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There is undeniable evidence showing that bacteria have strongly influenced the evolution

and biological functions of multicellular organisms. It has been hypothesized that many

host-microbial interactions have emerged so as to increase the adaptive fitness of the

holobiont (the host plus its microbiota). Although this association has been corroborated

for many specific cases, general mechanisms explaining the role of the microbiota in

the evolution of the host are yet to be understood. Here we present an evolutionary

model in which a network representing the host adapts in order to perform a predefined

function. During its adaptation, the host network (HN) can interact with other networks

representing its microbiota. We show that this interaction greatly accelerates and

improves the adaptability of the HN without decreasing the adaptation of the microbial

networks. Furthermore, the adaptation of the HN to perform several functions is possible

only when it interacts with many different bacterial networks in a specialized way (each

bacterial network participating in the adaptation of one function). Disrupting these

interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none

of the networks the holobiont consists of can perform their respective functions. By

considering the holobiont as a unit of selection and focusing on the adaptation of the host

to predefined but arbitrary functions, our model predicts the need for specialized diversity

in the microbiota. This structural and dynamical complexity in the holobiont facilitates its

adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or

even detrimental to the holobiont’s evolution. To our knowledge, this is the first model

in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem

emerge as a result of coevolution. It also helps us understand the emergence of complex

organisms, as they adapt more easily to perform multiple tasks than non-complex ones.

Keywords: holobiont, coevolution, microbiome, symbiosis, complex networks, adaptability, microbiota diversity

INTRODUCTION

It has been firmly established during the last decade that the microbiota of a multicellular host
strongly influences its evolution and adaptation (Ley et al., 2008; Zilber-Rosenberg and Rosenberg,
2008; Rosenberg et al., 2010; Brucker and Bordenstein, 2013; Andrew et al., 2016; Rosenberg and
Zilber-Rosenberg, 2016; Sharpton, 2018). In turn, the host’s ability to interact with other organisms
and modify its environment to its advantage can guide the composition of its microbiota (Mai,
2004; Spor et al., 2011; Yatsunenko et al., 2012; Moeller et al., 2014). For instance, the human
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microbiota plays an important role in many fundamental
physiological functions, such as the development of the
immune system (Hooper et al., 2012), degradation of fiber
and metabolization of fats and carbohydrates (Krajmalnik-
Brown et al., 2012), regulation of bone density (McCabe
et al., 2015), metabolization of drugs (Wilson and Nicholson,
2017) and control of infections by pernicious bacteria like
Clostridium difficile (Rupnik et al., 2009; Van Nood et al., 2013;
Seekatz and Young, 2014). A state of imbalance in the human
microbiota, known as dysbiosis, has been correlated with diseases
(Cho and Blaser, 2012) such as obesity (Ley et al., 2006b;
Ley, 2010), inflammatory bowel disease (Morgan et al., 2012;
Halfvarson et al., 2017), cancer (Farrell et al., 2011; Zackular
et al., 2013; Francescone et al., 2014; Sears and Garrett, 2014;
Contreras et al., 2016; Yang et al., 2017) and even neurological
disorders as schizophrenia and autism (Gonzalez et al., 2011;
Rogers et al., 2016). The system consisting of the host and
its microbiota, known as holobiont, exhibits the unequivocal
existence of symbiotic relationships between microbes and
multicellular organisms (Theis et al., 2016). Given these complex
interdependencies, the holobiont has been proposed to function
as a single evolutionary unit (Gilbert et al., 2012; Gordon
et al., 2013; Guerrero et al., 2013; Bordenstein and Theis, 2015;
Theis et al., 2016; Roughgarden et al., 2018). This is because
environmental changes may impose selective pressures on the
host which in turn will affect its microbiota (for a recent review
see Roughgarden et al., 2018). In the light of these findings, it
has been suggested that evolutionary theories have to be either
reformulated or expanded in order to account for the adaptability
of the holobiont as an evolutionary unit (Laland et al., 2014;
Ereshefsky and Pedroso, 2015; VanOpstal and Bordenstein, 2015;
Sandoval-Motta et al., 2017). Whether the holobiont is or is
not an evolutionary unit is still a matter of debate (Moran and
Sloan, 2015; Douglas and Werren, 2016; Doolittle and Booth,
2017; Doolittle and Inkpen, 2018). However, here we show that
selective pressures applied to the host and its associated microbes
taken as whole, can help us explain how symbiotic relationships
in holobionts arose and are currently maintained.

Examples of the influence that microorganisms have had on
the adaptation of their hosts range from cases in which microbes
help the host to perform specific non-essential functions, to
cases in which microbes have completely substituted essential
functions of the host (Sagan, 1967; Zilber-Rosenberg and
Rosenberg, 2008; Queller and Strassmann, 2016; Roughgarden
et al., 2018). Nevertheless, the specific mechanisms by which
this influence is carried on are not yet known. Particularly,
what are the general benefits that the microbiota provides
to the host during its evolution is still an open question. A
possible answer to it is that the adaptation time of the host
to face new environmental challenges is considerably reduced
due to the great diversity and plasticity of its microbiota
(Zilber-Rosenberg and Rosenberg, 2008; Rosenberg and Zilber-
Rosenberg, 2016). This hypothesis assumes that the emergence
of strong symbiotic relationships between the host and its
microbiota occurs at the genetic and metabolic levels, for only
in this way changes occurring in the microbiota can rapidly
propagate to the host’s metabolism and affect its adaptability.

Indeed, recent evidence shows that the microbiota can regulate
metabolic pathways and gene expression patterns of its host,
and due to this interaction the host can properly perform cell
differentiation, tissue formation, nutrition and other important
functions (Hooper et al., 2001; Rawls et al., 2004; Bates et al., 2006;
Shin et al., 2011; Nicholson et al., 2012; Camp et al., 2014).

