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Abstract: Background: Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors
usually suffer from high occurrence and poor prognosis. The current study aimed at finding the
biomarkers related to tumor grades and proposing potential therapies by these biomarkers. Methods:
The mRNA expression matrix of TSCC samples from The Cancer Genome Atlas (TCGA) database
was analyzed to identify hub proteins related to tumor grades. The mRNA expression patterns of
these hub proteins between TSCC and adjacent control samples were validated in three independent
TSCC data sets (i.e., GSE9844, GSE30784, and GSE13601). The correlation between cell cycle index
and immunotherapy efficacy was tested on the IMvigor210 data set. Based on the structure of hub
proteins, virtual screening was applied to compounds to find the potential inhibitors. Results: A total
of six cell cycle biomarkers (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were selected as
hub proteins by protein–protein interaction (PPI) analysis. In the validation data sets, the mRNA
expression levels of these hub proteins were higher in tumor samples versus normal controls. The
cell cycle index was constructed by the mRNA expression levels of these hub proteins, and patients
with a high cell cycle index demonstrated favorable drug response to the immunotherapy. Three
small molecules (i.e., ZINC100052685, ZINC8214703, and ZINC85537014) were found to bind with
hub proteins and selected as drug candidates. Conclusion: The cell cycle index might provide a
novel reference for selecting appropriate cancer patient candidates for immunotherapy. The current
research might contribute to the development of precision medicine and improve the prognosis of
TSCC.

Keywords: TSCC; cell cycle; immunotherapy; drug candidates

1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common malignant diseases,
and it has a poor prognosis since more than 40% of patients do not survive more than
5 years [1]. It caused 377,713 cases and 177,757 deaths in 2020 [2]. Some risk factors, such
as smoking, alcohol addiction, betel quid chewing, have positive correlations with the
occurrence of OSCC [3]. Tongue squamous cell carcinoma (TSCC) is the most common
subtype of OSCC, since it occupies more than 40% of the OSCC samples and has a worse
prognosis [4]. There are some disadvantages in prevalent treatment approaches such as
surgical resection, chemotherapies, and radiotherapies [5]. Firstly, the survival rate of
TSCC patients is still low, even after these therapies [6]. Secondly, these prevalent therapies
could lead to disfigurement or functional impairment, for example, surgical resection could
cause permanent disfigurement, and chemotherapies and radiotherapies are associated
with toxicities [5]. Therefore, novel therapies are necessary for TSCC patients.

Recently, immunotherapies, such as PD-1 and PD-L1 antibodies, have been tested
in a range of clinical trials and have obtained great success [7]. In 2016, nivolumab, a
monoclonal antibody targeting PD-1, was approved by the FDA for the treatment of
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metastatic squamous cell cancer of head and neck [8]. TSCC samples were found to be
correlated with high PD-1/PD-L1 expression and immune suppression, which indicated
that TSCC could be the FDA indication of PD-1 antibody in the future [9]. PD-L1-expressing
TSCC cells could evade immune surveillance, and the inhibition of PD-1/PD-L1 was
proposed to prevent the initiation of carcinogenesis and treat advanced TSCC [10]. But
immunotherapies have limitations and challenges because of the risk of side effects and
unsatisfactory objective response rates (ORRs) [11]. For example, the occurrence rates of
adverse reactions, including hypothyroidism, colitis, and pneumonitis, increased with a PD-
1 antibody treatment group than a control group [12]. In addition, the response rates to PD-1
and PD-L1 antibodies were only approximately 20% in most solid tumors [13]. Therefore,
the biomarkers and evaluation and selection of appropriate patients for immunotherapy
are urgently needed.

TSCC tumor grades, meaning the degree of differentiation of tumor cells, are nega-
tively correlated with prognosis [14]. Higher grade tumors, such as grade 3 tumors, are
usually used to describe the cancer cells that are poorly differentiated with lymph node
metastasis [15]. Moreover, grade 3 TSCC has a worse prognosis and is more aggressive
than grade 1 and 2 TSCC [15]. High-grade cancers are characterized by excessive cell
cycle activity that is regulated by cell cycle markers such as cyclin-dependent kinases
(CDKs) [16,17]. For example, the level of CDK2 is significantly higher in tumor cells than
in normal cells [18]. Thus, novel drugs targeting cell cycle markers might contribute to
improving the prognosis of TSCC patients with high-grade tumors.

