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Abstract
Background: How the central nervous system (CNS) organizes the joint dynamics for multi-joint movement is a
complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated
that the CNS predictively compensates for interaction torque (INT) which is arising from the movement of the adjacent
joints. However, most of these studies have mainly examined quick movements, presumably because the current belief
is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements
performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer
reaching in a wide range of motion speeds for healthy subjects.

Methods: Subjects performed reaching movements toward five targets under three different speed conditions. Joint
position data were recorded using a 3-D motion analysis device (50 Hz). Torque components, muscle torque (MUS),
interaction torque (INT), gravity torque (G), and net torque (NET) were calculated by solving the dynamic equations for
the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque
components;

NET = MUS - G - INT.

Dynamic muscle torque (DMUS = MUS-G) was also calculated. Contributions of INT impulse and DMUS impulse to NET
impulse were examined.

Results: The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was
additive (same direction) to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to) INT. The
trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target,
regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its
magnitude varied from trial to trial in order to compensate for the variability of INT.

Conclusion: Interaction torque was important at slow speeds. Muscle torques at the two joints were not directly
related to each other to produce coordinated joint movement during a reach. These results support Bernstein's idea
that coordinated movement is not completely determined by motor command in multi-joint motion. Based on the data
presented in this study and the work of others, a model for the connection between joint torques (muscle and passive
torques including interaction torque) and joint coordination is proposed.
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Background
Unlike the single joint movement, the dynamics of multi-
joint movement is complex. Specifically, interaction
torque (INT) will be included into the joint dynamics,
which is arising from the movement of the adjacent joints
[1]. INT at a joint, therefore, may be regarded by the CNS
as an unavoidable passive disturbance which is to be
adjusted for multijoint movement coordination.

Except for movement in the horizontal plane, net torque
(NET) produces joint kinematics that can be shown as an
algebraic sum of muscle (MUS), interaction (INT), and
gravity torque (G);

NET = MUS - INT - G (1)

Previous studies on healthy subjects have shown that INT
arising during rapid multi-joint movement is of sufficient
magnitude to influence movement trajectory [1,2]. These
authors have postulated that the CNS can predictively
compensate or utilize INT [3-7]. INT in multi-joint
dynamics have been investigated mainly for reaching
movements [8-13]. Studies on patients with cerebellar
lesions [14-17] or without proprioception [18-20] have
an inability to control interaction torques, thereby result-
ing in kinematic deficits.

INT is dependent on joint acceleration and velocity.
Motion speed has thus been considered as an essential fac-
tor for the effects of INT on multi-joint movement. How-
ever, it was pointed out qualitatively that the relative
contribution of velocity was significant regardless of the
movement speed [1]. Functional role of the interaction
and muscle torque for the production of planar reaching
through different movement speed is still unclear.

The primary purpose of this study was to re-examine
whether the effects of interaction torque on multi-joint
reaching movement is significant at slow speed. Planar
reach involving shoulder and elbow joints toward differ-
ent targets in the sagittal plane was examined under a
wide range of motion speeds.

It is known that the trajectory of reach and joint coordina-
tion have invariant characteristics irrespective of target
position and movement speed [21]. If the effect of the
interaction torque was significant over a range of different
speed, then a question arises as to how the relation of
muscle torque between neighboring joints is adequately
produced to achieve multi-joint coordination. Therefore,
a secondary purpose of this study was to explore whether
the coordination between muscle torques at two joints
corresponds to coordinated joint movements.

Methods
Subjects
Ten right-handed healthy adults (five males and five
females) gave an informed consent to participate in this
study. All protocols were approved by the Review Board of
Tohoku Bunka Gakuen University. They had no neurolog-
ical, musculoskeletal, or visual disorders by self-report.
The subject's age ranged from 20 to 22 years (average 21
yrs).

Tasks
The subjects sat on a stool with their shoulder 0° flexed,
0° adducted and 0° outward rotated. Their right elbow
joint and hand were flexed 90° and at a middle position
to supination and pronation, respectively. The subjects
were asked to reach their right hand by pointing at a small
target in the sagittal plane while keeping their trunk in the
initial position. Each target was 1 cm in width and
wrapped around a stick of 1.5 cm diameter that stood in
front of the right shoulder joint. The subjects were ver-
bally instructed to reach at fast, natural (comfortable),
and slow speed. Accuracy of the pointing was not
required.

