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Chromatid breaks in cells exposed to low dose irradiation are thought to be initiated by DNA double-strand breaks (DSB), and the
frequency of chromatid breaks has been shown to increase in DSB rejoining deficient cells. However, the underlying causes of the
wide variation in frequencies of G2 chromatid breaks (or chromatid ‘radiosensitivity’) in irradiated T-lymphocytes from different
normal individuals and cancer cases are as yet unclear. Here we report evidence that topoisomerase IIa expression level is a factor
determining chromatid radiosensitivity. We have exposed the promyelocytic leukaemic cell line (HL60) and two derived variant cell
lines (MX1 and MX2) that have acquired resistance to mitoxantrone and low expression of topoisomerase II a, to low doses of
g-radiation and scored the induced chromatid breaks. Chromatid break frequencies were found to be significantly lower in the variant
cell lines, compared with their parental HL60 cell line. Rejoining of DSB in the variant cell lines was similar to that in the parental HL60
strain. Our results indicate the indirect involvement of topoisomerase IIa in the formation of radiation-induced chromatid breaks from
DSB, and suggest topoisomerase IIa as a possible factor in the inter-individual variation in chromatid radiosensitivity.
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Human response to low doses of ionising radiation shows a wide
variation as exemplified by the different frequencies of radiation-
induced chromatid breaks observed in metaphase chromosomes in
phytohaemagglutinin-stimulated peripheral blood T-lymphocytes
(PBL) from different normal individuals and sporadic cancer cases,
and elevated frequencies of such chromatid breaks have been
linked to cancer susceptibility (Scott et al, 1994, 1996; Roberts et al,
1999; Baria et al, 2001, 2002; Buchholz and Wu, 2001; Riches et al,
2001; Papworth et al, 2001; Smart et al, 2003; Baeyens et al, 2002,
2005). Using a short time interval (1–2 h) between radiation
exposure and sampling, the metaphase cells (blocked with
colcemid) collected are those that were in the G2-phase of the cell
cycle at the time of exposure and show frequent chromatid breaks
(discontinuities or terminal deletions) that have been shown to be
induced as a linear function of radiation dose (Bryant, 1998).

Cell-cycle arrest is a factor that could possibly influence
observed frequencies of chromatid breaks, and at least one study
of human tumour cell lines in vitro (Schwartz et al, 1996) reports
an inverse relationship between mitotic inhibition and chromatid
break frequency. Also, using premature chromosome condensa-
tion (PCC) in G2-phase cells with phosphatase inhibitor calyculin,
G2 cells were distinguished from normal mitotic metaphases by
their split centromeres and by the loss of centromeric constriction
(Terzoudi et al, 2005). Using this feature of calyculin-induced PCC
to distinguish G2 cells from mitotic metaphase cells, these authors

reported that cells from individuals with ataxia telangiectasia
(A–T), a homozygous autosomal syndrome characterized by
partial abrogation of radiation-induced G2-phase cell-cycle delay
and high frequencies of chromatid breaks when compared with
normals, report no difference in chromatid break frequencies
between A-T cells and those from normal individuals. However,
other studies using PBL from sporadic breast cancer patients and
normal controls show only a very weak or no correlation between
cell-cycle delay and chromatid break frequencies at the low
radiation dose normally used in the ‘G2 assay’ of chromatid breaks
(Scott et al, 2003; Pretazzoli et al, 2000) suggesting that although
cell-cycle checkpoint delay may have some influence on G2
chromatid break scores in stimulated PBL, it is not a major
determinant of chromatid break frequency in sporadic cancer
cases, especially if the test radiation dose is kept to 0.4–0.5 Gy
where the effect on cell-cycle delay is minimal.

The classical (and probably the prevailing current) view of
radiation-induced chromosomal aberrations avers that chromatid
breaks simply represent expansions of DNA double-strand breaks
(DSB). However, this view has to be questioned in the light of
reports showing a lack of correspondence between the kinetics of
the disappearance of chromatid breaks with time and those of DSB
rejoining following radiation exposure (Bryant et al, 2004). Based
on such observations we proposed an alternative hypothesis,
namely that chromatid breaks are indirectly formed by the initial
presence of a DSB, and that the formation could involve the
decatenation of chromatids by the DNA processing enzyme
topoiosmerase IIa (Bryant, 2007).