Multiple computational approaches were selected to identify the hub proteins related
to tumor grades. A total of six cell cycle markers were selected as hub proteins because of
their key roles in protein–protein networks. Interestingly, we found that these cell cycle
markers were negatively correlated with immune cell enrichment scores. The high level of
cell cycle markers indicated higher response rates and a better prognosis to immunotherapy.
Cell cycle index, computed by the mRNA expression of these cell cycle markers, was proposed
in the current study. Cancer patients with a high cell cycle index had a worse prognosis in
prevalent therapies but a better prognosis in immunotherapy. Furthermore, a molecular
docking approach was used to identify drug candidates targeting cell cycle markers for
patients with high tumor grades. In summary, our study proposed potential therapies such
as immunotherapy and compounds for TSCC patients with high-grade tumors.

2. Material and Methods
2.1. Data Processing and Differential Expression Analysis

In the current study, 3 groups, including 5 different data sets, were downloaded
and analyzed. (1) The data set in the first group was a TCGA–TSCC dataset. The RNA
sequencing data profiles and clinical information of 139 TSCC samples (126 cancer and
13 normal samples) were downloaded from TCGA. The data set in the first group was
used to determine the hub proteins. (2) The data sets in the second group were GSE9844
(26 TSCC and 12 normal samples) [19], GSE30784 (184 TSCC and 45 normal samples) [20],
and GSE13601 (26 TSCC and 32 normal samples) [21]. The expression matrix of each
data set was downloaded from the Gene Expression Omnibus (GEO). The data sets in
the second group were used to validate the expression pattern of hub proteins. (3) The
dataset in the third group was IMvigor210 cohort. The gene expression matrix and relevant
clinical follow-up records of the IMvigor210 cohort (348 cancer patients treated with
atezolizumab/anti-PD-L1) were obtained from the previous article [22]. The data set in
the third group was used to validate the impact of the cell cycle index on immunotherapy
efficacy.

In order to select the genes that are crucial for the tumor occurrence, the differentially
expressed genes (DEGs) between the tumor and adjacent controls from TCGA–TSCC data
set were chosen by “edgeR” package in the R language [23]. The values of fold change and
p-value were calculated for each gene, and the genes with a log2FoldChange more than 1
and a p-value less than 0.05 were selected as DEGs.
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2.2. Selection of Grade-Associated Genes

To identify the hub genes/proteins for tumor grades, the mRNA expression levels of
DEGs were chosen to determine the genes that correlated with tumor grade. The selection
process contained two steps: (1) DEGs were chosen by differential expression analysis
among tumor grades using the Kruskal–Wallis rank-sum test (p-value < 0.05). (2) DEGs
were chosen by Pearson correlation analysis (p-value < 0.05). The filtered DEGs were
defined as grade-associated genes.

2.3. Functional Enrichment Analysis

Gene Ontology (GO) and pathway enrichment analysis were applied using the “Clus-
terprofiler” package in the R language [21]. The input data for this package were the gene
symbols of grade-associated genes, and the output were the enriched GO terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. The significantly enriched terms
and pathways were selected by the criterion: p-value < 0.05.

2.4. Identification of Survival Analysis of Hub Genes

Protein–protein interaction (PPI) networks of the grade-associated genes were con-
structed to select the hub genes/proteins. All grade-associated genes were uploaded to
the STRING website (https://string-db.org/) (accessed on 31 June 2020), and only the
interactions that came from experiments were retained. Moreover, the interactions were
defined as significant interactions when their confidence value were more than 0.7. After
obtaining the PPI network, the genes/proteins were characterized as hub genes/proteins
when their “Degree” value was more than 4. The correlations between hub genes and
prognosis of TSCC were calculated by the survival analysis.

2.5. Enrichment Scores of Immune Cell Types

Based on the expression data of TSCC samples and existing immune-related gene
signatures, an existing method, namely, the Single Sample Gene Set Enrichment Analysis
(ssGSEA) method, was used to calculate the immune cell enrichment scores of immune
cell types. The ssGSEA, derived from the GSEA method, can be implemented using the
“GSVA” package in the R language [24]. The enrichment scores were used to reflect the
infiltration degree of immune cells within a sample.

