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Abstract: The neurotensin is a tridecapeptide involved in the proliferation of colon cancer, the
overexpression of neurotensin receptors occurring at an early stage development of many tumours.
Targeting neurotensin receptors by using the same biological active molecule is an effective approach
for both imaging quantification and treatment. The present work aimed to demonstrate the ability
of radiolabelled neurotensin to specifically target colon cancer cells, and substantiate its usefulness
in targeted imaging and radiotherapy, depending on the emission of the coupled radioisotope.
Syntheses of 68Ga–DOTA–NT and 177Lu–DOTA–NT were developed to obtain a level of quality
suitable for preclinical use with consistent high synthesis yields. Radiochemical purity meets the
pharmaceutical requirements, and it is maintained 4 h for 68Ga–DOTA–NT and 48 h for 177Lu–DOTA–
NT. Extensive in vitro studies were conducted to assess the uptake and retention of 68Ga–DOTA–NT,
the amount of non-specific binding of neurotensin and the effect of 177Lu–DOTA–NT on HT–29
cells. In vivo biodistribution of 68Ga–DOTA–NT revealed significant uptake at the tumour site,
along with fast clearance evidenced by decreasing activity in kidneys and blood after 60 min p.i.
177Lu–DOTA–NT exhibited similar uptake in the tumour, but also a significant uptake at 14 days
p.i. in the bone marrow was reported. These results successfully demonstrated the potential of
neurotensin to deliver imaging/therapeutic 68Ga/177Lu radioisotopes pair, but also the need for
further evaluation of the possible radiotoxicity effects on the liver, kidneys or bone marrow.

Keywords: neurotensin; 68Ga; 177Lu; colon cancer; theranostic; 68Ge/68Ga generator; uptake; reten-
tion; biodistribution

1. Introduction

In recent years, an increased contribution has been brought to the development of
drugs capable of both imaging specific targets (tumours) and treating the malignant tissue
via local irradiation with minimal detriment to the body. Research in the field of theranostic
uses certain biological active molecules to which different radioisotopes can be bound for
either diagnosis or treatment. This approach aims to find the molecule with high specificity
for a tumour cell type, and then properly attach to it an imaging or a treatment radioisotope,
according to its use. One molecule of this kind is the neurotensin (NT) for which it has
been previously demonstrated to have the potential to target tumours such as: pancreatic
cancer [1–3], colorectal cancer [4–6], lung cancer [6], prostate cancer [7,8] or breast cancer [9].
Neurotensin is a tridecapeptide (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu)
that acts as a neurotransmitter or neuromodulator in the central nervous system (CNS). It
is a regulating factor in normal and cancerous tissue growth and also contributes to fat stor-
age, obesity and metabolic disorders [10]. Neurotensin exerts its effects primarily through
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neurotensin receptor subtype-1 (NTRS1) and with lower affinity through neurotensin re-
ceptor subtype-2 (NTRS2), both G-protein–coupled receptors (GPCR), and later-discovered
neurotensin receptor subtype-3 (NTRS3), a single transmembrane domain sorting receptor.
These findings suggest that the NT signalling pathway may provide a useful target for the
development of diagnostic agents and antitumor drugs.

Although previous studies showed that neurotensin has a low stability in blood [11],
this work aimed to assess the reliability of neurotensin radiolabelling process, according to
pharmaceutical requirements and the potential use for imaging and therapy, depending on
the characteristics of the bound radioisotope. The foremost objective of this study was to
evaluate the behaviour of the radiolabelled neurotensin to determine to which extent it can
be used in natural conditions, and to draw a baseline for further biological studies, e.g.,
using inhibited proteolytic enzymes and/or pharmacokinetics modifiers.

The emerging interest in theranostic applications led to the development of peptides
coupled with imaging/therapeutic radioisotopes pairs that quickly localize to cancer cells,
delivering locally the diagnostic/therapeutic effect, respectively. A major and important
choice is selecting the proper radionuclides for the intended use, as there are no “ideal”
medical radioisotopes, and then choosing a pair of them for theranostic applications. Such
an example of radioisotopes pair is 68Ga—used as imaging agent—and its therapeutic
counterpart—177Lu [12]. Macrocyclic chelating agents, like DOTA can form complexes
with radiometallic cations and can bind covalently to biomacromolecules. The ability to
complex various cations offers the possibility to use the same biological active molecule
both for diagnostic and therapy, depending on the complexed radioisotope (Figure 1).
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Figure 1. Radiolabelled DOTA-Neurotensin.