It has been proposed that natural selection operating
at the Host-level promotes stable and redundant microbial
societies, whereas selection operating at the microbial level
promotes functional specialization of their component species
(Ley et al., 2006a). Despite all the knowledge we have now
on human associated microbial communities, we still do not
fully understand the evolutionary forces behind the diversity
observed in our microbiota. On the one hand, the most abundant
ecological relationship between microbial species is competition
(Foster and Bell, 2012; Coyte et al., 2015; Moran and Sloan,
2015; Douglas and Werren, 2016), which often leads to uniform
microbial communities where just a few species dominate the
whole environment. On the other hand, it has been shown that
purely mutualistic interactions lead to unstable communities as
their diversity increases. These observations are at odds with the
great diversity and stability observed in the microbiota of most
plants and animals. Maintaining this diversity is fundamental
for the survivability of the host, as it is known that a loss in
the microbiota’s diversity may produce severe dysbiosis that can
result in host diseases or even death (Blaser and Falkow, 2009;
Turnbaugh and Stintzi, 2011; Cho and Blaser, 2012; Fernández
et al., 2013; Lloyd-Price et al., 2016; Blaser, 2017). An observation
that circumvents this caveat is that multicellular organisms have
developed different mechanisms to maintain the equilibrium
between its diverse microbial communities. These mechanisms
tend to compartmentalize the microbes in separate niches while
reducing the interactions between microbes in the same niche
(Grice and Segre, 2011; Donaldson et al., 2015; Deines et al., 2017;
Tropini et al., 2017; Roughgarden et al., 2018). Understanding
why microbial diversity is necessary for the evolution and
adaptation of the host, and why disease arises when such diversity
is lost, is a fundamental question with still no definitive answer.

To address these questions, we adopt the hypothesis that
the holobiont constitutes a unit of selection in evolution and
explore its consequences. We present an evolutionary population
model in which the biological functions of organisms are
encoded in the Boolean dynamics of regulatory networks. In
our model, a host is represented as a Boolean network that
needs to evolve in order to adequately perform a predefined
task (or function). This is equivalent to the host acquiring a
new phenotype in order to cope with a new environmental
challenge. A population of such host networks is evolved in a
way that each host network can establish regulatory interactions
with a set of microbial species, each one represented also by a
network. The main difference between the microbial and host
networks is that due to the faster duplication rates of microbes,
the generation of mutants is at least one order of magnitude
larger in the microbial networks than in the host. Mutants,
as explained in detail in the Materials and Methods section
(M&M), are simulated by rewiring the connections of their
network, or by altering their functionality. As we are dealing with
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evolutionary dynamics, it is important to mention that we will
only consider host-microbe interactions that can be transmitted
across generations. This is based on the fact that in many species,
parents directly transmit their microbiota to their offspring or
they construct environments with a stable microbial composition
that bias the microbial composition of their progeny (Rosenberg
et al., 2010; Fitzpatrick, 2014). Another important assumption
in our model is the persistence across generations of the host-
microbe interactions developed throughout the evolution of the
holobiont, which is a necessary condition for natural selection to
operate (Doolittle and Booth, 2017). Additionally, we implement
the “It’s the Song not the Singer” approach proposed by Doolittle
(Taxis et al., 2015; Doolittle and Booth, 2017; Doolittle and
Inkpen, 2018) by preserving throughout the evolution of the
holobiont, those regulatory connections that contribute to the
host’s adaptation to perform a predefined but otherwise arbitrary
dynamical function. The conservation of the dynamical function
across generations occurs regardless of the specific host-microbe
network interactions that are contributing to the adaptation
process.

Our evolutionary model is based on the Boolean network
model introduced by S. Kauffman (presented in the M&M
section) to describe gene regulation and cell differentiation
processes (Kauffman, 1969a,b). During the last 20 years, it
has been shown that this model adequately captures the main
aspects of gene regulation dynamics. For instance, Boolean
networks are able to reproduce gene expression patterns and
metabolic pathways experimentally observed in organisms such
as Arabidopsis thaliana (Espinosa-Soto et al., 2004), Drosophila
melanogaster (Albert and Othmer, 2003), yeast (Li et al., 2004;
Davidich and Bornholdt, 2008), human epithelial cells (Huang
et al., 2005) and murine blood progenitor cells (Hameya et al.,
2017) among others. Additionally, Huang et al. experimentally
showed that the dynamical attractors of a Boolean network
correspond to different cell types or cell fates (Huang et al.,
2005). Because of this evidence, we use Boolean networks to
represent the gene regulation networks of both the hosts and
their microbes. Since we are interested in general principles
about the emergence of symbiotic interactions, we use random
networks instead of carefully constructed ones corresponding
to specific organisms. Although the gene regulatory network of
an organism greatly determines its phenotype (Davidson and
Levine, 2008; Oliveri et al., 2008), it is known that several
functions depend more on the general structure of the network
than on the specific genes involved (Wagner, 2007). Therefore,
using random Boolean networks in our population model has the
advantage of determining the capability of the network to acquire
new functions throughout its evolution regardless of its detailed
composition (Davidson, 2010). This function-centered approach
is consistent with the fact that a core microbiome is more likely to
be identified based on functionalities rather than on the particular
phylogenetic details of its species (Consortium, 2012; Taxis et al.,
2015; Doolittle and Booth, 2017; Doolittle and Inkpen, 2018). We
describe in detail the Boolean network model in M&M section.

Simulations of this evolutionary model show that the
adaptation of the host network is greatly enhanced when it
interacts with the microbial networks, which are the ones

that absorb most of the mutations without changing their
own adaptation. Additionally, the host network can improve
its adaptation to perform multiple functions only if the set
of microbial networks is partitioned into specialized subsets
(niches), each one participating in the host’s adaptation to a small
number of functions. This specialization provides the holobiont
with a structural and dynamical complexity that facilitates
its evolution, whereas non-specialized microbiota is shown to
be either inconsequential or detrimental to the holobiont’s
adaptation. Once the holobiont is adapted, the disconnection
of one or more of these specialized niches leads a global
incompetence to perform the required set of imposed tasks.
This is reminiscent of the dysbiosis observed in real organisms
when their microbiota’s diversity is reduced. To our knowledge,
this is the first model in which symbiotic interactions, diversity,
specialization and dysbiosis in an ecosystem emerge as a result
of coevolution. It also helps us understand the emergence of
complex organisms, as they adapt more easily than unstructured
ones.

MODEL AND RESULTS

Task Assignment
Following the work by Stern (1999), in order to define a task for
the Boolean network we start by arbitrarily selecting a subset of
Ns nodes that we call signal nodes, {σs1 , σs2 , . . . , σsNs }, from which
we extract the output signal R(t) defined as (see Figure 1A)

R (t) =

Ns
∑

i=1

σsi (t) . (1)

Assigning a task to the Boolean network consists in requiring
that the output signal R (t) approximates as much as possible a
predefined target function (or task) F (t) (see Figure 1B). In our
model F (t) is an arbitrary function such that 0 < F (t) < Ns

for 1 ≤ t ≤ tm, where tm = 15 is the number of time
steps of the assigned task. We set tm = 15 because this is the
average number of time steps it takes for the network to stabilize
its dynamics (see Figure S1). In biological terms, the task F(t)
would represent an expression pattern some genes must acquire
in order for the organism to efficiently respond to a particular
environmental challenge (like yeast responding to a heat shock).
Since the networks are randomly constructed, it is expected that
initially none of them have this response (their output signal
R(t) and the task F(t) are usually different at the start of the
simulation, see Figure 1B). Therefore, it is necessary to evolve
the networks so that R(t) approaches F(t) as much as possible,
as in Figure 1C. It is only through a series of mutations and
adaptations that the phenotype R(t) will approach F(t) in some
individuals, and then be transmitted to their offspring.