Topoisomerase II is a nuclear enzyme that is known to be
involved in many cellular processes including replication,
transcription, sister chromatid decatenation, and as such is crucial
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for cell survival (Austin and Marsh, 1998). Currently, many
antineoplastic drugs such as etoposide and amsacrine are being
used clinically as they stabilise the ternary complex and block the
normal religation of the cleaved DNA by the enzyme, resulting in a
high level of DSB causing cells to undergo apoptosis, or formation
of translocations (Felix et al, 2006). Topoisomerase II is present in
two isoforms (a and b). We think it likely that the a- rather than
the b-isoform is involved in the formation of chromatid breaks as
the expression of topoisomerase IIa is variable during the cell
cycle, peaking during the G2-phase where it is involved in
chromatid decatenation. In contrast the b-isoform remains
constant throughout the cell cycle (Woessner et al, 1991). Our
hypothesis is that the presence of a DSB within a looped chromatin
domain chemically or physically alters the loop structure in such a
way as to enhance the error-proneness of topoisomerase IIa during
chromatid decatenation in G2-phase, resulting in either complete
loop excision or misjoining leading to inversion of the looped
domain adjacent to the chromatid break (Bryant, 2004, 2007).
Another possibility is that a DSB, locally associated with other
types of DNA damage, for example, abasic sites (Sutherland et al,
2000) could cause error-proneness of topoisomerase IIa, causing
illegitimate rearrangements within a damaged chromatin domain
of a radiation-exposed cell. Error-proneness of topoisomerase IIa
has been shown to be triggered by exposure to reactive oxygen
species (Li et al, 1999) and could also be engendered by
endogenous or radiation-induced abasic sites, which are known
to act as potent topoiosmerase IIa poisons (Kingma et al, 1995).

Here we report on experiments to test the hypothesis that
topoisomerase IIa is involved in the formation of chromatid
breaks in radiation-exposed G2 cells.

MATERIALS AND METHODS

Cell culture

Promyelocytic leukaemic parental HL60 and mitoxantrone-resis-
tant variants MX1 and MX2 cell lines (ATCC, Manassas, VA, USA)
were grown in RPMI-1640 (Gibco, Paisley, UK) medium contain-
ing 10% foetal calf serum (Globefarm Lrd, Cranleigh, UK), 2 mM

L-glutamine (Invitrogen Life Technologies, Paisley, UK),
50 mg ml�1 streptomycin (Invitrogen) and 50 U ml�1 penicillin
(Invitrogen) at 371C and in 5% CO2.

Lysate preparation and protein quantification

Exponentially growing cells were washed twice in phosphate-
buffered saline (PBS) (Gibco) and resuspended in a 14 ml per 106

cells sample reducing buffer (2%SDS (BDH Biochemical, Poole,
UK), 100 mM DTT, 10% glycerol (BDH), 60 mM Tris pH 6.8. (BDH),
0.1% bromophenol blue). Protein was then denatured for 5 min in
boiling water and stored at �201C.

The amount of protein was quantified using the Bio-Rad
Laboratories Protein Assay in which known BSA (Promega
Corporation, Southampton, UK) concentrations, namely
0–8 mg ml�1, were used as reference values at a 595 nm wavelength
(Hemel, Hempstead, UK).

Immunoblotting

A total of 11mg of cell lysate was run on a 7% SDS polyacrylamide
gel using a Bio-Rad PowerPac 300 (Bio-Rad Laboratories, Herts,
UK). Proteins were transferred on to a nitrocellulose membrane
(Watman, Schleicher & Schuell, Dassel, Germany) at 100 V for 1 h
and checked with Ponceau red stain. Protein epitopes were blocked
in 2% milk powder in PBS/Tween for 15 min. Membranes were
further incubated for 2 h (or at 41C overnight) in either rabbit anti-
topoisomerase IIa or mouse anti-b-actin (Abcam, Cambridge, UK)
at 1 : 20 000 and 1 : 5000, respectively, in PBS/Tween-20. After being

washed with PBS/ Tween, the membranes were incubated in either
anti-mouse or anti-rabbit antibody both of which were horseradish
peroxidase-conjugated (Pierce Biotechnology, Rockford, IL, USA)
at 1 : 100 000 dilution. Membranes were then washed twice in PBS/
Tween and the secondary antibodies were detected by enhanced
chemiluminescence (Millipore, Watford, UK). The amount of
protein in the samples was estimated using image analysis.