Gallium has no known natural role in biology, but 68Ga has a short half-life, compatible
with the pharmacological distribution time of certain biomolecules (e.g., peptides, proteins
and oligonucleotides). Furthermore, 68Ga and 177Lu are two radioisotopes which can
be chelated with good results to a variety of biomolecules; this allowing to approach
more diseases than e.g., 99mTc. Therefore, 68Ga has gained increasing importance in
clinical research in the last 25 years [13] as a PET imaging agent, exhibiting more suitable
characteristics than other PET radioisotopes in terms of higher detection resolution and
sensitivity (T1/2 = 67.83 min, Eβ+ = 1.899 MeV) [8,14], a lower or comparative effective
dose to that of 18F or 99mTc (2.3 mSv for [68Ga]Ga-DOTA-TOC per PET scan, compared to
5.6 mSv for [18F]FDG [15]) and fast data acquisition. It decays by β+ emission (88.88%) and
electronic capture (11.11%) to stable 68Zn [14].
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Currently, the most common method for obtaining 68Ga is via 68Ge/68Ga generator
(68Ge decays 100% by electronic capture to 68Ga), with the alternative of proton irradiation
at medium energy cyclotrons via 68Zn(p,n)68Ga nuclear reaction [16]. Both methods have
specific advantages (generator: no gallium impurities produced, virtually carrier-free
compounds, minimal radioprotection equipment, ease of operation; cyclotron: much
more activity available, no dead-time between batches), but also disadvantages (generator:
maximum available activity is limited and decreasing with the age of the generator, limited
elutions per day, limited number of patients per batch; cyclotron: radionuclidic impurities
produced during irradiation, need of laborious purification methods, higher operation
costs, dedicated vault, more expensive radiological protection). Considering these aspects
and the needs for our studies, we chose the generator method of 68Ga production.

The most widely used 68Ga–based imaging/diagnostic agents are [68Ga]Ga-DOTA-
Somatostatin analogues like TOC, TATE or NOC for patients affected by neuroendocrine
tumours (NET), and prostate specific membrane antigen [68Ga]68Ga-PSMA for prostate
tumours [17,18].

177Lu is used for therapy due to low energy β- emission (Eβ- = 498 keV), but also
provides imaging information due to its low energy gamma photons (Eγ = 208.36 keV
(10%) and 113 keV (6.2%)) [19,20]. It is obtained in reactor-based production facilities, and
its half-life (6.65 days) is sufficiently long for delivery to clinical sites. Major clinical applica-
tions of 177Lu include therapy with [177Lu]Lu-DOTA-TATE for metastatic neuroendocrine
tumours [21], [177Lu]Lu-PSMA for prostate cancer and [177Lu]Lu-DOTA-Rituximab for
non-Hodgkin lymphoma [22].

Due to the short half-life of 68Ga, it is essential to establish standardized processes,
with constant reproducibility, in order to shorten the radiolabelling time and to obtain
radiolabelled peptide solution of pharmaceutical grade purity, suitable for injection. The
automation of the process is also important, as long as this allows shortening of the
overall process time, along with the reduction of radioactive dose to which the operators
are exposed.

The present work describes our fast method for labelling the NT peptide with 68Ga and
177Lu respectively, and assesses the binding kinetics, as well as the biodistribution of 68Ga-
DOTA-NT and 177Lu-DOTA-NT to organs for the applications of NT as a theranostic agent.

2. Materials and Methods

All reagents and solvents were purchased from commercial suppliers and used with
no other purification. The peptide employed in all experiments (DOTA-NT) was provided
already conjugated with DOTA chelator by piChem GmbH (Raaba-Grambach, Austria).
Ultrapure water used in synthesis and for preparation of solutions was freshly prepared
on-site with Millipore Milli-Q Direct 8 system (Millipore S.A.S., Molsheim, France).

Nomenclature statement: 68Ga and 177Lu employed in the studies presented in this
work comply with the definitions of no-carrier-added and carrier-free compounds accord-
ing to IUPAC nomenclature (Gold Book [23,24] and Orange Book [25]), and Radiochemistry
Society (Richland, WA, USA) [26]. Therefore, the radiolabelled compounds produced and
used in our studies are referred, and their chemical formulae are written according to the
rules for mentioned definitions.

2.1. 68Ga-DOTA-NT Synthesis

The preparation of 68Ga-DOTA-NT, consisting of radiolabelling with 68Ga, purification
and formulation, was carried out on the automated synthesis module Galigand GAL-102
(Veenstra Instruments, Joure, The Netherlands).

In order to efficiently use the available activity, the syntheses were carried out
just before the biological assays, and the elution was integrated as the first step of the
synthesis sequence.
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68Ga was freshly extracted for each batch from organic–column type 68Ge/68Ga
generator (ITG Isotope Technologies Garching GmbH, Garching, Germany), which is
coupled to synthesis module.

The buffer employed in all experiments is 1 M ammonium acetate solution prepared
on-site from ammonium acetate salt (Carl Roth GmbH, Germany). For each batch, 68Ga
was eluted according to manufacturer’s protocol with 4 mL 0.05 M HCl prepared on-site
by diluting ultrapure-grade 30% HCl (Merck KGaA, Darmstadt, Germany).

The proper fraction of eluate, consisting of 2 mL of 68GaCl3 in 0.05 M HCl (pH = 1–1.3),
which concentrates most of the activity eluted from the 68Ge/68Ga generator, was sent
immediately in the reaction vessel, already heated to the labelling temperature (95 ◦C).

Aliquots of 50 µL containing 24 nmol of DOTA-NT dissolved in buffer solution were
used for each batch. The amount of buffer required to adjust the pH of the reaction mixture
in the range of 4.5–4.8 was previously mixed with the peptide aliquot, in order to protect
the biomolecule and to avoid a possible degradation when added to the highly acidic
eluate. The peptide-buffer mixture was sent to the labelling vial immediately after the
transfer of the 68Ga eluate and left to react for 5 min at 95 ◦C.