As shown in Figure. 1, we used five targets that required
subjects to flex their shoulder from 45 to 105 degrees at 15
degrees intervals (i.e., 45 degrees (T45), 60 degrees (T60),
75 degrees (T75), 90 degrees (T90), and 105 degrees
(T105)). The distance of the target from the shoulder was
adjusted to 80% of their upper arm length.

Subjects were allowed to practice several times by reach-
ing at T45 to familiarize themselves with the task. All sub-
jects first reached to T60 under a slow speed condition,
and then target and motion speed were randomly
assigned. The subjects performed a total of 15 trails (5 tar-
gets × 3 speeds).

Data collection and analysis
Adhesive infra-red reflex markers were placed on the
acromion, the lateral epicondyle of the humerus, and
middle point between styloid process of the ulnaris and
radius of the right arm, and positions were collected using
a three-dimension motion analysis device (ELITE puls,
BTS, 50 Hz). Position data of each joint was smoothed
with a cutoff frequency of 3 Hz for natural and slow speed
conditions, and 1 Hz for the very slow speed condition
using a second order Butterworth filter [22]. Using these
position data, joint angle, velocity, and acceleration were
calculated for the shoulder and elbow joints.

Kinematics
Movement time
Since the angular velocity profile had always a single peak,
peak angular velocity was calculated for each joint in each
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trial. The onset and termination of movement were deter-
mined at the time where the angular velocity of the shoul-
der or elbow exceeded 5% of its peak. The duration from
the onset to the termination of movement was defined as
movement time (MT).

Trajectory curvature index
Wrist path was quantified by curvature index (I = d/L)
determined as the ratio of maximum path deviation (d)
from a straight line (L) connecting the initial and final
points of the wrist trajectory. A deviation under the
straight line was evaluated as positive.

Kinetics
Calculation of torque components
The dynamic equations for two-linked rigid bodies com-
posed of the upper and lower arms were used to calculate
the joint torque components (i.e., MUS, NET, INT, and G
for the shoulder and elbow joint)(Additional file 1).
Anthropometric data were estimated from the height and
weight of each subject [23].

Absolute torque impulse
The magnitude of each torque component was quantified
by calculating absolute torque impulse during movement
time. The G at the joints is a function of the angle and
load, and is independent of movement speed (see Addi-
tional file 1). Because this study aimed to examine
dynamic changes in muscle torque components, we calcu-
lated the "dynamic muscle torque" [24]. Dynamic muscle
torque (DMUS) was the residual muscle torque after
removing the gravitational component. The impulse of
DMUS was similarly calculated.

Contribution index
We quantified the relative contributions of DMUS and
INT to NET as follows [9]. In a period during which the
INT was in the same direction as NET, the INT impulse
was evaluated as positive, while when the INT was in the
opposite direction to NET, the INT impulse was evaluated
as negative. The total sum of the positive and negative INT
impulses over movement time was divided by the abso-
lute impulse of NET to yield a contribution index of INT
to NET in each trial. Similarly, the positive and negative
impulses of the DMUS were summed to yield a contribu-
tion index of DMUS to NET. The sum of both indexes was
always 1.

Results
Kinematics
Movement time (MT)
MT averaged across subjects is shown for each target in
Table 1. MTs at the fast, natural, and slow conditions were
around 800 ms, 1200 ms, and 2200 ms, respectively. This
shows that the subjects performed the movements at "nat-
ural", "slow", and "very slow" speeds. Two-way ANOVA
(speed × targets) found a significant effect of speed (F =
78.22, p < 0.01), but not target. This indicates that the
subjects regulated their reaching velocity such that MT was
kept constant regardless of the target position.

Trajectory
The wrist trajectory from a subject is superimposed for
three movement speeds to each target in Figure 2. The
path from the start position to the target was almost

Target positionFigure 1
Target position. Five small targets (1.0 × 1.5 cm) were 
placed in front of the shoulder joint of the subject. The dis-
tance from the shoulder joint was adjusted to 80% of the 
upper arm length of the each subject. Target positions 
required shoulder flexion of 45 deg (T45), 60 deg (T60), 75 
deg (T75), 90 deg (T90), and 105 deg (T105).