Mitotic index

Exponentially growing HL60, MX1 and MX2 cells (1� 106) were
incubated in various concentrations of amsacrine hydrochloride
(mAMSA, Sigma, Poole, UK; stock in 30% ethanol), ranging from 0
to 20mM for 30 min at 371C. Cells were centrifuged and washed in
the growth medium before being resuspended and incubated in the
growth medium with 0.15mg ml�1 colcemid (Gibco) for 2 h at 371C
before being washed in the medium by centrifugation. Cells were
fixed in 70% ethanol for 30 min on ice. After centrifugation, cells
were permeabilised and stained for phospho-histone H3 according
to the manufacturer’s protocol (Cell Signalling Technology,
Danvers, MA, USA). Cells were also incubated for 30 min at 371C
in 1 mg ml�1 ribonuclease A in 0.5% donkey serum in PBS,
centrifuged and resuspended in a solution of 2 mg ml�1 propidium
iodide in PBS for 30 min at room temperature before being washed
in PBS and analysed by FACScan (Becton-Dickinson BioSciences,
Oxford, UK) with CellQuest software (San Jose, CA, USA).

Chromatid break analysis

Exponentially growing HL60, MX1 and MX2 cells were irradiated
with a dose of 0.4 Gy. and with unirradiated controls incubated for
30 min before the addition of 0.1 mg colcemid for 1.5 h. Cells were
then centrifuged and resuspended in hypotonic solution (75 mM

KCl) for 7 min at 371C. Cells were fixed three times in 3 : 1
methanol : acetic acid (BDH). Metaphase spreads were prepared
using a humidity control cabinet (Hanabi, AO Science Technol-
ogies, Chiba, Japan). Slides were stained with 10% Giemsa (BDH)
in Gurr’s buffer (BDH) for 10 min. Hundred metaphases were
examined for chromatid breaks using oil immersion (� 100)
optics (Zeiss Axioplan 2, Welwyn Garden City, Hertfordshire, UK).
Chromatid breaks were defined as any chromatid discontinuity
(Bryant et al, 2002).

DNA double-strand break measurements

Cells were passaged at 2� 105 per ml in RPMI medium and
incubated for 2 days. 6� 105 cells were transferred to 1.5 ml
Eppendorf tubes and cooled on ice for 30 min prior to irradiation.
Tubes were irradiated on ice with 40 Gy of g-rays (IBL437C; CIS
UK Bio-International, High Wycombe, UK). The dose rate was
approximately 3.5 Gy per min. Unirradiated controls and time zero
samples were held on ice while the other samples were transferred
to a water-bath running at 371C for 15 min to 3 h. Following
irradiation and incubation, all samples were returned to ice and
then centrifuged at 11C. The medium was aspirated and cell pellets
resuspended in 160 ml of 0.8% low melting point agarose (Sigma)
in PBS at 371C. Eighty microlitres was transferred to each of the
two gel plug moulds (BioRad Laboratories Ltd., Hemel Hemstead,
UK) and placed on ice for approximately 5 min to set. Plugs
containing cells were extruded into 1 ml of ice-cold lysis solution
(0.4 M EDTA, 2% sodium N-lauryl sarcosine, 1 mg ml�1 proteinase
K, pH 8.0) in Eppendorf tubes for 30 min. Tubes were incubated
overnight (18 h) at 37oC. A 200 ml 0.8 % agarose gel (DNA Sub-cell,
BioRad Laboratories, Hemel Hemstead, UK) was prepared in 0.5
Tris acetate EDTA buffer containing 1 mg per ml ethidium
bromide. The plugs were recovered from the lysis solution and
placed in comb wells in a 200 ml 0.8% Ultrapure agarose (Life
Technology Ltd., Paisley, UK) gel in 0.5 TBE and containing
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ethidium bromide (0.5 mg ml�1) in a BioRad Sub-Cell horizontal
electrophoresis apparatus. Wells were sealed using 0.8% LMP
agarose in PBS, and the gel was run in 0.5 TBE at 0.6 V cm�1