After the labelling step, a small amount of ultrapure water (300 µL) was added in the
labelling vial, and then the product was passed through a previously conditioned sepa-
ration cartridge C18 Strata-X SPE (Phenomenex, Torrance, CA, USA). The SPE cartridge
retains only the labelled peptide, while the free 68Ga impurities are evacuated as reaction
waste. The complete removal of impurities was carried out by rinsing the cartridge with
1 mL mixture made of 950 µL ultrapure water and 50 µL ethanol (Chimreactiv S.R.L.,
Bucharest, Romania). After purification step, the peptide was recovered into the evapora-
tion vial by passing 1 mL of ethanol through the SPE cartridge. Further, in the evaporation
vial already heated at 95 ◦C, the ethanol is evaporated using dry heat and vacuum to hasten
the process. The labelled peptide was reconstituted in 1 mL physiological saline solution
(0.9% NaCl, B. Braun Melsungen AG, Melsungen, Germany). At the end of the synthesis,
68Ga-DOTA-NT was filtered through 0.22 µm membrane filter Millipore (Merck KGaA,
Darmstadt, Germany) for sterilization. The pH was measured using pH strips (pH-Fix
2.0–9.0 and pH-Fix 3.6–6.1) from Macherey–Nagel GmbH & Co. (Düren, Germany).

2.2. 177Lu-DOTA-NT Synthesis
177Lu was acquired in form of 177LuCl3 from National Centre for Nuclear Research—

Radioisotope Centre POLATOM (Otwock, Poland). The labelling of neurotensin with
177Lu was carried out manually in a preheated reaction vial at 100 ◦C. 370 MBq of 177LuCl3
solution was mixed with 1 M ammonium acetate solution in order to adjust the pH value
to 5.5, and then 24 nmol of DOTA-NT was added. The mixture was left to react for 10 min
under continuous stirring at 100 ◦C. Then, the heating was turned off and the mixture was
left to cool down under stirring for 10 min. The pH was finally adjusted to 6.5–6.8 with
buffer. The final formulation of 177Lu-DOTA-NT has been done with 1 mL of 0.9% NaCl
solution, followed by filtration through a 0.22 µm membrane filter.

2.3. Radiochemical Purity and Stability

The radiochemical purity (RCP) of the radiolabelled DOTA-Neurotensin conjugates
was assessed by radio-HPLC, using a Shimadzu Prominence 20 A series system (Shimadzu
Corporation, Kyoto, Japan) equipped with LB513 BGO γ–detector (Berthold Technologies
GmbH & Co.KG, Bad Wildbad, Germany). The stationary phase used was a C18 column—
Nucleosil® 5µm, 250 mm × 4.6 mm, (Supelco Inc., Bellefonte, PA, USA). The mobile phase
was composed of water and acetonitrile, both acidified with 0.1% TFA, at 1 mL/min flow
rate. The following gradient was used: 0–2 min 5% B, 2–32 min 5–65% B, 32–35 min 65–5%
B, 35–40 min 5% B (where A = water with 0.1% TFA, and B = acetonitrile with 0.1% TFA).

The stability of 68Ga-DOTA-NT was assessed by radio-HPLC for 4 h after the end
of the labelling and purification process (EOS). 5 samples taken from the same vial were
injected at different moments after the end of the synthesis, as follows: immediately, after 1,
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2, 3 and 4 h respectively, and evaluated in terms of radiochemical purity. The radiochemical
stability of 177Lu-DOTA-NT was checked up to 48 h from the end of preparation. At the
end of the evaluation period, the radiochemical purity should be higher than 95%.

2.4. Cell Culture

The human colon cancer cell line HT-29 (ATCC, Manassas, VA, USA) was incubated in
Dulbecco’s Modified Eagle’s Medium (DMEM) (Biological Industries, Beit-Haemek, Israel),
at 37 ◦C in controlled atmosphere containing 5% CO2.

For binding assay, Petri dishes (NunclonTM Delta Surface 150350, ThermoFisher
Scientific, Roskilde, Denmark) were prepared with cell culture 24 h before experiments,
in order to allow the cells to firmly attach to the dish surface. 4 × 105 cells were seeded
in a well-defined area of the dish, while keeping the Petri dish in a tilted position. Once
the cells have attached, the remaining cell solution was removed, and 2 mL of DMEM was
added. Each dish was inspected under a microscope to check that all cells have attached in
the designated area.

2.5. In Vitro Uptake and Retention Assessment of 68Ga-DOTA-NT

The LigandTracer Yellow system (Ridgeview Instruments AB, Uppsala, Sweden) was
used to evaluate the amount of tracer that binds to specific receptors expressed on the
surface of the tumour cell membrane. This instrument uses the rotating radioimmunoassay
(RIA) method to evaluate real-time dynamics of tracer binding to tumour cells during
analysis. Every 5.6 min, the system records the activity in 12 points (6 points corresponding
to the upper position of the tilted dish and 6 points for the base position—see Figure 2 [27]).
The recorded result represents the difference in detected signal between each corresponding
point from the two areas [28,29].
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To perform this analysis, the background was measured (eliminating any radioactive
source around the device for baseline acquisition). 0.6 nmol of 68Ga-DOTA-NT with 10 MBq
was added over cells in Petri dish and recording was started to obtain the tracer uptake
profile. After reaching the steady state, the radioactive medium was removed and the cells
were washed with 2 mL of fresh DMEM (1 mL at a time) to remove additional activity
(labelled peptide left unbound) from the Petri dish. After this washing step, 2 mL of
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medium was added over the cells to ensure an optimal survival environment during the
next step of the analysis. Cell retention is obtained by restarting the measurement, the
retention curve is recorded until a plateau is reached due to the equilibrium state. The
same procedure was used in the case of 177Lu, but using 0.6 nmol of 177Lu-DOTA-NT with
25 MBq activity.