Throughout this work we use networks with N = 50
nodes, average connectivity K = 2 and Ns = 12 signal
nodes (except in some figures where smaller networks are
presented for illustrative purposes). The reason for this choice
of parameters is the following. It has been observed that genetic
networks of several real organisms are structured in functional
modules, each one consisting of a few dozen genes or nodes
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FIGURE 1 | Boolean Network Task. (A) Network with N = 12 nodes and

Ns = 4 signal nodes (represented as green squares), which generate the

output signal R(t) that has to converge to the task F (t). (B) Initially, the

untrained network produces an output signal R(t) (green curve with squares)

very different from the target function F (t) (blue curve with circles). (C) After the

evolutionary process, the network is well adapted to perform the task. In this

example, only one point of the output signal R(t) acquires a wrong value in the

time interval 1 ≤ t ≤ 15 in which the task F (t) is evaluated. (D) Average

population error ξ̄H as a function of the number of generations g, for a

population with P = 100 networks, each having N = 50 nodes and Ns = 12

signal nodes. Note that ξ̄H decreases and crosses the adaptation threshold

δA = 1 approximately at generation g = 350, after which most of the networks

in the population become well adapted to the task F (t).

(Resendis-Antonio et al., 2012). For instance, adaptive resistance
to antibiotics in Escherichia coli is mediated by the MarA-AcrAB-
TolC system which, when activated, produces efflux pumps that
pump toxic molecules in the intracellular fluid out of the cell,
keeping the internal antibiotic concentration below lethal levels.
Activation of this system is controlled by a regulatory network
consisting of about 15 nodes (Motta et al., 2015). Analogously,
the cAMP-dependent protein kinase regulatory network (PKA-
RN), which regulates (among other things) the stress response
in Saccharomyces cerevisiae, consists of 15 nodes (Pérez-Landero
et al., 2015). There are manymore examples showing that specific
cellular functions (such a the response to a given environmental
challenge) are controlled by network modules composed of a few
dozen nodes (Guo et al., 2016; Ma et al., 2017). Since in this work
we are not considering any specific organism, we will assume in
a generic way that the task F(t) that the network has to acquire
is encoded in Ns = 12 nodes, which in turn are embedded in a
module of N = 50 nodes.

Finally, we perform all our simulations using Kauffman
networks with connectivity K = 2 for two main reasons. First,

these networks are trained faster than networks with connectivity
smaller or larger than K = 2 (see Figure S2). A second,
more fundamental reason is that networks with K = 2 exhibit
critical dynamics, which means that their dynamical behavior
is at the brink of a phase transition between order and chaos
(Derrida and Pomeau, 1986; Aldana, 2003). Dynamical criticality
confers the system interesting properties such as evolvability
(i.e., the coexistence of robustness and adaptability) (Aldana
et al., 2007; Torres-Sosa et al., 2012), faster information storage,
processing and transfer (Langton, 1990; Nykter et al., 2008),
and collective response to external stimuli without saturation
(Kinouchi and Copelli, 2006), (or shorter training times, as in our
case, see Figure S2). There is solid evidence indicating that gene
regulatory networks of real organisms are dynamically critical
or close to criticality (Shmulevich et al., 2005; Serra et al., 2007;
Balleza et al., 2008; Daniels et al., 2018). Therefore, by choosing
K = 2 we are working with a representative ensemble of
networks that have an important dynamical property observed
in real organisms.

Host Network Evolution
We consider a population of P = 100 networks, represented
as {H1,H2, . . . ,HP}, which have to perform the same task F(t).
We will refer to these networks as the host networks (HNs).
At the start of the simulation all the HNs are identical replicas
of one randomly constructed network. To make the output
signal of the HNs approach the task F(t) we implement a
traditional evolutionary algorithm in which the networks are
mutated, selected and replicated. Variability in the population is
implemented by mutating the HNs with a mutation rate µH =

0.001 per node per network per generation. Once a node σn of
a given network Hi has been chosen for mutation, we perform
any of the following changes with equal probability: (i) Randomly
rewire one of the input or output connections of σn. (ii) Add a
new input (or output) connection to σn from (or to) a randomly
chosen node in the network. (iii) Remove one input or output
connection of σn. (iv) Change one of the entries of the logical
function fn associated to σn.

The mutations described above can make each network Hi

get closer to the task F(t) or get away from it. To measure the
adaptation of the HNs to the task we denote as Ri(t) the output
signal of the network Hi and define its adaptation error ξHi as

ξHi = (tm)−1
tm
∑

t=1

(

Ri(t)− F(t)
)2
. (2)

Clearly, if ξHi = 0 then the network Hi is perfectly trained
(adapted) to perform the task F(t), whereas large values of ξHi
indicate a poor adaptation. Therefore, when a mutation occurs
such that ξHi decreases, the adaptation of Hi increases and
viceversa. We will say that the network Hi is well adapted to its
task when ξHi ≤ δA, where δA is the adaptation threshold. We
set δA = 1, which means that at most one node out of the Ns

signal nodes is allowed to deviate one unit from the correct value
at every time step during the interval 1 ≤ t ≤ tm over which
the task F(t) is evaluated (see Figure 1C). The average population
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error, defined as ξ̄H = 1
P

∑P
i=1 ξHi , measures the adaptation of

the entire population to the task F(t).
In each generation we mutate the HNs in the population with

the mutation rate µH . Then, we choose the 10 best networks
(those whose errors ξHi have the lowest values) to get through
the next generation while the other 90 networks are removed
from the simulation. These 10 networks are replicated by making
9 copies of each one in order to restore the population to its
original size P = 100. This evolutionary process is repeated until
the population crosses the adaptation threshold. A “generation”
consists in a full round of mutation, selection and replication
processes. Figure 1D shows that the average population error
ξ̄H decreases throughout generations. This is expected since at
each generation we select the networks that minimize the error.
From Figure 1D we see that it takes about 350 generations for
the average population error of hosts networks to cross δA and
become well adapted to the task (see also Movie S1). We have
performed simulations with smaller values of the adaptation
threshold: δA = 0.5 and δA = 0.2, and the results are qualitatively
the same. The only difference is that the smaller the value of δA,
the longer the computing time for the average population error
ξ̄H to cross this threshold (see Figure S3). The results presented
in Figure 1D correspond to a population of HNs evolving by
themselves, i.e., without interacting among them or with other
networks. We refer to this case as the control case.