Table 1: Movement time [ms]

Target Speed condition

Fast Natural Slow

T45 766 (120) 1312 (441) 2260 (840)
T60 804 (113) 1300 (206) 2142 (1074)
T75 798 (113) 1212 (119) 2040 (473)
T90 882 (148) 1396 (249) 2240 (808)
T105 769 (135) 1424 (367) 2507 (955)

Mean (SD) for all subjects.
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straight, regardless of movement speed (i.e., reaching was
performed to trace the shortest path from start to the final
position). This pattern was observed in all subjects. The
curvature index of wrist trajectory ranged from -0.07 to
0.108. Two-way ANOVA showed significant main effect of
the target on the curvature index (F = 15.21, p < 0.01), but
not speed. Tukey HSD analysis found that the curvature
index for T90 and T105 are significantly greater than the
other three targets (p < 0.01). Also, t-test showed the cur-
vature index for T90 and T105 are significantly different
from zero in all speed conditions (p < 0.01), but the cur-
vature index for T45, T60, and T75 in all speed conditions
were not significantly different from zero. These results
indicate that the wrist trajectories for T45, T60, and T75
are linear irrespective of the target position or speeds. This
invariant wrist trajectory for lower three targets implies
that the trajectory was constrained to be linear, thus
diminishing a degree of freedom in the upper extremity
[25].

Joint co-ordination
Figure 3 shows the relationship between the angles of the
shoulder and elbow for the same trials as shown in Figure
2. As seen with the wrist trajectory, the changes in shoul-

der and elbow angles were constrained to a specific com-
bination at each target. Although the targets employed in
this study required different shoulder and elbow excur-
sions, a coordinated relationship between shoulder and
elbow joints was observed irrespective of reaching speed.
Since the model used in the present study is a non-redun-
dant system, the angles of the joints are determined
uniquely from an endpoint coordinate. The relationship
between shoulder and elbow angles to a target were simi-
lar at different speeds. Note that while reaching to T105
the shoulder joint initially flexed slightly, and after a short
delay, the elbow began to extend.

Joint angular velocity
Peak angular velocity of the joints is shown for each target
in Figure 4A and 4B. There was a significant effect of target
(F = 58.01, p < 0.001 for the shoulder, F = 7.92, p < 0.001
for the elbow) and speed (F = 425.36, p < 0.001 for the
shoulder, F = 375.94, p < 0.001 for the elbow). The inter-
action effect of target and speed was significant for the
shoulder (F = 6.632, p < 0.001, Figure 4A). For the shoul-
der, examining the simple effect of interaction revealed
the significant target effects at each speed (F = 49.43, p <
0.001 for fast, F = 17.98, p < 0.001 for natural, F = 3.85, p

Space coordinationFigure 2
Space coordination. A typical example from one subject of wrist trajectories during reaching to all targets and speed condi-
tions.
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< 0.01 for slow), also the effects of speed were significant
for all targets (F = 41.25, p < 0.001 for T1, F = 52.53, p <
0.001 for T2, F = 87.401, p < 0.001 for T3,, F = 115.09, p
< 0.001 for T4,, F = 149.76, p < 0.001 for T5). Depending
on the excursion of each joint, peak angular velocity of the
shoulder joint increased, while the elbow velocity tended
to decrease as the target became higher.

Kinetics
Torque components
Representative torque profiles in both joints of a subject
are shown in Figures 5, 6, 7 for three speed conditions, to
target T45 (Figure 5), T75 (Figure 6) and T105 (Figure 7).
NET and INT appeared to be a sinusoidal wave form with
the same direction and phase in each joint. All subjects
showed similar patterns. At the shoulder, flexion dynamic
muscle torque (DMUS) changed roughly in phase with
NET, indicating DMUS contributed to NET in the same
direction. In contrast, DMUS at the elbow showed an anti-
phase pattern against NET as shown Figure 6 and Figure 7,
indicating DMUS contributed to NET in the opposite
direction for T75 and T105. Note that the first peak of
elbow DMUS occurred prior to that of the NET in reaching
to T105.

Although NET and interaction torque (INT) were small at
slow speed, the relation between DMUS and NET was pre-
served for all speed conditions at both joints. That is,
DMUS utilized (in the shoulder) or compensated (in the

elbow) INT in order to generate the required joint move-
ment.