2.6. In Vitro Receptor Binding of DOTA-NT and Competition Assay

Neurotensin exhibits three specific receptors with increased affinity against NTRS1
compared to NTRS2 and NTRS3. In order to evaluate the specific binding due to the
exclusive interaction of the peptide with its receptors, a competition assay was performed.
This assay in which all NT receptors are blocked before incubating the labelled peptide is
intended to highlight non-specific binding of NT to the cells. The difference between the
results obtained by incubating the non-blocked peptide (total binding) and those obtained
with peptide after blocking all receptors (non-specific binding) represents specific binding.
For this assessment, three different NT receptors antagonists were used, each having a
preferential increased affinity for one of the receptors, allowing the blocking of all NTRs at
the same time:

NTRC 824, N-[2-[5-[[(4-Methylphenyl) sulfonyl] amino]-3-(trifluoro acetyl)-1H-indol-
1-yl] acetyl]-L-leucine is a non-peptide NTSR2 antagonist that exhibits 150-fold selectivity
for NTRS2 over NTRS1 [30].

SR 48692, 2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazol-3-carbon-
yl]amino] adamantane-2-carboxylic acid is a neurotensin antagonist selective for NTRS1
over NTRS2 20.

SR 142948, 2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methylca-
bamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino]adamantane-2-carboxylic acid
is a synthetic NTR antagonist that completely inhibits [125I]ITyr3-NT specific binding to
HT-29 cells [31].

To evaluate specific binding, 5 × 105 HT-29 cells previously prepared according
to the cell culture protocol were incubated with 70 nM of NTRC 824 (Bio-Techne Ltd.,
Abingdon, UK, dissolved in 0.1 M DMSO), 30 nM of SR 48692 (Bio-Techne Ltd., Abingdon,
UK, dissolved in 0.1 M DMSO), and 10 nM of SR 142948 (Bio-Techne Ltd., Abingdon,
UK, dissolved in 0.1 M DMSO) for 1.5 h. Afterwards, the medium containing unbound
antagonists was removed and the cells were washed with 2 mL of fresh DMEM medium.
After the baseline acquisition, 0.6 nmol of 68Ga-DOTA-NT was incubated and the uptake
and cell retention were assessed according to the method described above.

2.7. Biodistribution Studies

All experiments were conducted according to the guidelines of EU Directive 2010/63
approved by The Romanian National Sanitary Veterinary and Food Safety Authority
(NSVFSA, approval no. 442/25.02.2019).

Biodistribution studies of 68Ga-DOTA-NT and 177Lu-DOTA-NT were carried out on
8–10 weeks old, athymic nude male NU/J mice (Jackson Laboratory, Bar Harbor, ME, USA),
weighting 26 ± 2.5 g.

The mice were inoculated 7 days prior to peptide administration with 5 × 106 HT-29
colon cancer cells. All animals were anesthetized before testing by administration of a
mixture of 7.5 mg/mL ketamine (Narkamon Bio, Bioveta Romania S.R.L., Cluj-Napoca,
Romania), 1.5 mg/mL xylazine (Narcoxyl 2, MSD Animal Health, Kenilworth, NJ, USA)
and 0.25 mg/mL acepromazine (Sedam, Pasteur Filiala Filipes, ti S.A., Filipes, tii de Pădure,
Romania)

The radiopharmaceuticals were injected intravenously in the tail vein with 2.8 ± 0.4 Bq
of 68Ga-DOTA-NT per animal or 9.7 ± 1.6 MBq of 177Lu-DOTA-NT, respectively. The
actual injected activity took over in the bloodstream was corrected by subtraction of
residual activity left in the syringe, and the activity remaining at the injection point (animal
tail). Mice injected with 68Ga-DOTA-NT were sacrificed at 30- or 60-min post-injection
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(p.i.). Mice injected with 177Lu-DOTA-NT were divided into three groups, corresponding
to different dissection time (60 min, 7 days, 14 days p.i.). The organs of interest were
weighted on an analytical scale ALT 220-4M (Kern & Sohn GmbH, Balingen, Germany) and
their activities were measured with calibrated multi-channel-analyser for γ-spectroscopy
equipped with NaI (Tl) detector Mucha (Raytest GmbH, Straubenhardt, Germany). The
biodistribution was calculated as percent of injected dose per gram of organ (% ID/g) ±
standard deviation.

2.8. Statistical Analysis

The data were expressed as means ± standard deviation (n = 4). Comparison of results
among the groups (%ID/g vs. tracers, %ID/g vs. tracers and organs, %ID/g vs. tracers
and tumour cells), was carried out by one-way analysis of variance (ANOVA) and Tukey
post-hoc analysis using SPSS v26 (IBM, New York, NY, USA). The results were considered
significant for a p-value lower than 0.05.