2.6. Structure-Based Virtual Screening

The virtual screening approach was used to select novel drug candidates for targeting
hub proteins. The structures of receptors (proteins) and ligands (small molecules) were
necessary input data for virtual screening. The most crucial parameter in the process of
virtual screening was the binding sites. The 3D structures of receptors and the targeting sites
in the virtual screening were from the Protein Data Bank (PDB) data set. On the other hand,
the structures of ligands were downloaded from the ZINC15 database. Virtual screening
was carried out using the LibDock module of Discovery Studio. LibDock [25] is a rigid-
based docking module, and it consists of: (1) generating small-molecule conformations; (2)
obtaining the target site of proteins (hot spot); (3) matching the target site and the small
molecule; (4) scoring the binding poses.

2.7. ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) Prediction

The quality control of drugs, such as ADMET, directly determines the potential clinical
application, and we predicted ADMET via in silicon methods. The pharmacokinetics
indicators, such as aqueous solubility and human intestinal absorption of all small molecule
drugs, were assessed by ADME application of Discovery Studio. To investigate the toxic
effect of these small molecule drugs, TOPKAT application from Discovery Studio was used
to predict the rodent carcinogenicity, developmental toxicity potential (DTP) properties,
and Ames mutagenicity.

https://string-db.org/
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2.8. Statistical Analysis and Ethics Statement

For survival analysis, the Kaplan–Meier method from the package “survival” of the R
language was selected to compare overall survival (OS) time among different groups [26].
For each hub gene, the mean values of tumor and adjacent control cohorts were compared
using the Wilcoxon rank-sum test. All mRNA expression data profiles, corresponding clini-
cal information, and 3D structures of hub proteins were retrieved from publicly available
data sets, which are free to download and analyze without limitations. Investigators of
each study obtained approval from their local ethics committee and informed consent from
patients.

3. Results
3.1. Identification of DEGs and Grade-Associated Genes

A total of 126 TSCC samples and 13 normal controls were downloaded from the TCGA
data set. A total of 3728 genes/mRNAs (1526 over-expressed and 2202 down expressed
genes) were selected by the cut-off of p-value < 0.05 and log2FoldChange > 1 (Figure 1A,B).
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Figure 1. DEG analysis: (A) Volcano plot visualizing the DEGs. The vertical lines demarcate the
log2FoldChange, values while the horizontal line marks a –log10p-value of 0.05. Red represents the
upregulated genes, while green represents the downregulated genes. (B) Heatmap of the DEGs.
The right longitudinal axis shows the clustering information of the samples. The samples were
mainly divided into two major clusters, and these two clusters were the tumor tissue and adjacent
normal tissue. (C) 883 and 1301 genes were found to be significant in Kruskal–Wallis rank-sum
test and Pearson correlation coefficient analysis, respectively. A total of 620 genes were defined as
grade-associated genes. (D) Protein–protein interaction network of grade-associated genes. The color
intensity and the size of nodes were positively correlated with the degree score. Abbreviations: DEG,
differently expressed genes; TSCC, tongue squamous cell carcinoma; TCGA, The Cancer Genome
Atlas.
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The Kruskal–Wallis rank-sum test and Pearson correlation coefficient analysis were
used to find potential drug targets that were differentially expressed among tumor grades
and positively correlated with tumor grades. Eight hundred and eighty-three and 1301 genes
were found to be significant in the Kruskal–Wallis rank-sum test and Pearson correlation
coefficient analysis, respectively (Figure 1C). A total of 620 overlapping genes were defined
as grade-associated genes (Figure 1C).

3.2. Enrichment Analysis on Grade-Associated Genes

All 620 grade-associated genes were selected to identify significantly enriched GO
terms and KEGG pathways (Table 1). Grade-associated genes were involved in the different
GO terms: (1) biological process (BP): organelle fission, nuclear division, and chromosome
degradation; (2) cellular component (CC): extracellular matrix, spindle, and collagen-
containing extracellular matrix; (3) molecular function (MF): cofactor binding, actin binding,
and coenzyme binding. Grade-associated genes were also associated with KEGG pathways,
such as cell cycle, regulation of actin cytoskeleton, and focal adhesion.