Interaction With the Microbiota: Holobiont
Evolution
To model the interaction between the host organism and its
microbiota we allow the training of each host network H to be
assisted by a set of PM other networks, B =

{

M1,M2, . . . ,MPM

}

,
each one representing a microbial network (MN). We will refer
to the set B as the microbiota, and to the set L = {H,B} =
{

H,M1, . . . ,MPM

}

, as the holobiont.
Each microbial network Mj ∈ B also has to perform a

predefined task FMj (t), which is an arbitrary function constructed

in the same way as the host-network task F(t). The microbial
tasks FM1 (t), . . . , FMPM (t) are different from each other and from
F(t). Before the training of H begins, each Mj ∈ B is previously
trained to be well adapted to its own task FMj (t). This means that

all the microbial errors ξMj satisfy, from the very beginning, the

well-adapted condition ξMj < δA (as in Figure 1D; the microbial

error ξMj is defined similarly as in Equation (2); see the M&M

section for the precise definition). Thus, at generation g = 0
the holobiont consists of the untrained host network H and a
set of well adapted MNs. The evolution of the holobiont then
proceeds with the adaptation of H to its task and allowing it to
interact (as described below) with MNs that already have their
own interests. The rationale behind this initial setup is twofold.
First, allowing the training of H to be assisted by well-adapted
MNs captures the fact that at any moment during its evolution,
the host organism can recruit from the environment microbial
populations already adapted to their environments and able to
carry out some functions by their own. Second, we want to
determine whether evolutionary conflict emerges between the
host and microbial networks when the holobiont evolves as a

unit of adaptation, as has been pointed out in Moran and Sloan
(2015) and Douglas andWerren (2016). Such a conflict would be
apparent in our simulations if a reduction of the host-network
error ξH occurs with a simultaneous increase in the average
microbial error ξ̄M , or viceversa.

The interaction between H and its microbiota B is
implemented as follows (see Figures 2A,B). Consider the case
where a given node σn of H has been chosen for mutation such
that a new input (output) connection is to be added. Then this
new connection can be selected with equal probability either
within H itself or from any of the microbial networks Mj ∈

B. Likewise, when a given node of a microbial network Mj is
mutated so as to receive a new connection (either input or
output), the new connection can be established within Mj itself,
with H or with any other microbial network Mk ∈ B. This
allows the emergence of regulatory interactions between all the
networks that constitute the holobiont.

For the adaptation of H to its task we consider the evolution
of a population of P = 100 holobionts. Throughout the
evolutionary process all the networks in each holobiont undergo
the same kind of randommutations described in the section Host
Network Evolution (with the possibility of interactions across
networks, as mentioned in the previous paragraph). However, in
our simulations the mutation rate µM for the MNs is ten times
larger than the mutation rate µH for the host network, namely
µM = 10µH . This captures the fact that bacterial colonies, due
to their high reproduction rates, develop mutants at least ten
times faster than populations of eukaryotic cells in multicellular
organisms (Lynch, 2010; Lynch et al., 2016). It is important to
emphasize that in our model each network in the holobiont has
to be considered not as representing a single cell, but an entire cell
population. In each generation, holobionts are ranked according
to their error ξL, and the ten with the smallest errors are selected
for reproduction (see M&M). In all further simulations the unit
of selection is the holobiont, as in each generation we select the
ten best holobionts (based on the error ξL that takes into account
the host and microbial errors) and replicate them.

Figure 2C shows the average population error ξ̄H of the
host network H across generations for holobionts as well as for
the control case (host networks evolving by themselves without
interacting with microbial networks). In the simulations reported
in Figure 2C each holobiont consists of one host network H and
one microbial network M (PM = 1). It is clear that interacting
with only one microbial network M already makes H to adapt
much faster to its task than evolving on its own. In the holobiont
case, the error ξ̄H crosses the adaptability threshold δA in about
one fourth of the generations required for the control case to do
it (see Movie S2 and compare with Movie S1). Furthermore, the
final error after 500 generations is considerably smaller for the
holobiont case (ξ̄H ≈ 0.2) than for the control case (ξ̄H ≈ 0.95).
Note that an error ξ̄H ≈ 0.2 means that, on average, at most 3
points of the output signal R(t) deviate one unit from the task F(t)
in the whole interval 1 ≤ t ≤ 15, which represents a percent error
100 × 3/(Ns × 15) ≈ 1.6%. This is almost a perfect adaptation
hard to achieve in the control case. For the control case, it takes
about 3000 generations to reach a similar error of ξ̄H = 0.2
(See Figure S3). The average microbial error ξ̄M also decreases,
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FIGURE 2 | Network Coevolution. (A). Schematic representation of the holobiont, which in this case consists of one host network H (green) and one microbial

network M (red), each with N = 20 nodes and Ns = 4 signal nodes (represented by squares). At generation g = 0 the host network H is not adapted to its task

(ξH > δA), whereas the microbial network M is well adapted (ξM < δA). The mutation rates µH and µM of the host and microbial networks, respectively, satisfy

µM = 10µH. (B) At generation g = 150 regulatory interactions between H and M have been established (dashed lines). The highlighted nodes in each network have

regulators in the other network. H has become well adapted to its task (ξH < δA) while the microbial error ξM has decreased almost to zero. (C) Population average

host error ξ̄H as a function of generations for the holobiont case (H and M evolving together, blue dashed curve, PM = 1) and for the control case (H evolving by itself,

green solid curve, PM = 0). In the holobiont case the adaptability threshold δA is reached faster (g ≈ 100) than in the control case (g ≈ 350). Also, at the end of the

simulation (g = 500) the error for the holobiont case is about five times smaller than for the control case. (D) Evolution of the average microbial error ξ̄M. At generation

g = 0, ξ̄M already satisfies the well-adapted condition, ξ̄M < δA, but it further decreases as the evolution of the holobiont goes on. (E) Probability of adaptation PA(g)

across generations for the holobiont (blue dashed curve) and control (green solid curve) cases. Note that PA(g) increases and saturates faster in the holobiont case.

(F) Average number �̄H (g) of accumulated mutations in the host network H during its adaptation process for the holobiont case (blue dashed curve) and the control

case (green solid curve). Interacting with the microbial network halves the number of mutations H has to undergo in order to adapt to its task. The numerical

simulations to generate the graphs (C) to (F) were carried out using networks with N = 50, Ns = 12 and populations of P = 100 networks.

as shown in Figure 2D. At generation g = 0, ξ̄M is already below
the adaptability threshold δA, but it decreases even further as the
evolution of holobionts proceeds. Therefore, the adaptation of
the holobiont takes place with no conflict of interest between H
and its microbial networks.