3. Results
3.1. Labelling of DOTA-NT

There are two limitations in 68Ga use, namely its short half-life and the limited activity
available from a generator (which is dependent on the initial activity of 68Ge loaded on the
generator). Also, the maximum generated activity is continuously decreasing in time due
to the decay of the loaded parent nuclide—68Ge. Therefore, each batch of 68Ga–labelled
peptide was freshly prepared just before its use. These limitations compel to shorten the
time required by synthesis and experiments, and also to maximize the overall yield of the
preparation process.

The sole Ga isotope produced in the generator is 68Ga, produced from 68Ge by elec-
tronic capture, as carrier-free 68Ga. This is a huge advantage over the cyclotron route,
which requires additional, time-consuming purifying steps and provides radiolabelled
compounds with lower purity; the drawback consists of limited activity and the dead time
between two batches (approx. 5–6 h), required by re-generation of sufficient quantity of
68Ga for the next synthesis.

According to the manufacturer of the generator, a total volume of 4 mL HCl solution
must be used for each synthesis. Only the most useful 2 mL of the eluate (the main fraction),
concentrating the highest amount of 68Ga (extracted from the generator in form of 68GaCl3)
should be used for labelling. The first and the last fractions of the eluate (a total of 2 mL—
containing higher amount of zinc, produced during 68Ga decay inside the generator and
HCl) are transferred to the waste. Compared with the tin oxide based generator, whose
eluate usually contains small amounts of other impurities (cations of Ge, Fe, Sn, Zn) and
should be purified prior to entering in contact with the peptides [32], this organic–column
type generator does not require that step of purification. Moreover, this generator requires
a much lower concentration of hydrochloric acid (0.05 M) compared to a tin oxide-based
generator which typically requires a concentrations of 5 M and 10 M. To achieve high purity,
short duration and high yield for 68Ga-labelling, preliminary experiments were carried
out to investigate the process parameters (e.g., reaction temperature, pH, reaction time,
evaporation time) that lead to optimal results. The optimal values of the automated process
were implemented in a customized production script of proprietary Absynth controlling
software. The synthesis flowchart and the scheme in the graphical interface of Absynth are
presented in Figures 3 and 4, respectively.



Pharmaceutics 2021, 13, 506 8 of 19

Pharmaceutics 2021, 13, x 8 of 19 
 

 

proprietary Absynth controlling software. The synthesis flowchart and the scheme in the 
graphical interface of Absynth are presented in Figures 3 and 4, respectively. 

Preliminary tests revealed that for the labelling of neurotensin with 68Ga a more 
acidic pH is necessary (optimal 4.5) compared to the slightly higher pH in the case of 
177Lu (pH = 5.5–6.0). In the case of 68Ga, the reaction time for total binding is shorter, 5 min 
at a temperature of 95 °C being sufficient to completely bind the radioisotope to the pep-
tide. The labelling temperature was increased from 37 °C up to 95 °C to reduce the reac-
tion time, without any detectable degradation of the radiolabelled peptide. The values of 
process parameters are presented in Table 1. 

Table 1. Labelling parameters for 68Ga- DOTA-NT and 177Lu-DOTA-NT. 

Parameter 68Ga-DOTA-NT 177Lu-DOTA-NT 
Peptide amount 24 nmol 

Buffer Ammonium acetate (1M) 
Labelling pH 4.5–4.8 5.5–6.0 

Reaction volume <2.5 mL 
Reaction time 5 min 10 min + 10 min 
Temperature 95 °C 100 °C + natural cooling 

Ethanol amount 1 mL — 
Evaporation temperature 95 °C — 

Evaporation time 360 s — 
Overall preparation duration 22 min approx. 30 min 

Radiochemical purity 1 > 99% > 99% 
Stability > 4 h > 48 h 

1 assessed by radio-HPLC. 

 
Figure 3. Flowchart of 68Ga-DOTA-NT production. Figure 3. Flowchart of 68Ga-DOTA-NT production.

Preliminary tests revealed that for the labelling of neurotensin with 68Ga a more acidic
pH is necessary (optimal 4.5) compared to the slightly higher pH in the case of 177Lu
(pH = 5.5–6.0). In the case of 68Ga, the reaction time for total binding is shorter, 5 min at a
temperature of 95 ◦C being sufficient to completely bind the radioisotope to the peptide.
The labelling temperature was increased from 37 ◦C up to 95 ◦C to reduce the reaction time,
without any detectable degradation of the radiolabelled peptide. The values of process
parameters are presented in Table 1.

Table 1. Labelling parameters for 68Ga- DOTA-NT and 177Lu-DOTA-NT.

Parameter 68Ga-DOTA-NT 177Lu-DOTA-NT

Peptide amount 24 nmol
Buffer Ammonium acetate (1M)

Labelling pH 4.5–4.8 5.5–6.0
Reaction volume <2.5 mL

Reaction time 5 min 10 min + 10 min
Temperature 95 ◦C 100 ◦C + natural cooling

Ethanol amount 1 mL —
Evaporation temperature 95 ◦C —

Evaporation time 360 s —
Overall preparation duration 22 min approx. 30 min

Radiochemical purity 1 > 99% > 99%
Stability > 4 h > 48 h

1 assessed by radio-HPLC.
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frame); actual state is showing the system ready for labelling.