Table 1. Functional and pathway enrichment analysis of grade-associated genes in TSCC.

ID Term p-Value Count

KEGG:hsa04110 Cell Cycle <0.01 15
KEGG:hsa04810 Regulation of Actin Cytoskeleton <0.01 14
KEGG:hsa04510 Focal Adhesion <0.01 13
KEGG:hsa04512 ECM-Receptor Interaction <0.01 11
KEGG:hsa04914 Progesterone-mediated Oocyte Maturation <0.01 11
GO_BP:0048285 Organelle Fission <0.01 48
GO_BP:0000280 Nuclear Division <0.01 47
GO_BP:0007059 Chromosome Segregation <0.01 45
GO_BP:0140014 Mitotic Nuclear Division <0.01 42
GO_BP:0043062 Extracellular Structure Organization <0.01 40
GO_CC:0031012 Extracellular Matrix <0.01 41
GO_CC:0005819 Spindle <0.01 38
GO_CC:0062023 Collagen-containing Extracellular Matrix <0.01 38
GO_CC:0098687 Chromosomal Region <0.01 33
GO_CC:0000775 Chromosome, Centromeric Region <0.01 28
GO_MF:0048037 Cofactor Binding <0.01 28
GO_MF:0003779 Actin Binding <0.01 24
GO_MF:0050662 Coenzyme Binding <0.01 22
GO_MF:0005201 Extracellular Matrix Structural Constituent <0.01 19
GO_MF:1901681 Sulfur Compound Binding <0.01 18

The top five terms were selected according to the p-value and the gene count number. Abbreviations: TSCC,
tongue squamous cell carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP,
biological process; CC, cellular component; MF, molecular function.

3.3. Protein–Protein Interaction (PPI) and Hub Proteins

In Figure 1D, a PPI network was formed by the proteins from grade-associated genes.
In the network, a protein that did not have an interaction with other proteins was removed.
Six hub proteins (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were characterized
as hub proteins since their “degree” values were more than 10, which indicated that they
played core roles in the regulatory network. In addition, all six proteins were found to
be enriched in the KEGG pathway of the cell cycle (Table 1). Moreover, survival analysis
results in TSCC patients from the TCGA data set demonstrated that these hub proteins
had a negative effect on the prognosis (Figure 2A,F). In the TSCC samples from the TCGA
dataset, the mRNA expression levels of all six hub proteins were significantly higher in
cancer patients than in controls (Table 2). In order to evaluate the degree of the cell cycle of
the TSCC tumors, we proposed a cell cycle index by these six hub proteins. In the present
study, the cell cycle index was calculated by the sum of mRNA expression levels of six
hub proteins. The survival result demonstrated that the cell cycle index was a significantly
negative prognostic factor for survival time of TSCC patients (Figure 2G).
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Figure 2. Survival analysis of hub proteins and cell cycle index. (A) Survival analysis of the association between the BUB1
expression and overall survival time in the TCGA–TSCC data set. (B) Survival analysis of the association between the
CCNB2 expression and overall survival time in the TCGA–TSCC data set. (C) Survival analysis of the association between
the CDC6 expression and overall survival time in the TCGA–TSCC data set. (D) Survival analysis of the association between
the CDC20 expression and overall survival time in the TCGA–TSCC data set. (E) Survival analysis of the association between
the CDK1 expression and overall survival time in the TCGA–TSCC data set. (F) Survival analysis of the association between
the MCM2 expression and overall survival time in the TCGA–TSCC data set. (G) Survival analysis of the association
between the cell cycle index and overall survival time in the TCGA–TSCC data set. The Kaplan–Meier survival curve
revealed that high BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2 expression and the cell cycle index conferred the worst
overall survival in patients with TSCC (p < 0.05).

Table 2. Comparing mRNA expression levels of hub proteins between tumor and normal samples
groups by Wilcoxon test.