In Figure 2E we report the probability of adaptation PA(g),
defined as the fraction of holobionts in which the host-network
error ξH crosses the adaptation threshold δA at generation g. It is
apparent from Figure 2E that this probability for the holobiont
case increases and saturates much faster than for the control
case. About 80% of the holobionts are well adapted after only
120 generations, whereas host networks evolving by themselves
never reach 75% of adaptation during the whole simulation time.
In addition to speeding up and increasing the adaptation of H,
the interaction between H and M also considerably reduces the
number of mutations H has to accumulate in order to adapt
to its task, as Figure 2F reveals. This is not a trivial result, for
only the mutations in both H andM that increase the adaptation
of the holobiont are selected and fixed in the population. Thus,
even though M mutates ten times faster than H, not all of those
mutations are beneficial to the adaptation of the holobiont and

consequently, not all of them become fixed in the population.
Actually, from Figure 2Ewe observe that the average number �̄H

of accumulated mutations inH to reach the adaptation threshold
δA is not ten, but only two times larger for the control case than
for the holobiont case. However, it is true that because µM is
larger than µH the adaptation of H is improved (our simulations
show that there is no significant difference between the holobiont
and control cases when µM = µH , see Figure S4).

Symbiosis and Dysbiosis
To show that symbiotic relationships emerge between the host
and microbial networks, once the holobiont is well adapted (after
500 generations as in Figure 2C,D), we remove the connections
between H and M (the dashed lines in Figure 2B) and compute
the errors of each network at performing their respective tasks
while disconnected. This can be thought of as an antibiotic
administration where several bacterial species are removed from
the microbial population, or as trying to cultivate these symbiotic
microbes without their respective host. Thus, a set of microbial
species, represented by M, are removed from the holobiont and
then the fitness of the host is evaluated without them. At the same

Frontiers in Physiology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 1836

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Huitzil et al. The Microbiome in Evolution

time, we determine the survivability of these microbial species
M in the absence of their host. Since M starts the evolutionary
process already well adapted to its task, one can expect that
its error does not significantly increase after the connections
between H and M are removed. However, Figure 3 shows a
typical example in which removing the connections between H
andM increases both errors ξH and ξM to values that correspond
to untrained networks. Thus, in the example shown in Figure 3,
after the holobiont has been adapted as a whole, none of the
networks it consists of can perform their respective tasks when
separated (see Figure S5 for population statistical averages).

Multitasking and Microbial Diversity
So far we have presented results in which the host networkH has
to perform only one task. Interaction with one MN significantly
improves the adaptation ofH (and of the holobiont) and reduces
the number of mutations it has to undergo in order to become
well adapted. It could be expected that adding more MNs to the
microbiota would further enhance the adaptation ofH. However,
this is not the case. Adding more MNs either has no effect or
can even worsen the adaptation of the host (see Movie S3 and
Figure S6). This result is in contradiction with the great diversity
observed in the microbiota of real organisms and the ability of
the holobiont to adequately perform multiple tasks.

For this reason, we now consider the case in which
the host network H is trained to perform T multiple
tasks F1(t), F2(t), . . . , FT(t), each being an arbitrary function
constructed as described in the Task Assignment section. Since
Boolean Network dynamics are deterministic, depending on the
initial condition the dynamics of H will be set to follow a specific
task Fτ (t). We can measure the adaptation errors ξHτ and ξMj,τ of

FIGURE 3 | Emergence of symbiosis and dysbiosis. A holobiont consisting of

one host network H and one microbial network M1 evolves for 500

generations. Then H and M1 are disconnected and the errors at performing

their respective tasks evaluated (H and M1 are represented by hexagons at the

bottom of the bar chart). At generation g = 0, when the training of H begins,

the host-network error ξH (green bar) is large whereas the microbial-network

error ξM (red bar) is already below the adaptation threshold δA. After H and M1

have coevolved for 500 generations both ξH and ξM are quite below δA,

which indicates the adaptation of the entire holobiont. Then, H and M1 are

disconnected and their respective errors evaluated. Note that after

disconnection both errors ξH and ξM in this example increase to levels

corresponding to completely untrained networks. The simulations were

performed with networks having N = 50 nodes and Ns = 12 signal nodes.

H and the microbial network Mj ∈ B, respectively, when H is
being trained to perform the particular task Fτ (t) (see the M&M
section for a precise definition of ξHτ and ξMj,τ ). This allows us

to compute the adaptation of the holobiont separately for each
task. Averaging ξHτ and ξMj,τ over all the tasks gives us the total

adaptation errors ξH and ξMj for the host andmicrobial networks,

respectively (see the M&M section).
We implement two ways in which the MNs can assist the

adaptation ofH to performmany different tasks. First, there is the
non-specialized interaction case in which all the MNs can interact
among each other and with H. Also, all the MNs can participate
in the adaptation of H to all of its tasks (see Figure 4A). In each
generation the networks are mutated, allowing new interactions
to appear between any two networks within the holobiont.
This means that new incoming or outgoing connections can be
established either between H and any of its MNs, or between any
twoMNs.We consider again a population of P = 100 holobionts.
After the networks in each holobiont have beenmutated (with the
mutation rates µH and µM for the host and microbial networks,
respectively), the ten best holobionts are selected and replicated
(see theM&M section for a definition of the holobiont error ξL in
the multitasking case). Figure 4B shows the population average
ξ̄H of the host-network error for the case in which H has to
perform 10 different tasks. It is clear from this figure that adding
more than one microbial network to the microbiota has no effect
on the adaptation of H to its 10 different tasks. Therefore, in the
non-specialized case increasing the diversity of the microbiota
does not help the adaptation rate of the host.

As a second alternative we implement a specialized interaction

in the microbial networks. In this case the microbiota B =
{

M1, . . . ,MPM

}

is divided into PG disjoint non-empty subsets, or

“niches”, {G1,G2, . . . ,GPG}. The set of tasks F = {F1, . . . , FT} is
also partitioned, as evenly as possible, into PG non-overlapping

subsets, {T1, T2, . . . , TPG}. The maximum number of niches is
PG = T, for in this case each subset Tτ contains only one

task. To each niche Gτ we associate a subset Tτ of tasks (see
Figure 4C). The host network H is still trained to perform the
T different tasks F1, . . . , FT . However, the training of H to the
tasks in the particular set Tτ is assisted only by the networks in

the corresponding niche Gτ . For each niche Gτ we compute an
error ξGτ that measures the adaptation of the holobiont when H
is being trained to perform the tasks in the specific subset Tτ (see
the M&M section for a precise definition of the niche error ξGτ ).
During the adaptation ofH to the tasks in Tτ , only the mutations

in H or in the microbial networks belonging to Gτ that reduce

the corresponding error ξGτ are selected. The important point to

note here is that the adaptation of H to its tasks can be measured
separately for each niche. The holobiont error ξL is computed as

the average of the errors ξGτ over all the niches (see the M&M
section).