3.2. Radiochemical Purity and Stability

For avoiding background noise in imaging and harmful radioactive dose to the body
after administration of radiopharmaceuticals, it is very important that the product does not
undergo structural degradation over the shelf-life, as this may affect its pharmacokinetics
and, therefore, the correctness of the effects it provides. The stability of a radiophar-
maceutical depends on several factors such as: temperature, exposure to light, physical
and chemical properties of the active substances, excipients, pharmaceutical form and
properties of packaging materials. Radiochemical impurities may occur as a result of the
degradation of the peptide due to radiolysis, temperature variations and by the action of
oxidizing or reducing agents. Another possible cause can be the unstable trapping of the
metallic ions by the chelator. In our studies, DOTA chelator exhibited good affinity both for
Ga3+ and Lu3+, providing fast and stable binding (up to 4 h from EOS for 68Ga-DOTA-NT
and 48 h from EOS for 177Lu-DOTA-NT).
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The radio-HPLC chromatograms presented in Figures 5 and 6 indicate that the synthe-
sized compounds meet the radiochemical purity condition, with RCP > 99% for 68Ga-DOTA-
NT (retention time 18.5 min) and >99% for 177Lu-DOTA-NT (retention time 11.9 min).
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Figure 5. Radio-HPLC chromatogram of 68Ga-DOTA-NT.
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Figure 6. Radio-HPLC chromatogram of 177Lu-DOTA-NT.

The stability of 68Ga-DOTA-NT was assessed by radio-HPLC for 4 h after the end of
labelling and purification process (EOS). Following the RCP analysis at the end of synthesis,
other 4 samples were taken from the same vial at equal time intervals (1 h). The overlapped
chromatograms are presented in Figure 7.
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Figure 7. 68Ga-DOTA-NT stability: overlapped chromatograms from EOS to EOS + 4 h.

The radiochemical stability of 177Lu-DOTA-NT was checked up to 48 h from the end of
preparation. Both labelled compounds maintained their radiochemical purity throughout
the investigation periods. No other peaks were identified in the subsequent chromatograms.
Therefore, DOTA-NT did not undergo any structural modification and the radioisotopes
were stably trapped by DOTA chelator. The overlapped chromatograms are presented in
Figure 8.
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3.3. In Vitro Uptake and Retention Measurement of 68Ga-DOTA-NT

The binding kinetics of 68Ga-DOTA-NT to NTR-expressing HT-29 cancer cells during
incubation is presented in Figure 9.
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Figure 9. In vitro uptake/retention curve of 68Ga-DOTA-NT on HT-29 cancer cells. Data are pre-
sented as mean ± SD (n = 5).

Following the analysis of the cellular uptake of 68Ga-DOTA-NT, an exponential in-
crease of the cell-associated activity can be observed, the trend of the uptake profile
indicating a good dynamic of the tracer.

The highest cell retention was obtained for 0.6 nmol of NT, the maximum retention
reaching 70% of the maximum measured activity during the uptake stage of analysis. This
result confirms the expression of NT receptors on tumour cells membrane, as well as the
ability of the peptide to form stable bonds with receptors. To verify the stability of binding
cell, retention was studied for 35 min. A slight decrease in activity can be observed in the
first 10 min of retention analysis (from 83% immediately after starting) followed by its
stabilization around 70%.

3.4. In Vitro Specific Binding Assay

As can be seen in Figure 10, NTRC 824, SR 48692 and SR 142948 antagonists used to
block NTRS1, NTRS2 and NTRS3 receptors inhibit the 68Ga-DOTA-NT binding to colon
HT-29 tumour cells as the uptake profile trend is almost linear.

After removal of the radioactive medium the amount of non-specific binding of 68Ga-
DOTA-NT to cells is about 18% compared to the value of total binding stabilized at 70%,
normalized for the maximum detected value. Because all receptors are blocked, the amount
of peptide retained by the cells is presumably due to other non-specific binding mechanisms
such as: channel-forming mechanism, inverted micelle, barrel-stave pores, endocytosis
mechanism etc. [33].

Subtracting the non-specific binding from the total binding we obtain a specific binding
of about 52%. This result allows us to assume that applied in vivo 68Ga-DOTA-NT will be
distributed mainly in tissues that express neurotensin receptors, the non-specific binding
being too low to generate unwanted accumulations in other tissues.
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3.5. In Vitro Binding Kinetics of 177Lu-DOTA-NT
177Lu-DOTA-NT was evaluated in vitro for 6–8 h to observe the binding kinetic profile

of the compound to HT-29 tumour cells. The real-time dynamic measurement is shown in
Figure 11.
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Figure 11. In vitro uptake/retention curve of 177Lu-DOTA-NT on HT-29 cancer cells. Data are
presented as mean ± SD (n = 3).