(6 mA, 8V; constant current) for 96 h.
The fraction of DNA released from the wells during

electrophoresis was used as a measure of the induced double-
strand breakage. DNA was quantified by ethidium bromide
fluorescence, analysed using Syngene Genetools software (Syngene,
Cambridge, UK). The mean fraction of DNA released (FDR) from
each of the two wells per sample was determined by the following
equation:

FDR ¼ DRi=ðDRi þ DWiÞ � DRc=ðDRc þ DWcÞ

where:
DRi¼DNA released (irradiated sample); DWi¼DNA remaining

in well (irradiated sample); DRc¼DNA released (unirradiated
control sample); DWc¼DNA remaining in the well (control
sample).

RESULTS

Figure 1 shows the results of two pooled experiments in which
chromatid breaks were analysed in HL60 cells and variants MX1
and MX2 after exposure to g-rays, sampling 1.5 h after using a 1 h
colcemid block. The variant cell lines showed significantly lower
chromatid break frequencies than the parental HL60 cell line
(P¼ 0.004 and 0.003 for MX1 and MX2 respectively). Western
blots using topoisomerase IIa antibody (Figure 2) indicates a
reduced expression of topoisomerase IIa in MX1 and MX2
compared with the parental HL60 line. Quantification of topoi-
somerase IIa expression level using western blots, with b-actin as a
control, shows a significantly lower expression of topoisomerase
IIa in the variant MX1 and MX2 strains (Figure 3). When
chromatid break frequency is plotted against topoisomerase IIa
level (Figure 4) the data show a good correlation (r2¼ 0.93).

In a further test of topoisomerase IIa expression in these cell
lines (Figure 5), cells were exposed to mAMSA at varying
concentrations and the effect on mitotic index was measured
using phospho-histone H3 antibody in a FACS analysis. Both MX1
and MX2 were found to be significantly less sensitive to mAMSA
than HL60. When the mitotic index (derived from those at the
highest dose of mAMSA) was plotted against topoisomerase IIa
expression level derived from the western blot analysis shown in
Figure 3, a good correlation was obtained r2¼ 0.99 (Figure 6).
Finally, the rejoining kinetics of DNA DSB was investigated in the
three cell lines using constant-field agarose-gel electrophoresis
(Figure 7). The rejoining kinetics in all three lines was found to
be similar.
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Figure 1 Frequency of chromatid breaks in control and irradiated HL60,
MX1, and MX2 cells using the G2 assay.
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Figure 2 Western blots showing expression of topoisomerase IIa in HL60, MX1 and MX2 cells.
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Figure 3 Relative topoisomerase IIa expression level in HL60, MX1 and
MX2 as estimated from western blots. Bars represent s.e.m. values from
several experiments.
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DISCUSSION

Our results demonstrate a close correlation between the frequency
of radiation-induced chromatid breaks (or chromatid radio-
sensitivity) and the expression level of topoisomerase IIa
(Figure 4). MX1 and MX2 cells that have reduced expression of
this enzyme show significantly lower chromatid break frequency in

response to radiation. We have shown using western blot analysis
that the expression level of topoisomerase IIa in the variant
mitoxantrone-resistant cell lines is significantly lower than in their
HL60 parental cell line. Although the low topoisomerase IIa
expression in these variant cell lines had already been demon-
strated by Harker et al (1991), it was necessary to ensure this was
still the case as it was possible that the resistance of the cells to
mitoxantrone could decrease over time, especially if cells were not
kept under selection pressure by routine culture in mitoxantrone.
This difference in topoisomerase IIa expression is also reflected in
the differential response of the three cell lines to mAMSA, a
powerful topoisomerase IIa poison leading to protein-associated
DNA double-strand breaks (Davies et al, 1998). Reduced
topoisomerase IIa expression evidently leads to resistance to the
inhibitory effect of mAMSA on mitosis (Figures 5 and 6).