Datasets\Genes BUB1 CCNB2 CDC6 CDC20 CDK1 MCM2

TSCC (TCGA) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
GSE30784 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
GSE9844 0.23 0.019 p < 0.01 p < 0.01 0.033 p < 0.01

GSE13601 p < 0.01 p < 0.01 0.14 p < 0.01 p < 0.01 p < 0.01

3.4. Validation of Hub Genes in Independent Data Sets

Six hub proteins, including budding uninhibited by benzimidazoles 1 (BUB1), cyclin
B2 (CCNB2), cell division cycle 6 (CDC6), cell division cycle 20 (CDC20), cyclin dependent
kinase 1 (CDK1), and minichromosome maintenance complex component 2 (MCM2) were
found to be positively correlated with tumor grades of patients from the TCGA–TSCC data
set (Supplementary Materials, Figure S1A–F). In Table 2, the expression patterns of these
hub genes were validated using three independent TSCC data sets. In GSE30784, tumor
samples expressed higher levels of all six hub genes. In GSE9844, the expression levels of
five hub genes were found to be higher in tumor tissues. In GSE13601, five of six hub genes
had higher expression levels in tumor tissues.

3.5. Correlation of Hub Genes with Immune Cell Enrichment Scores

These hub genes were also found to be significantly correlated with immune cell en-
richment scores (Figure 3). For activated CD4 T cells and Type 2 helper cell, the associations
are positive. On the contrary, a variety of immune cells, such as dendritic cells, neutrophils,
and CD8 T cells, exhibited a significant negative correlation with these hub genes. The
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impact of these hub genes on the results of treatment and prognosis of immune checkpoint
inhibitors (atezolizumab/anti-PD-L1) were validated in the independent data set. The
expression levels of these six hub genes were higher in the drug-responsive group than the
drug-non-responsive group (Figure 4). Patients with high BUB1 and MCM2 expression
levels showed a better prognosis than the low expression group (Supplementary Materi-
als, Figure S2A–F). The high level of cell cycle index was correlated with higher efficacy
(Figure 5A) and better prognosis (Figure 5B) of atezolizumab/anti-PD-L1. These results
were opposite to the survival results from the TCGA–TSCC cohort (Figure 2).
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Figure 4. The correlation between the mRNA expression levels of hub proteins with the drug response to immunotherapy
(atezolizumab/anti-PD-L1) in the validation data set (Imvigor210). (A) The box plot revealed that high BUB1 expression
was associated with the better response to immunotherapy (p < 0.05). (B) The box plot revealed that high CCNB2 expression
was associated with the better response to immunotherapy (p < 0.05). (C) The box plot revealed that high CDC6 expression
was associated with the better response to immunotherapy (p < 0.05). (D) The box plot revealed that high CDC20 expression
was associated with the better response to immunotherapy (p < 0.05). (E) The box plot revealed that high CDK1 expression
was associated with the better response to immunotherapy (p < 0.05). (F) The box plot revealed that high MCM2 expression
was associated with the better response to immunotherapy (p < 0.05). Abbreviation: CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease.
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Figure 5. Validation of the cell cycle index (sum of the expression levels of hub genes). (A) The response to immunotherapy
(atezolizumab/anti-PD-L1) was related to high expression of the cell cycle index. (B) The patients with high a cell cycle
index were correlated with a better prognosis. Abbreviation: CR, complete response; PR, partial response; SD, stable disease;
PD, progressive disease.

3.6. Virtual Screening of Compounds

To select the small molecules that could interact with these hub proteins, the virtual
screening method was used. Among these six hub proteins, the structure of CDC20,
CDK1, and MCM2 were downloaded from Protein Data Bank (PDB) dataset (Figure 6A-C).
The binding sites of these hub proteins were obtained from their PDB files and defined
as SER377:HIS380 (CDC20), ALA145:PHE147 (CDK1), and PRO525:GLN531 (MCM2).
The structure-based virtual screening using Libdock application of discovery studio was
performed on 1615 FDA-approved small molecule drugs. A total of 541, 841, and 1591 small
molecule drugs had high binding affinities to CDC20, CDK1, and MCM2, respectively.
9 drugs were exhibited in Table 3 since they had the highest Libdock score.

Table 3. The compounds with the highest Libdock score.