During the training of H, the MNs in one niche can

develop interactions between them, but they cannot interact

with the MNs in a different niche, as Figure 4C indicates. This

is consistent with the observation that multicellular organisms
maintain the stability of its microbiota by reducing microbial
interactions (Deines et al., 2017). If microbes interacted with no
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FIGURE 4 | Multitasking and microbial specialization. The host network H

(green circle) has to perform T different tasks F1, F2, . . . , FT (represented as

ellipses) assisted by PM microbial networks M1,M2, . . . ,MPM
(small circles).

(A) Schematic representation of a holobiont with non-specialized interaction in

the microbial networks. Each microbial network can interact with all the other

ones and participate in the adaptation of H to all of its tasks. The dashed lines

represent possible interactions. (B) Evolution of the host-network error ξ̄H in

the non-specialized case for T = 10. Each curve corresponds to a different

value of PM, starting from PM = 0 (H evolving by itself) up to PM = 10. In none

of these cases ξ̄H crosses the adaptation threshold δA even after 500

generations. Furthermore, adding more than one microbial network to the

holobiont has a negligible effect on the adaptation of H. (C) Schematic

representation of the holobiont with specialized interaction in the microbial

networks. The set of PM microbial networks is divided into T different niches,

G1, . . . ,GT , each one participating in the adaptation of H to only one task. The

microbial networks can interact among them only if they belong to the same

niche. (D) Host-network error ξ̄H across generations for the specialized

interaction and T = 10. Again, each curve corresponds to a different number

PM of microbial networks. Note that in this case the more microbial networks

in the holobiont the better the adaptation of H. Note also that for PM = 10 the

host-network error ξ̄H crosses the adaptation threshold δA in less than 300

generations. (E) Adaptation probability PA at generation g = 500 as a function

of the number PM of microbial networks participating in the host’s adaptation.

The blue and green bars correspond to the non-specialized and specialized

cases, respectively. Note that in the non-specialized case the adaptation

probability remains low regardless of the number of microbial networks,

whereas in the specialized case, the more microbial networks the better the

adaptation of the host. The simulations were carried out for populations of

P = 100 holobionts and networks with N = 50 nodes.

organization, the loss of one microbial species would affect the
fitness of all the others, increasing the risk of extinction cascades
(Coyte et al., 2015). Therefore, in the specialized interaction
case we compartmentalize the MNs allowing interactions among
them only if they belong to the same niche (all the MNs in all the
niches can, of course, interact with the host network H).

Figure 4D shows the evolution of the average host-error ξ̄H

for simple case where each niche has oneMN (PG ≤ T). It is clear
from Figure 4D that, contrary to the non-specialized case, adding
more MNs to the microbiota in a specialized way considerably
improves the adaptation of H to its multiple tasks. Furthermore,
in Figure 4E we report the probability of adaptation PA(500)
at generation g = 500 as a function of PM for both the non-
specialized and specialized cases. In the former case PA remains
low and never improves as PM increases, whereas in the later case
PA monotonously grows with PM . This clearly shows that both
diversity and specialization of the MNs are necessary for H to
adapt to multiple tasks.

The results presented for the specialized interaction case
also hold when every niche is populated with more than one
MN (PM ≥ 2T). In Figure 5A (see also Movie S4) we report
the evolution of a holobiont with T = 10 different tasks
and the same number of niches, and PM = 25 microbial
networks (each niche contains either two or three MNs). At
generation g = 0, H is poorly adapted to all of its tasks
(represented in red), whereas all theMNs are already well adapted
(represented in blue). As the evolution proceeds H becomes
more adapted to all of its tasks. Furthermore, the microbial
networks also become more adapted to their own tasks. Note
that the adaptation of H to its different tasks occurs at different
rates, as can be seen from the color-code of the tasks through
the holobiont evolution. This is consistent with the observation
that different symbiotic relationships between the host and its
microbial communities emerge at different rates (Doolittle and
Booth, 2017). In the example shown in Figure 5A the adaptation
of the whole holobiont crosses the adaptation threshold δA in
<300 generations. Interestingly, the same results are obtained
in the specialized case when many more microbial networks are
introduced into the holobiont (see Figure S7).

The specialized interaction scheme allows us to compute the
robustness of the holobiont under loss of microbial diversity.
For this, once the holobiont is well adapted, we disconnect 1n
microbial networks from it and compute the resulting host-
network error ξH averaged over all the host’s tasks. Figure 5B
shows that ξH gradually increases asmoremicrobial networks are
disconnected from the holobiont. Therefore, a loss in microbial
diversity clearly reduces the adaptation of the host.

DISCUSSION

Multicellular organisms and microbes have coevolved in many
different ways, not only as holobionts being units of adaptation
(Theis et al., 2016). However, the persistence across generations
of regulatory interactions between the host and its microbes
is a necessary condition for natural selection to operate at the
holobiont level (Doolittle and Booth, 2017). These regulatory
interactions have to preserve the holobiont’s functionality
regardless of the specific microbial species that generate them.
This is the “It’s the song not the singer” (ITSNTS) approach
to evolution proposed by Doolittle (Doolittle and Booth, 2017;
Doolittle and Inkpen, 2018) and exemplified by Taxis et al. in
ruminal ecosystems (Taxis et al., 2015). In this work we have
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FIGURE 5 | Holobiont’s complexity and loss of microbial diversity.