As a check on the possibility that the differences seen in
chromatid break frequencies in MX1 and MX2, compared with the
HL60 cell line could be attributed to differences in DNA repair, we
measured the rejoining of DSB. Our data (Figure 7) indicates no
differences in DSB rejoining between the strains, and indicates that
there is no involvement of topoisomerase IIa in the rejoining of
DSB. This finding is in agreement with the conclusions of
Mandraju et al (2008) who show distinctly different roles for the
two isoforms of topoisomerase II, namely that although topoi-
somerase IIa upregulation is linked to enhancement of damage to
DNA during treatment with H2O2 (possibly by relaxing and
opening chromatin structure), it is only topoisomerase IIb that is
involved in DSB rejoining.

From these results we deduce that topoisomerase IIa has an
indirect or secondary role in the formation of chromatid breaks
from DSB. We have previously proposed (Bryant, 2007) that
topoisomerase IIa might be rendered error-prone during chroma-
tid decatenation by the presence of a DSB within a megabase
looped domain in the chromatin. We suggested that such errors
could result in misjoining of chromatin strands during the
decatenation process leading to either loop excision or loop
sequence inversion, which if remaining ‘incomplete’ (ie two of the
chromatin strands are not joined) are manifested as chromatid
breaks. It is known that some chromatid breaks involve
interactions between chromatin strands of sister chromatids, that
is, inter-chromatid rearrangements, and it has been proposed that
these interactions could involve misjoining at the cross-over points
of large looped domains (eg Harvey and Savage, 1997). Such
rearrangements can be visualised using harlequin (fluorescence
plus giemsa; FPG) staining, and result in the appearance of colour
switches between chromatids at the break-points that occur at a
frequency of approximately 16% (eg Harvey and Savage, 1997;
Bryant, 1998). It is thought that the remainder results from intra-
chromatid rearrangements, as described above. The reasons why a
direct correlation between DSB and chromatid breaks is not
probable have been discussed previously (Bryant 2004, 2007).

Perhaps one way in which topoisomerase IIa might become
error-prone, following exposure of cells to ionising radiation, is by
the presence of DNA lesions such as abasic sites in proximity to
DSB within looped chromatin structures. Such clustered damages,
including abasic sites, have been demonstrated to be present after
low radiation doses at frequencies similar to that of frank DSB
(Sutherland et al, 2000). Abasic sites produced both endogenously
by normal cellular metabolism, and as such are the most frequent
lesion in normal mammalian cell DNA (occurring at some 104 sites
per cell per day), as well as being formed during excision repair
and recombination following exposure to ionising radiation or
reactive oxygen species.

Abasic sites have been shown to be potent topoisomerase II
poisons, which are some 10 times more effective than etoposide
(Kingma et al, 1995). Abasic sites, and more specifically apurinic
sites, do not interfere with religation of topoisomerase II-induced
DNA breaks, and although they can be quickly removed, if repair is
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Figure 7 Rejoining of DSB following irradiation of HL60, MX1, and MX2
cell strains.
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faulty or a few sites are left behind, they can dramatically increase
the formation of topoisomerase II-induced DSB (Kingma et al,
1995). Thus, following exposure to ionising radiation the
combination of a DSB in a looped domain, simultaneously coupled
with abasic-site poisoned topoisomerase IIa could interact to form
chromatid breaks.

The close correlation we have found between topoisomerase IIa
expression and the frequencies of chromatid breaks seen in the
variant cell lines and HL60 parental line when exposed to low
doses of ionising radiation leads us to suggest the possibility that
both the inter-individual differences in chromatid radiosensitivity
within groups of normal individuals, and the elevated chromatid
radiosensitivity seen in cancer patients might result from
differences in expression of topoisomerase IIa.

In conclusion, our data show a strong correlation between
radiation-induced chromatid break frequency and topoisomerase
IIa expression level, which we interpret as supporting our
hypothesis of an indirect role for topoisomerase IIa in the
formation of chromatid breaks.