Torque impulses
Figure 8 shows the absolute torque impulses for each tar-
get at each joint under different speed conditions. The
magnitude of the impulses was affected by the movement
speed and target. The absolute NET impulse (iNET) of the
shoulder increased consistently as the target elevated (F =
10.91, p < 0.01), while iNET of the elbow tended to
decrease (F = 2.00, p = 0.09). These changes corresponded
to the changes in peak angular velocity of both joints (Fig-
ure 4). The absolute INT impulses (iINT) of the shoulder
decreased with the target height (F = 4.86, p < 0.01). In
contrast, iINT of the elbow increased with the target (F =
12.39, p < 0.01). Note that magnitudes of iINT of both
joints were comparable, while iNET of the shoulder was
far greater than iNET of the elbow under all conditions.
Consequently, the contribution of INT to NET became
more dominant at the elbow than the shoulder. Although
the magnitude of gravity torque impulse (iG) of the shoul-
der increased with target height (F = 4.00, p < 0.01), iG of
the elbow was independent of this variable. The magni-
tude of iG at slow speed was far greater than at fast speed
because of a longer movement time. The DMUS impulse
(iDMUS) of both joints increased with the target height (F
= 27.90, p < 0.01 for the shoulder, F = 42.11, p < 0.01 for
the elbow). This indicates that neither the speed nor dis-
tance solely determined the magnitude of iDMUS. At the
shoulder, the sum of iINT and iDMUS was approximately
equal to iNET for each target, but this was not the case at
the elbow.

Relative contribution of muscle and interaction torques to NET 
torque
The relative contributions of INT and DMUS to NET (i.e.,
the contribution index defined above in the methods sec-
tion), exhibited systematic changes with the target in both
joints. As shown in Figure 9A, DMUS became a main con-
tributor to NET as the target got higher at the shoulder.
Also, the contribution index of INT and DMUS were
always positive and remained below 1 (always less than
NET), indicating that the two components additively con-
tributed to NET. The target had a significant effect on
DMUS (F = 209.54, p < 0.01) and INT (F = 209.23, p <
0.01), but not with the speed condition.

The contribution index for elbow INT changed with the
target (F = 167.17, p < 0.01) and was always positive and
greater than 1, while the DMUS contribution index
changed to negative with target height (F = 166.56, p <
0.01) (Figure 9B). Similar to the shoulder, there was no
significant effect on the speed condition. The positive con-
tribution of DMUS was found only in T45. In order to
produce NET, there was a counteractive relationship

Joint coordinationFigure 3
Joint coordination. Relationship between angular displace-
ments of the elbow and shoulder during reaching to all tar-
gets and speed conditions from the same subject in Fig. 2.
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Peak angular velocity (PV). A: PV of shoulder flexion against speed conditions. B: PV of elbow extension against speed con-
ditions.
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between DMUS and INT at the elbow (i.e., the excess INT
had to be counteracted by DMUS in order to generate the
required NET). Interestingly, the DMUS contribution
exhibited almost zero at T45 or T60, regardless of the
movement speed. Specifically, the muscle torque was used
only to cancel the gravity. In sum, the relative contribu-
tion of INT and DMUS to NET was not dependent on
reaching speed at every target, both for the shoulder and
elbow joints.

Coordination between torque components and kinematics
As described earlier, there was an invariant relationship in
trajectory (Figure 2) and joint movement (Figure 3). Fig-
ure 10 illustrates the relationship between the magnitude
of torque impulses and peak angular velocity for all targets
from one subject. As expected, a high correlation between
iNET and peak angular velocity were observed in each
joint (r = 0.999, p < 0.01 for both joints). The correlations
between iDMUS and peak angular velocity were also high
for the shoulder (r = 0.970 p < 0.01), but the correlation
was greatly reduced in the elbow (r = 0.457(n.s.)). The
correlation coefficients averaged across all subjects are
shown in Table 2. Table 2 demonstrates that iDMUS in
the elbow, in contrast to the shoulder joint, had only a

weak correlation with peak elbow velocity as compared to
other torque components. The correlation of torque
impulse to peak angular velocity at the elbow joint was
held in terms of NET but not in DMUS. Note that the
direction of DMUS was always opposed to the movement
direction, except at T45.