(A) Snapshots of the evolution of a holobiont in the specialized case. The

holobiont consists of T = 10 tasks (ellipses) and PM = 25 microbial networks

(small circles). All errors larger than 3 are colored in red. At generation g = 0

the host network H has a large error in all of its tasks, while the bacterial

networks are well adapted. As the evolution proceeds, the error of the entire

holobiont decreases, but the adaptation of H to its different tasks takes place

at different rates. The number at the center is the value of the host error ξ̄H

averaged over all of its tasks. (B) After the holobiont is well adapted at

generation g = 500, 1n microbial networks are disconnected and the resulting

host-network error ξ̄H is computed. This simulates the effect on the

holobiont’s adaptation of a reduced microbial diversity. Note that ξ̄H gradually

increases as more microbial networks are disconnected, indicating that the

host becomes less adapted as the microbial diversity decreases.

incorporated into a single evolutionary model both the concept
that the holobiont is a unit of selection and Doolittle’s ITSNTS
approach. We have done so by requiring in our simulations
that only the best adapted holobionts at each generation are
the ones able to go throughout the selective filter, pass to the
next generation and replicate all of its constituent networks.
However, in our model selection acts on a dynamical property
of the holobiont, which is the host’s output signal, in order
to bring it close to the functions the host needs to perform.
In this scheme, it does not matter what nodes or microbial
networks participate in the regulation of the dynamical functions.
What is important is the preservation across generations
of the dynamical functions themselves, and this must hold
for both the host and the microbial networks (which also
have to perform and preserve their own functions). Thus,
although the holobiont might not be the only unit of selection
(Theis et al., 2016), we have concentrated on those important
host-microbe co-interactions that transmit functionality across

multiple generations (Roughgarden et al., 2018). Our model does
not assume that the microbial networks reside inside the host,
but only that they interact with it and that the host-microbe
interactions are transmitted across generations. This propagation
can happen in various ways other than vertical transmission from
parents to offspring as, for instance, when the host constructs
its environment with a stable microbial composition (Fitzpatrick,
2014).

We have shown that the host network can actually be
trained to perform one task without the help of any microbial
networks, as Figure 1D and Figure S3 illustrate. However,
allowing interactions between the host and microbial networks
greatly speeds up and improves the adaptation of the entire
holobiont. This is because the host network does not only adapt
to its tasks faster, better and with less mutations when it is allowed
to interact with microbial networks, but the microbial networks
themselves considerably improve their own adaptation to their
respective tasks. Furthermore, adaptation of the host network to
perform multiple tasks is improved only when it is allowed to
interact with a diverse and specialized microbiota, as Figure 4D
shows.

In light of these results, we observe that the microbiota does
not only help the host to adapt to its tasks. There is mutual benefit
in which both the host and its microbial communities contribute
to each other’s adaptation. It is in this sense that the holobiont
can be considered as an evolutionary unit.

It is important to mention that in our model the holobiont
cannot just be considered as one “big network” evolving to
perform a set of tasks. There are two essential aspects that have
to be emphasized. First, the rate at which mutants are generated
µM in the microbial networks is considerably larger than that
µH of the host networks. Second, the set of microbial networks
must be partitioned into disjoint (i.e., non-interacting) niches
for the host network to efficiently adapt to multiple tasks, where
each niche specializes in the adaptation of the host to one
specific subset of tasks. These two aspects provide the holobiont
with a complex internal dynamical structure that prevents us
from viewing it as just one big network (see Figure 5A and
Figure S7). A holobiont for which µM = µH and the microbial
networks are not partitioned into specialized niches, could be
considered as a single large homogeneous network. But in such a
homogeneous case the holobiont evolution benefits neither from
the host-microbe interactions nor from the microbiota’s diversity
(see Figures S4, S8). Rather, the structural and dynamical
internal complexity of the holobiont, embodied in the functional
modularity and specialization of the microbial niches as well as
in the difference between the host and microbial mutation rates,
is required to facilitate and improve the holobiont’s adaptation to
perform multiple tasks. Hence, our results show that complexity,
modularity and functional specialization are necessary properties
that naturally facilitate the evolution and adaptation of the
holobiont as well as the diversification of the microbiota (Sachs
et al., 2014), whereas structural and functional homogeneity is
either inconsequential or even detrimental to the holobiont’s
evolution.

One may wonder whether the relationship µM = 10µH

between the microbial and host network’s mutant-generating
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rates accurately reflects reality. We have explored a wide range
of values of the ratio γ = µM/µH , ranging from γ = 1 to
γ = ∞. The latter case corresponds to µH = 0, which means
that the adaptation of the host to its task does not occur across
generations, but within the host’s lifespan. In this extreme case,
the adaptation of the host to its task occurs due to mutations
in the microbiota but not in the host itself. Our simulations
show that the adaptation of the host network is almost equally
accelerated and improved for γ = 10 than for γ = ∞ (see
Figure S9).

In our model the host network interacts with microbial
networks which, from the very beginning, are already well
adapted to perform their own functions. The reason for this
is to determine whether or not the well-adapted condition
imposed on the microbial networks represents a restriction
that could generate evolutionary conflict within the holobiont.
It has been pointed out that the emergence of symbiotic
relationships between organisms requires the symbionts to
be highly cooperative and show very little conflict (Morris
et al., 2012; Sachs and Hollowell, 2012; Sachs et al., 2014;
Queller and Strassmann, 2016). Our simulations show that the
evolution of the holobiont can very well take place with no
evolutionary conflict between its constituent networks, as long
as the microbiota is partitioned into specialized niches. This
modularization and division of labor are essential to prevent
microbial competition andwithin-group conflict in the holobiont
(West et al., 2015) (see Figure S6). Additionally, modularization
of the microbiota allows the holobiont to acquire new functions
without affecting the ones already present.

Interestingly, similar results regarding the adaptation of
the host network to its tasks are obtained when the well-
adapted condition is not imposed on the microbial networks.
Our simulations show that the adaptation of the host network
is equally accelerated and improved when it interacts with
microbial networks that do not have to perform any task (see
Movie S5). However, even when the microbial networks are
free of any selective pressure, their dynamics are stabilized
when they coevolve with the host network (see Movie S5). This
is important because it can be interpreted as the holobiont
acquiring, at any moment, microbes from the environment and
coevolving with them, generating intergenomic epistasis that
reduces within-group conflict and promotes the adaptation of the
entire holobiont (Bordenstein and Theis, 2015).

Finally, we would like to mention that, although there exist
many qualitative taxonomical studies showing the existence
of a great variety of host-microbe symbiotic interactions,
there are very few mathematical and computational models
aiming to explain the general mechanisms responsible for the
emergence of such interactions and the need for diversification
and specialization of the microbiota (Manor et al., 2014). We
have not explicitly considered competition or parasitism in our
model. However, by integrating the ITSNTS approach with the
hologenome hypothesis (the holobiont as a unit of selection
Rosenberg and Zilber-Rosenberg, 2016; Roughgarden et al.,
2018), we were able to reproduce many of the observed behaviors
in the evolution of holobionts, such as reduction of evolutionary
conflict, division of labor, emergence of symbiotic interactions
and dysbiosis when the microbiota diversity is reduced. Our

model may thus lay the foundations for a comprehensive
understanding of the long-lasting coevolution of multicellular
organisms and microbes.