ACKNOWLEDGEMENTS

We acknowledge the technical support of Mary Wilson and John
Macintyre, and the support of the Chief Scientist Office
(Edinburgh) and the Breast Cancer Campaign. Samantha Terry is
supported by a PhD studentship from the Bute Medical School,
University of St Andrews.

REFERENCES

Austin CA, Marsh KL (1998) Eukaryotic DNA topoisomerase II beta.
Bioessays 20: 215 – 226

Baeyens A, Broecke RVD, Makar A, Thierens H, de Ridder L, Vral A (2005)
Chromosomal radiosensitivity in breast cancer patients: Influence of age
of onset of the disease. Oncol Rep 13: 347 – 353

Baeyens A, Thierens H, Claes K, Poppe B, Messiaen L, de Ridder L, Vral A
(2002) Chromosomal radiosensitivity in breast cancer patients with a
known or putative genetic predisposition. Brit J Cancer 87: 1379 – 1385

Baria K, Warren C, Eden OB, Roberts SA, West CM, Scott D (2002)
Chromosomal radiosensitivity in young cancer patients: possible
evidence of genetic predisposition. Int J Radiat Biol 78: 341 – 346

Baria K, Warren C, Roberts SA, West CM, Scott D (2001) Chromosomal
radiosensitivity as a marker of predisposition to common cancers. Brit J
Cancer 84: 892 – 896

Bryant PE, Gray L, Riches AC, Steel CM, Finnon P, Howe O, Kesterton I,
Vral A, Curwen GB, Smart V, Tawn EJ, Whitehouse CA (2002) The G2
assay: a technical report. Int J Radiat Biol 78: 863 – 866

Bryant PE (1998) The signal model: a possible explanation for the
conversion of DNA double-strand breaks into chromatid breaks. Int J
Radiat Biol 73: 243 – 251

Bryant PE (2007) Origin of chromosome aberrations: mechanisms. In
Chromosomal Alterations: Methods, Results and Importance in Human
Health, Obe G, Vijayalaxmi (eds) pp 177 – 199. Berlin Heidelberg:
Springer-Verlag

Bryant PE, Gray LJ, Peresse N (2004) Progress towards understanding the
nature of chromatid breakage. Cytogenet Genome Res 104: 65 – 71

Buchholz TA, Wu X (2001) Radiation-induced chromatid breaks as a
predictor of breast cancer risk. Int J Radiat Oncol Biol Phys 49: 533 – 537

Davies SM, Robson CN, Davies SL, Hickson ID (1998) Nuclear
topoisomerase II levels correlate with the sensitivity of mammalian cells
to intercalating agents and epipodophyllotoxins. J Biol Chem 263:
17724 – 17729

Felix CA, Kolaris CP, Osheroff N (2006) Topoisomerase II and the etiology
of chromosome translocations. DNA Repair (Amst) 5: 1093 – 1108

Harker WG, Slade DL, Drake FH, Parr RL (1991) Mitoxantrone Resistance
in HL-60 leukemia cells: reduced nuclear topoisomerase II catalytic
activity and drug induced DNA cleavage in association with reduced
expression of the topoisomerase IIb isoforms. Biochem 30: 9953 – 9961

Harvey AN, Savage JRK (1997) Investigating the nature of chromatid breaks
produced by restriction endonucleases. Int J Radiat Biol 71: 21 – 28

Kingma PS, Corbett AH, Burcham PC, Marnett LJ, Osheroff N (1995)
Abasic sites stimulate double-stranded DNA cleavage mediated by
topoisomerase II. J Biol Chem 270: 21441 – 21444

Li T, Chen AY, Mao Y, Wang H, Liu LF (1999) Activation of topoisomerase
II-mediated excision of chromosomal DNA loops during oxidative stress.
Genes Develop 13: 1553 – 1560

Mandraju RK, Kannaapiran P, Kondapi AK (2008) Distinct roles of
topoisomerase II isoforms: DNA damage accelerating a, double-strand
break repair promoting b. Arch Biochem Biophys 470: 27 – 34

Papworth R, Slevin N, Roberts SA, Scott D (2001) Sensitivity to
radiation-induced chromosome damage may be a marker of genetic
predisposition in young head and neck cancer patients. Brit J Cancer 84:
776 – 782

