9(g)). To further elucidate if lncRNA-

341 could affect the targeted regulation of TLE4 by miR-
302d, we conducted an lncRNA-341 expression vector
cotransfected, respectively, with miR-302d mimics and
TLE4 double-luciferase reporter vector systems. In double
luciferase report analysis, two groups were set up. The 3′
UTR -wt-miR-lnc341 group was significantly upregulated
compared to the 3′UTR-wt-miR group (Figure 9(h)). Com-
bined with the previous miR-302d binding of target gene 3′
UTR experiment analysis, it showed that lncRNA-341 could
bind miR-302d and block its targeted binding to TLE4, thus
upregulating TLE4 expression.

4. Discussion

Over the past few decades, chicken has been widely used as a
model animal in both commercial breeding and scientific
research, contributing to the development of the global
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Figure 7: TLE4 function verification in vitro. (a) Immunofluorescence test on day 4 and day 10. (b) Flow cytometry analysis on day 4 and day
10, and quantification of positive cells; here, PE-Texas Red means TRITC channel.
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Figure 8: TLE4 function verification in vivo. (a) PAS staining of day 4.5 embryos, in the oval is the genital ridge; ↑ the arrows point to PGCs.
(b) Marker genes were detected on day 4.5 genital ridge/day 18.5 testes. (c) Flow cytometry analysis on day 4.5 genital ridge/day 18.5 testes and
quantification of positive cells.
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poultry industry and providing a wealth of information for
basic research. Improving the quality and productivity of
male germ cells could bring huge benefits to commercial pro-
duction and could be widely applied to other species, includ-
ing humans. Although many studies have shown that RA
can induce different stem cell donors to differentiate into
SSCs in vitro [18, 19], the efficiency is not stable due to dif-
ferences in the culture and induction system. The regula-
tion mechanism of male germ cell production is complex,
rendering it a challenge to harvest induced male germ cells
with high purity and quality continuously in vitro, which
makes it difficult to be applied in actual production. In
our previous studies, we found many key genes, which

may be regulated by some noncoding RNAs, such as
lncRNA and miRNA. Therefore, it is necessary to explore
these factors, to delineate the mechanisms and potentially
improve induction efficiency.

As is known, KIT receptor expression is activated during
spermiogenesis. In mice undifferentiated spermatagonial
cells, the functional damage of miR-221/222 gathered on
the X chromosome would convert the KIT- to KIT+ and
cause the loss of sperm regeneration ability in stem cells
[20]. In spermatogonium, KIT mRNA and protein abun-
dances are influenced by miR-221/222, though RA can
decrease miR-221/222 abundance to induce undifferentiated
SSCs to KIT+. However, overexpression of miR-221/222
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Figure 9: Wnt signaling pathway verification and ceRNA verification. (a) qRT-PCR result of related genes in Wnt signaling pathway of day 4
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inhibited the RA induction process, resulting in the inability
of spermatogonial cells to differentiate in vivo, indicating that
miR-221/222 played a crucial role in maintaining the undif-
ferentiated status of mammalian spermatogonial cells by
inhibiting the expression of KIT. Aside from germ cell differ-
entiation, most miR-302 family members are related to
mammalian breast cancer [21], reproductive cell carcinoma
[22], DNA damage [23], and fibroblast differentiation [24].
These studies have shown that miR-302 family has high spec-
ificity or differentiation expression patterns in mammalian
ESCs, and it is consistent with our RNA-seq data in chicken
which shows the differentially high expression of miR-302d
in chicken ESCs. A small number of studies have also shown
that gga-miR-181-5p, gga-miR-2127, and gga-miR-302/367
clusters play a leading role in the regulation of proliferation
of avian primitive germ cells [25]. Both gga-miR-302b and
gga-miR-17-5p can regulate glucose phosphate isomerase
and affect the proliferation of PGCs [26] which suggests that
miR-302d may play an important role in the differentiation
of chicken male germ cells. In this study, our result proved
this hypothesis, miR-302d can inhibit differentiation of ESCs
into SSCs both in vivo and in vitro, and lncRNA-341 can
interact with miR-302d to reduce the targeted binding
between miR-302d and TLE4 (Figure 10), and the targeting
regulation of TLE4 by miR-302d can affect the expression
of key genes in Notch and Wnt signaling pathways.

However, due to the complex nature of the miR-302d
regulation network, although we have preliminarily verified
the relationship of lncRNA-341-miR302-TLE4, whether it
is affected by other factors requires further exploration. For
example, RNA pull-down can be used to detect whether
other protein regulators are involved. Further exploration
must be undertaken to elucidate the regulatory network.
Overall, miRNA302d plays an important role in the differen-
tiation of chicken male germ cells and is a significant regula-
tory factor.
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expression. B, information of two lncRNAs interacted with
miR-302d, lncRNA-341, and lncRNA-1784. (Supplementary
Materials)
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