Protein ZincID Libdock Score

CDC20 ZINC3799072 116.1
CDC20 ZINC100052685 105.9
CDC20 ZINC3785268 105.6
CDK1 ZINC8214703 126.7
CDK1 ZINC21297660 113.4
CDK1 ZINC601250 111.8
MCM2 ZINC28232755 171.2
MCM2 ZINC85537014 166.8
MCM2 ZINC28639340 161.7
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Figure 6. 3D structures of hub proteins (A) CDC20, (B) CDK1, and (C) MCM2. In the structure of each protein, secondary
structures were represented by colors (β-sheets: red; coil: blue; α helix: brown). The docking structure of hub proteins
and the compounds: (D) ZINC100052685 with CDC20, (E) ZINC8214703 with CDK1, and (F) ZINC85537014 with MCM2.
The proteins, compounds, and hydrogen bonds were colored by blue, red, and yellow colors, respectively. Schematic of
intermolecular interaction of the predicted binding modes of (G) ZINC100052685 with CDC20, (H) ZINC8214703 with
CDK1, and (I) ZINC85537014 with MCM2.

3.7. Pharmacologic Properties of Compounds

The Pharmacologic properties and toxicity results of all small-molecule drugs are
provided in Tables 4 and 5: (1) nine small molecules were soluble; (2) four small-molecules
CYP2D6 inhibitors; (3) three small molecules were toxic in hepatotoxicity; (4) six small
molecules had a good absorption level; (5) three small molecules (i.e., ZINC100052685,
ZINC8214703, and ZINC85537014) were predicted to be non-toxic in developmental poten-
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tial. Therefore, ZINC100052685, ZINC8214703, and ZINC85537014 were selected as safe
compounds. Two, 6, and 4 hydrogen bonds were found in the ZINC100052685-CDC20
(Figure 6D), ZINC8214703-CDK1 (Figure 6E), and ZINC85537014-MCM2 (Figure 6F) com-
plex. Fourteen, 15, and 14 van der Waals interactions were found in the ZINC100052685-
CDC20 (Figure 6G), ZINC8214703-CDK1 (Figure 6H), and ZINC85537014-MCM2 (Figure 6I)
complex.

Table 4. Adsorption, distribution, metabolism, and excretion properties of compounds.

Compounds Solubility
Level

BBB
Level CYP2D6 Hepatotoxicity Absorption

Level
PPB

Level

ZINC3799072 3 2 1 0 0 1
ZINC100052685 2 4 0 0 1 1
ZINC3785268 3 2 1 0 0 1
ZINC8214703 3 4 0 0 0 1
ZINC21297660 3 3 0 0 0 1
ZINC601250 1 0 1 1 1 1
ZINC28232755 1 4 0 0 3 0
ZINC85537014 3 4 1 1 2 0
ZINC28639340 3 4 0 1 2 1

Abbreviation: BBB, blood–brain barrier; CYP2D6, cytochrome P-450 2D6; PPB, plasma protein binding. Aqueous-
solubility level: 0, extremely low; 1, very low, but possible; 2, low; 3, good. BBB level: 0, very high penetrant; 1,
high; 2, medium; 3, low; 4, undefined. CYP2D6 level: 0, noninhibitor; 1, inhibitor. Hepatotoxicity: 0, nontoxic; 1,
toxic. Human-intestinal absorption level: 0, good; 1, moderate; 2, poor; 3, very poor. PPB: 0, absorbent weak; 1,
absorbent strong.

Table 5. Toxicities of compounds.

Compounds Mouse NTP
(Female)

Mouse NTP
(Male)

Rat NTP
(Female)

Rat NTP
(Male) Ames DTP

ZINC3799072 0 0 0 0 0 1
ZINC100052685 0 0 0 0 0 0

ZINC3785268 0 0 0 0 0 1
ZINC8214703 0 0 0 0 0 0

ZINC21297660 0 1 0 1 0 1
ZINC601250 0 1 0 0 0 1

ZINC28232755 0 0 0 0 0 1
ZINC85537014 0 0 0 0 0 0
ZINC28639340 0 0 0 0 0 1

NTP, US National Toxicology Program; DTP, developmental toxicity potential. NTP: 0 (noncarcinogen); 1
(carcinogen). Ames: 0 (non-mutagen); 1 (mutagen). DTP: 0 (nontoxic); 1 (toxic).