Pretazzoli V, Salone B, Bosi A, Olivieri G (2000) Variability of G2
checkpoint sensitivity to low doses of X-rays (2 cGy): correlation with G2
chromatid aberrations but not with an adaptive response. Mutagenesis
15: 531 – 535

Riches AC, Bryant PE, Steel CM, Gleig A, Robertson AJ, Preece PE,
Thompson AM (2001) Chromosomal radiosensitivity in G2-phase
lymphocytes identifies breast cancer patients with distinctive tumour
characteristics. Brit J Cancer 85: 1157 – 11561

Roberts SA, Spreadborough AR, Bulman B, Barber JBP, Evans DRG, Scott D
(1999) Heritability of cellular radiosensitivity: a marker of low
penetrance predisposition genes in breast cancer? Am J Human Genet
65: 784 – 794

Schwartz JL, Cowan J, Grdina DJ, Weichselbaum RR (1996) Attenuation of
G2-phase cell-cycle checkpoint control is associated with frequencies of
unrejoined chromosome breaks in human tumor cells. Radiat Res 146:
139 – 143

Scott D, Spreadborough A, Levine E, Roberts SA (1994) Genetic
predisposition to breast cancer. Lancet 344: 1444

Scott D, Spreadborough AR, Jones LA, Roberts SA, Moore CJ (1996)
Chromosomal radiosensitivity in G2-phase lymphocytes as an indicator
of cancer predispostion. Radiat Res 145: 3 – 16

Scott D, Spreadborough AR, Roberts SA (2003) Less G2 arrest in irradiated
cells of breast cancer patients than in female controls: a contribution
to their enhanced chromosomal radiosensitivity? Int J Radiat Biol 79:
405 – 411

Smart V, Curwen GB, Whitehouse CA, Edwards A, Tawn EJ (2003)
Chromosomal radiosensitivity: a study of the chromosomal G2 assay in
human blood lymphocytes indicating significant inter-individual varia-
bility. Mutat Res 528: 105 – 110

Sutherland BM, Bennett PV, Sidokina O, Laval J (2000) Clustered DNA
damages induced in isolated DNA and in human cells by low doses of
ionizing radiation. Proc Nat Acad Sci 97: 103 – 108

Terzoudi G, Manola KN, Pantelias GE, Iliakis G (2005) Checkpoint
abrogation in G2 compromises repair of chromosomal breaks in ataxia
telangiectasia cells. Cancer Res 65: 11292 – 11296

Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH (1991)
Proliferation and cell cycle dependent differences in expression of the
170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3
cells. Cell Growth Differen 2: 209 – 214

Topoisomerase IIa and radiation-induced chromatid breaks

SYA Terry et al

674

British Journal of Cancer (2008) 99(4), 670 – 674 & 2008 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s


	A role for topoisomerase IIalpha in the formation of radiation-induced chromatid breaks
	MATERIALS AND METHODS
	Cell culture
	Lysate preparation and protein quantification
	Immunoblotting
	Mitotic index
	Chromatid break analysis
	DNA double-strand break measurements

	RESULTS
	Figure 1 Frequency of chromatid breaks in control and irradiated HL60, MX1, and MX2 cells using the G2 assay.
	Figure 2 Western blots showing expression of topoisomerase IIalpha in HL60, MX1 and MX2 cells.
	Figure 3 Relative topoisomerase IIalpha expression level in HL60, MX1 and MX2 as estimated from western blots.
	Figure 4 Chromatid break frequency as a function of relative topoisomerase IIalpha level in HL60, MX1 and MX2 cells.
	DISCUSSION
	Figure 5 Mitotic index, measured by FACS in cells labelled with phospho-histone H3 labelled HL60 (squares), MX1 (circles) and MX2 (triangles) following treatment with mAMSA.
	Figure 6 Relationship between relative topoisomerase IIalpha and relative mitotic index (measured by FACS in cells labelled with phospho-histone H3) derived from data in Figure™5, at the highest mAMSA concentration used.
	Figure 7 Rejoining of DSB following irradiation of HL60, MX1, and MX2 cell strains.
	ACKNOWLEDGEMENTS
	REFERENCES