In the first 90 min of incubation, the compound follows a trend of association with
NT receptors. After removing the excess free compound in the medium, the cell dynamics
was continuously measured. Stable retention on the cells (approx. 70% of the maximum
association activity for 3.5 h) can be observed. This value is consistent with that obtained
for 68Ga-DOTA-NT, which indicates that the 68Ga and 177Lu radioisotopes do not interfere
in the process of peptide binding to its receptors.
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After approx. 5 h from the incubation of the tracer, a sudden decrease of activity
can be observed, which coincides with the second phase, critical for the therapy tracers,
respectively the dissociation phase. At this stage, the tumour cells detach from the Petri
dish due to the processes of apoptosis. They float in the culture medium and at subsequent
rotations of the support they are no longer detected in the region they were initially
attached. This method of analysis allows real-time visualization of these processes which
confirms the possibility of using DOTA-NT as a theranostic agent. Since the stability of
177Lu-DOTA-NT has been assessed for up to 48 h post-synthesis with no degradation
observed, the possibility of peptide degradation or release of radionuclide in the medium
can be excluded.

3.6. Biodistribution

3.6.1. 68Ga-DOTA-NT

The results of the biodistribution studies of 68Ga-DOTA-NT are summarized in
Figure 12.
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Figure 12. Biodistribution of 68Ga-DOTA-NT in NU/J mice. Data are presented as mean ± SD
(n = 4).

Significant uptake of 68Ga-DOTA-NT was observed in kidneys at 30 min p.i (34.26
± 0.14%ID/g). It can be observed that 60 min p.i., the amount of tracer in the kidneys
halves down to 14.82 ± 1.51% ID/g, most likely due to excretion through the renal sys-
tem. No significant retention was observed in the liver (1.95 ± 0.28% ID/g at 30 min
p.i. and 1.42 ± 0.073% ID/g at 60 min p.i.), suggesting that 68Ga-DOTA-NT was fairly
water-soluble and does not associate into larger polypeptides chains, according to other
studies [34,35].

The second most significant measured activity was detected in the blood, 14.87 ±
0.55% ID/g at 30 min p.i. respectively 8.17 ± 2.79% ID/g at 60 min p.i. This result, along
with the observed decrease of the kidneys’ activity after 60 min, indicates a fast clearance
of neurotensin.

The lungs and the tumour are the only organs in which a higher activity (accumulation)
was registered at 60 min p.i. compared to the activity measured at 30 min p.i. Thus, in the
lungs the activity increases from 3.71 ± 0.34% ID/g at 30 min p.i., up to 6.44 ± 3.36% ID/g
at 60 min p.i.

Tumour vasculature is a critical micro-environmental factor associated with tumour
response to the therapy and heterogeneous in both time- and location- dependent manner.



Pharmaceutics 2021, 13, 506 15 of 19

Thus, for an accurate assessment, the tumour was sectioned into two parts: the centre of the
tumour and the periphery. At 30 min p.i. the distribution of the tracer (activity) throughout
the tumour mass is homogeneous, as the centre and the periphery of the tumour have
close values: 4 ± 0.38% ID/g and 4.78 ± 1.91% ID/g respectively. At 60 min p.i. the
activity at the tumour edge increases to 11.56 ± 2.14% ID/g compared to 4.5 ± 0.8% ID/g
in the centre. This result highlights better vessel function and higher microvascular density
(MVD) of the tumour periphery, than the tumour core.

3.6.2. 177Lu-DOTA-NT

The biodistribution of 177Lu-DOTA-NT was studied at 3 different times in order to
observe the evolution of the tumour under the action of β- radiation, but also how this
compound can affect other organs by accumulation on them. The results are presented in
Figures 13 and 14.
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At 30 min p.i. the tracer was found mainly in the kidneys (32.5 ± 1.6% ID/g), tumour
(11 ± 0.6% ID/g), blood (4.9 ± 0.2% ID/g) and liver (5.1 ± 0.21% ID/g). At 7 days p.i.,
the amount of tracer in the blood decreases significantly (reaching 2.5 ± 0.15% ID/g) but
increased the accumulation in the liver (7.5 ± 0.4% ID/g). At this time, the amount of
177Lu-DOTA-NT in the kidneys showed a slight decrease to 31.5 ± 1.2% ID/g.

Recent studies showed radiologic signs of liver steatosis during the treatment with
177Lu-DOTA-TATE, but an improvement by the end of the treatment period [36]. These
findings, correlated with increased liver radioactivity at 7 days p.i., indicate a possibility
that 177Lu-DOTA-NT may have a hepatotoxicity effect, but further evaluation is needed.

At 14 days p.i., the activity in the blood is kept at 2.6 ± 0.23% ID/g (similar to that
reported at 7 days p.i.), and in the liver decreases significantly compared to that at 7 days
p.i., reaching 4.3 ± 0.98% ID/g.

In the kidneys, the activity at 14 days decreases down to 8.1 ± 1.2% ID/g, a propor-
tional decrease to that of the tumour (1.99 ± 0.35% ID/g).

The only organ in which activity growth is maintained 14 days after injection is the
bone marrow, where it reaches 29.45 ± 2.1% ID/g. Comparing the accumulated activity
in the bone marrow with the accumulated radioactivity of the radiopharmaceutical in the
blood, we could easily observe in Figure 14 that the activity measured in the femur marrow
increases much more than the decrease in the blood. This dynamic process indicates a very
rapid absorption of the 177Lu–radiolabelled peptide in the bone marrow.