4. Discussion

Although recent advances in therapeutic strategies, such as surgical treatment and
chemotherapy, are applied, the mortality of TSCC patients with high-grade tumors is still
relatively high [6]. In the present study, computational methods were used to select six hub
proteins positively associated with tumor grade. After validation in three independent
data sets, these six hub proteins were found to be robustly and highly expressed in TSCC
samples. Patients with a high cell cycle index (sum of mRNA levels of six hub proteins) had
a tendency to be more responsive to immunotherapy. Structure-based virtual screening
was used to identify the compounds for targeting the hub protein. Thus, our study
revealed the biomarkers related to tumor grades and proposed potential therapies such as
immunotherapy and compounds for TSCC patients with high-grade tumors using these
biomarkers.

In the current study, six hub proteins screened in the TCGA–TSCC data set were then
verified using the three independent TSCC GEO data sets. We further analyzed the effect
of these six hub genes on the prognosis of TSCC patients and their interaction networks.
These six hub proteins were found to be enriched in the cell cycle pathway. BUB1 has a
crucial role in mitosis [27], and over-expressed BUB1 contributes to tumor formation [28].
CCNB2 is one of the essential components of the cell cycle regulatory machinery [29]. Cell
division cycle 6 (CDC6) overexpression promotes DNA hyper-replication [30]. Knockdown
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of CDC6 slowed cancer cell growth, altered cell cycle progression, and inhibited cell
proliferation [31]. Tongue cancer patients with high expression of CDC20 demonstrated a
worse prognosis [32], and CDC20 inhibitors were thought to be promising strategies for
cancers [33]. A high level of CDK1 expression was positively associated with tumor grades
of tongue cancer and negatively correlated with the survival time [34]. The levels of MCM2
mRNA were significantly elevated in tongue cancer compared to normal controls [35]. In
addition, the reduced expression of MCM2 could improve the drug response of chemical
drugs [36].

The high expression of PD-1 and its cognate ligands PD-L1/PD-L2 could suppress
T cell activation/proliferation [37]. Cancer cells could cause overstimulation of the PD-
1/PD-L1 signaling pathway to suppress T cell activation/proliferation and antigen-specific
T cell immune response, thereby bypassing immune surveillance and enhancing cancer
cell survival [38]. PD-1/PD-L1 antibodies could block this pathway, increase immune
cell proliferation, and enhance the efficacy of the body’s natural antitumor surveillance
system [38]. Six PD-1/PD-L1 antibodies have been approved with supplemental indications
across 19 cancer types and two tissue-agnostic conditions [37]. However, the response rate
to PD-1 and PD-L1 antibodies was only approximately 20% in most solid tumors. Several
biomarkers, such as tumor mutational burden (TMB) and the level of PD-1/PD-L1, have
been proposed to be predictors of immunotherapy outcomes. However, there are some
disadvantages to these biomarkers. For example, the expression level of PD-L1 is unstable
because it can be affected by mTOR inhibitors. The precise TMB result is only originated
from whole-exome sequencing results that require more time and money [39]. In order to
solve this problem, some articles provided to identify different immune subtypes by these
prevalent biomarkers [40]. Epithelial-to-mesenchymal transition (EMT) is characterized by
the epithelial dedifferentiation to the mesenchymal phenotype [41]. The expression levels
of EMT-related genes are correlated with lower response rates and worse prognosis to
immunotherapy [42]. However, the disadvantages of these prevalent biomarkers suggested
that novel robust biomarkers are needed. A previous study found that 10 cell proliferation
genes, including BUB1, CCNB2, and CDK1, could act as indicators for response to immune
checkpoint inhibitors in PD-L1 negative renal cell carcinoma [43]. In the present study,
the six hub proteins were found to be negatively correlated with most immune cell types
such as CD4 T cell, B cell, and CD8 T cell (Figure 3). These results suggest that the T
cell activation/proliferation is suppressed in the sample with high expression of six hub
proteins. Another study also found that cell cycle biomarkers, such as CDK1 and CCNB2,
were positively correlated with the levels of immunotherapy indicators such as PD-1, PDL-
1, and CTLA-4 [44]. Therefore, the six hub proteins might contribute to the T-cell exhaustion
and tumor survival via regulating PD-1/PD-L1 signaling [44], and this regulation could be
blocked in the treatment of PD-1/PDL-1 antibodies. However, further research into these
mechanisms is required.