MATERIALS AND METHODS

Boolean Network Model
The Boolean network consists of a set of N nodes
{σ1, σ2, · · · , σN}, each acquiring the values 0 or 1 that represent
two possible states of activity: “active” or “inactive.” The value
of each node σn is determined through a logical function fn
that depends on a set of kn other nodes in the network denoted

as In =

{

σ n
1 , σ

n
2 , · · · , σ

n
kn

}

. The nodes in the set In are known

as the inputs or regulators of σn. In the context of genetic
networks these regulators together with the logical function fn
mimic the effect of kn transcription factors (synthesized by the
regulators) acting on the expression of σn. For networks of real
organisms both the logical function fn and the set of regulators In
associated to each gene are carefully constructed according to the
activating and inhibitory nature of the regulatory interactions
between the genes. Here, the kn regulators of each node σn are
randomly chosen from anywhere in the network. The logical
functions fn are also randomly chosen from the ensemble of
all possible logical functions with kn variables. In this work we
start the simulations with networks for which kn = K = 2,
which means that every node in the initial networks has exactly
K = 2 regulators (chosen randomly). Note that this is a directed
network because if node σm is a regulator of σn, it does not
necessarily happen that σn is also a regulator of σm (although
it may happen). Note also that throughout the evolution of the
networks some input and output connections are added to, or
removed from, different nodes. Therefore, the final networks do
not have a constant connectivity K = 2 for every node. The final
networks will have a connectivity distribution similar to the one
observed in the Erdös-Rényi topology with an average around
K = 2 (see Movies S1, S2). Once each node in the network has
been provided with a set of inputs and a logical function, the
network dynamics is given by

σn (t + 1) = fn

(

σ n
1 (t) , σ n

2 (t) , · · · , σ n
kn

(t)
)

. (3)

Starting the dynamics from an initial condition 6 =
{

σ1(0), σ2(0), · · · , σN(0)
}

, the network transits throughout a
series of states until a periodic pattern is reached, which is
known as a dynamical attractor. There is a great body of work
showing that the dynamical attractors of the network correspond
to different cell types or cell fates (or more generally, to different
functional states of the cell). Here we are not interested in the
dynamical attractors, but in training the network to perform a
specific task.

Microbial and Holobiont Errors: One Task
Let us consider a holobiont L =

{

H,M1, . . . ,MPM

}

. When the
host network H has to perform only one task F(t), its error
ξH is given in Equation (2). We similarly define the microbial
error ξMj corresponding to the jth microbial network Mj as

ξMj = 1
tm

∑tm
t=1

(

RMj (t)− FMj (t)
)2
, where RMj (t) and FMj (t) are
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the output signal and target function ofMj, respectively. Different
tasks are assigned to the different microbial networks. The error
ξL of the entire holobiont is then computed as

ξL =
1

1+ PM



ξH +

PM
∑

j=1

ξMj



 . (4)

In our simulations the population contains P = 100 holobionts,
L1,L2, . . . ,LP. For each holobiont Li we compute its error ξLi as
in Equation (4), which is then used at each generation to select
the best holobionts in the population.

We also preformed numerical simulations using the following
definition for the holobiont error:

ξL =
1

2



ξH +
1

PM

PM
∑

j=1

ξMj



. (5)

The difference between Equations (4 and 5) is the contribution
of the microbiota to the holobiont’s error. In Equation (4)
the contribution of the total microbial error could be very
large as compared to the contribution of the host-network
error, especially if there are many microbial networks in the
holobiont. Contrary to this, in Equation (5) the microbiota and
the host have the same contribution regardless of the number
of microbial networks in the microbiota. Our simulations show
that both definitions produce qualitatively the same results
(see Figure S6B). This is because at each generation in the
evolutionary process we are selecting the best holobionts in the
population, and selecting the best holobionts eventually leads to
the same type of individuals regardless of the way in which the
contribution of each particular network is weighted. In this work
we present results using the definition given in Equation (5).

Host and Microbial Errors: Multitasking
Non-specialized Case
Let us consider a holobiont L =

{

H,M1, . . . ,MPM

}

where
now the host network H has to perform T different tasks
F1(t), F2(t), . . . , FT(t). For each task Fτ (t) the network starts
its dynamics from a predefined initial condition 6τ =
{

σ τ
1 (0), σ

τ
2 (0), . . . , σ

τ
N(0)

}

. Let us denote as Rτ (t) the output
signal of H when it starts its dynamics from the initial condition
6τ . The error ξHτ corresponding to the task Fτ (t) is computed as

ξHτ =
1

tm

tm
∑

t=1

(

Rτ (t)− Fτ (t)
)2
. (6)

This allows us to measure the adaptation of the host network to
each of its tasks separately. The total adaptation error ξH of H is
computed by averaging the corresponding errors over all the T

tasks that H has to perform: ξH = T−1
∑T

τ=1 ξHτ .
To define the error ξMj,τ of the microbial networkMj when the

host network is being trained to perform the task Fτ (t) we have to
consider the fact that H may be regulating some of the nodes of
Mj (throughout the evolution of the holobiont such regulations
may appear). Therefore, the output signal of Mj depends on the
initial condition6τ used to start the dynamics ofH. Let us denote

as RMj,τ the output signal ofMj when H started its dynamics from

the initial condition 6τ . The corresponding microbial error ξMj,τ
is then defined as

ξMj,τ =
1

tm

tm
∑

t=1

(

RMj,τ (t)− FMj (t)
)2

, (7)

where FMj is the task assigned to the microbial network Mj (this

network was already well adapted to its tasks and has to remain
so during the evolutionary process). The total microbial error
ξMj corresponding toMj is then computed by averaging ξMj,τ over

all the tasks: ξMj = T−1
∑T

τ=1 ξMj,τ . The holobiont error ξL is

computed using Equation (4), where now ξH and ξMj are the

host and microbial errors averaged over all the tasks as described
above.

Niche Error: Multitasking Specialized Case
Let us consider the nicheGτ =

{

Mτ1 ,Mτ2 , . . . ,Mτpτ

}

, containing
pτ microbial networks. This niche is helping H to adapt to the
tasks in the set Tτ = {Fτ1 , Fτ2 , . . . , Fτqτ

}, which contains qτ tasks.

The error ξGτ corresponding to this niche is defined as

ξGτ =
1

1+ pτ



ξHτ +

pτ
∑

i=1

1

qτ

qτ
∑

j=1

ξMτi ,τj



 , (8)

where ξHτ and ξMτi ,τj are defined in Equations (6, 7), respectively

(in the latter case the subscripts j and τ change to τi and τj
respectively, since we have to account for the different microbial
networks and functions associated to the niche Gτ ).

The holobiont error for the specialized interaction case is

computed by averaging ξGτ over all the niches: ξL = 1
PG

∑PG
τ=1 ξGτ .
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