4. Discussion

Regulatory peptides, such as neurotensin, are suitable agents for specific delivery
of radioisotopes to tumour cells, for both diagnostic and therapeutic applications [37,38].
The aim of this study was the investigation of neurotensin as a potential agent used in
diagnosis and therapy of colon cancer when coupled with 68Ga and 177Lu, respectively.

In vitro evaluation of the binding kinetics (uptake and retention) on HT-29 colon
cancer cells revealed a maximum of 70% retained activity from the maximum recorded
during uptake. This result confirms the expression of NT receptors on tumour cells
membrane, as well as the ability of the peptide to form stable bonds with receptors. Based
on the results obtained for the specific binding assay, we were able to further determine
that the non-specific binding represents 18% of the total binding, and the remaining 52%
is attributed to the specific binding of neurotensin to its receptors (NTRS1, NTRS2 and
NTRS3), In the case of 177Lu-DOTA-NT, 5 h after cell incubation, the cell retention profile
follows a sudden decreasing trend of radioactivity, which might signify the colon cancer
cells death and detachment from the Petri dish. These results demonstrate the need for
additional, more precise investigation of 177Lu-DOTA-NT cytotoxic effects.

In vivo biodistribution studies in athymic nude mice bearing colon tumours confirmed
the increased potential of 68Ga-DOTA-NT to target this type of cells, with 4.78 ± 1.91%
ID/g at the tumour periphery.

Although previous studies showed that neurotensin has a low stability in blood, our
results indicate that the use of 68Ga-radiolabelled peptide may be feasible for imaging
of tumour from 30 min up to 1 h p.i. This time interval seems to sufficiently allow the
distribution and accumulation of radiolabelled peptide into the body. A longer time p.i. is
not feasible, as long as it leads to losing too much activity due to the short half-life of 68Ga.

A high uptake (6.44 ± 3.36% ID/g at 60 min p.i) was measured in the lungs. This result
can be explained by the previous discoveries that pulmonary parenchyma is an important
site of neurotensin metabolism [39] and a high density of NTRS1 is expressed by lung
pleura [40]. No uptake of 68Ga-DOTA-NT was detected in the brain, most certainly due to
low blood brain barrier (BBB) penetration of neurotensin, otherwise a non–BBB–penetrant
neuropeptide.

In the case of 177Lu-DOTA-NT, at 30 min p.i, the highest amount of injected dose is
found in the kidneys. This level is maintained at 7 days p.i., but at 14 days p.i. it decreases to
8.1 ± 1.2% ID/g. From previously reported data, treatment with 177Lu administered in the
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form of 177Lu-DOTA-TATE has been shown to cause radiation-induced renal damage [41].
To reduce or avoid this side effect, different molecules (like Human Antioxidation Protein
α1-Microglobulin) have been developed that can effectively limit this effect. To assess
whether the residual activity of 177Lu-DOTA-NT after 14 days p.i. causes nephrotoxicity,
future studies are needed.

The challenge associated with the use of small peptides is the rapid in vivo degrada-
tion by peptidases that might require their activity inhibition [42], before peptide–based
drug administration. An interesting finding was that, even without inhibiting the prote-
olytic enzymes, the activity continued to accumulate in the tumours for up to 7 days and
then decreased. The possible causes of decreasing may be: the peptide instability (although
in this case the peptide was stable for more than a few hours), or the tumour cells apoptosis,
which is a desirable effect of the 177Lu. However, further investigations and an additional
study in conditions of inhibited degrading enzymes are needed.

Despite these promising results, a cause for concern is the constant accumulation in
the bone marrow, increasing from 0.98 ± 0.32% ID/g at 30 min p.i. to 29.45 ± 2.1% ID/g at
7 days p.i. Future toxicity studies will be performed to evaluate long-term bone marrow
toxicity, whether can cause myelosuppression, and also to optimize the dose at which the
treatment with 177Lu-DOTA-NT is safe for administration.

5. Conclusions

The results obtained using NT coupled with 68Ga for the detection of colon cancer
and the potential of this peptide to be used in therapy coupled with 177Lu are arguments to
extend the studies of this peptide as a potential theranostic agent, with and without having
the peptidases previously inhibited. Increased in vitro uptake and retention in colon HT-29
cancer cells have been proved. Also, in vivo biodistribution results have proved the ability
of NT to preferentially target the tumour site. Further, additional studies are necessary
to assess if there is a long-term toxic effect due to 177Lu-DOTA-NT accumulation in the
kidneys, liver or bone marrow.

The presented synthesis methods of 68Ga- and 177Lu-DOTA-NT are reproducible,
producing radiopharmaceuticals compliant with the requirements for radiochemical purity
according to current pharmaceutical regulations (European Pharmacopoeia) and which are
stable throughout the entire shelf-life. DOTA chelator exhibited good affinity both for Ga3+

and Lu3+, providing fast and stable binding. The preparation processes of 68Ga-DOTA-NT
and 177Lu-DOTA-NT were established in terms of pH, reaction and evaporation times and
temperatures, to obtain a high labelling yield within a short overall preparation time. In
the case of 68Ga, the successful automation of the entire process including elution, labelling
and purification allowed to obtain fully reproducible results. This also virtually eliminates
the operators’ exposure during synthesis and also helps to avoid human errors.
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