Although the six hub proteins and cell cycle index had negative impacts on the
prognosis of cancer patients with the treatment of chemotherapy and surgery (Figure 2),
they were positively associated with drug response and prognosis of cancer patients with
the treatment of immunotherapy (Figures 4 and 5). These results suggest that the six hub
proteins and cell cycle index could be used as biomarkers for the selection of appropriate
cancer patient candidates for receiving immunotherapy. The patients with high expression
levels of the six hub proteins and cell cycle index are more likely to have a drug response to
PD-1/PD-L1 antibodies. The expression levels of these six hub proteins could be detected
before the clinical application of PD-1/PD-L1 antibodies. These results and conclusions are
crucial for indicating the use of immunotherapy on TSCC patients and also contribute to
the prognosis of patients with a higher cell cycle index.

We also selected the potential small molecule drugs targeting cell cycle index pro-
teins. Three small-molecule drugs (i.e., ZINC100052685, ZINC8214703, and ZINC85537014)
could firmly bind to the active site cavity of the cell cycle hub proteins. The results of
pharmacological properties also indicated that they had the potential to act as anti-tumor
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agents. ZINC100052685, namely, iloprost, is capable of affecting platelet aggregation and
treating pulmonary arterial hypertension [45]. Iloprost could reduce the expression of
matrix metallopeptidase-2 and then attenuate ovarian cancer progression [46]. Iloprost
could also improve endobronchial dysplasia and prevent the development of lung can-
cer. ZINC8214703, namely, unoprostone, could reduce intraocular pressure and treat
glaucoma [47]. ZINC85537014, namely, cobicistat, has the ability to treat human im-
munodeficiency virus (HIV) infection [48] and increase the response rates of anticancer
drugs [49]. Because of the anticancer properties of iloprost and unoprostone, these two
small molecules might be new drug candidates for TSCC patients [50]. In conclusion,
ZINC100052685, ZINC8214703, and ZINC85537014 could be promising drug candidates
for patients with high-grade TSCC tumors. However, these results need more experimental
studies to validate.

5. Conclusions

The present study identified six hub proteins related to tumor grades, and we con-
structed the cell cycle index by mRNA expression levels of these hub proteins. Our research
found that patients with higher a cell cycle index had a better prognosis after the treatment
of immunotherapy. In addition, we found that the three compounds could firmly target
these hub proteins. In summary, this research might contribute to providing novel therapies
and improving the prognosis of TSCC patients with high-grade tumors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11080813/s1, Figure S1: Expression pattern of hub genes in different tumor grades from
TCGA-TSCC patients. (A–F) The results re-vealed that six hub proteins (BUB1, CCNB2, CDC6,
CDC20, CDK1, and MCM2) were positively correlated with tumor grades (p < 0.05). Figure S2:
Survival analysis of the association between the expression of hub genes and overall survival time in
the validation dataset (Imvigor210). (A–F) The Kaplan-Meier survival curve revealed that high BUB1
and MCM2 expression conferred better overall survival in patients with TSCC (p < 0.05).
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Abbreviations

TSCC Tongue squamous cell carcinoma
OSCC oral squamous cell carcinoma
TCGA The Cancer Genome Atlas
CDKs cyclin-dependent kinases
DEGs differentially expressed genes
PPI protein–protein interaction
ORR objective response rate
KEGG Kyoto Encyclopedia of genes and Genomes
GO Gene Ontology
BP biological process
CC cellular component
MF molecular function
OS overall survival
ssGSEA single sample gene set enrichment analysis
PDB Protein Data Bank
ADMET adsorption, distribution, metabolism, excretion, and toxicity
DTP developmental toxicity potential
BUB1 budding uninhibited by benzimidazoles 1
CCNB2 cyclin B2
CDC6 cell division cycle 6
CDC20 cell division cycle 20
CDK1 cyclin dependent kinase 1
MCM2 minichromosome maintenance complex component 2
TMB tumor mutational burden
EMT epithelial-to-mesenchymal transition
HIV human immunodeficiency virus
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