Discussion
Kinematic invariance of reach and kinetic contributions
The experimental setting adopted in the present study was
designed to simulate every day reaching in which subjects
performed forward reaching in a vertical plane. Reaching
targets differed both in direction and distance. The dis-
tance increased as the target got higher from T45 to T105
(Figure 2), but movement time remained the constant
among targets (Table 1) because of a corresponding
increase in the velocity of reach. Since increases in shoul-
der velocity with higher targets were compensated by
decreases in elbow velocity (Figure 4), movement time
was kept constant independent of the target position. The
changes in angular velocity were directly related to the
amount of net torque (iNET) required for reaching in the
shoulder and elbow (Figure 8).

Torque profile for T45 reachingFigure 5
Torque profile for T45 reaching. Time course for the torque components during T45 reaching from one subject. Positive 
values in ordinate indicates flexion. NET: net torque, INT: interaction torque. DMUS (dynamic muscle torque) is shown instead 
of muscle and gravity torque.
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In addition, differences in target direction corresponded
to gravity torque loaded on the both joints. Whereas grav-
ity torque on the shoulder joint increased steadily with the
target height, gravity on the elbow changed little (Figure
8). The effect of gravity on the trajectory generation has
been examined by some researchers. A series of studies by
Papaxanthis et al. showed that the direction of pointing
movement was a determinant for arm trajectory genera-
tion in a vertical plane [26-29]. The result of the present
study is in agreement with their result, that is, the linearity
of hand trajectory varied with the direction of reach. In
particular, the trajectories of reaching movement to upper
targets in this study, i.e., T90 and T105, were curved more
greatly than the lower targets. This result implies that grav-
ity affects the trajectory in vertical reaching.

Further, the present study suggests gravity and interaction
torque both relate to wrist trajectory generation in multi-
joint movement. If the absolute magnitude of interaction
torque was a major factor for trajectory generation,
changes in the linearity of wrist trajectory would appear
under different speed conditions. While the magnitude of
the interaction torque (iINT) decreased as the reach got
slower (Figure 8), the linearity of trajectory to a target was

independent of the speed. Because of the speed-independ-
ency of the trajectory, it is suggested that the interaction
torque contributed to the trajectory formation even at
slow speed. This point will be discussed below.

Speed is independent of the relative contribution of 
interaction torque to net torque
We believe that the most remarkable finding of this study
was that the contribution of INT to NET was important
when reaching at slow speed. The contribution index of
INT to NET was independent of speed for every target in
the shoulder and elbow joints (Figure 9). As the velocity
of reach decreases, the magnitude of INT and NET at the
joints also decrease. This relation might be the reason for
the fact that the relative contribution of INT to NET was
independent of the speed. A recent study from our labora-
tory examined squatting and also showed the same speed-
independency of the relative contribution of INT to NET
(manuscript in preparation). It has been postulated that
the speed of reaching is crucial for the effects of interac-
tion torque, and therefore may be negligible for multi-
joint movements at slow speed [30]. Consequently, most
recent studies have examined the effects of INT on fast
movements.

Torque profile for T75 reachingFigure 6
Torque profile for T75 reaching. Time course for the torque components during T75 reaching from one subject. Positive 
values in ordinate indicates flexion. NET: net torque, INT: interaction torque. DMUS (dynamic muscle torque) is shown instead 
of muscle and gravity torque.
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Messier et al. [20] reported that patients with complete
loss of proprioception experience a deficit in accuracy dur-
ing slow reaching, and also suggested that the propriocep-
tive information providing cues for the predictive control
of interaction torque is important, even when interaction
torques are very small. Also, Hollerbach and Flash [1]
demonstrated qualitatively that the effects of interaction
torque may be relatively independent of speed. Our result
is consistent with these works and suggests that the contri-
bution of interaction torque to multi-joint movement
may be significant irrespective of speed.

Direction-specific interaction torque
The contribution index of INT consistently depended on
the target direction at both joints. This result is consistent
with data presented in previous studies demonstrating
that the magnitude of INT gradually changes with the
direction of reaching [9,10,12]. As a larger shoulder flex-
ion was required for the elbow extension (e.g., reaching
toward T105), the contribution of iDMUS became more
dominant than that of INT at the shoulder, while the INT
contributed excessively to NET at the elbow. In contrast,
when reaching toward T45 the contribution of INT
became dominant when compared to iDMUS at the

shoulder. The dependence of INT on the target position
shown in our study could be attributed to changes in the
joint angular velocities of the shoulder and elbow joints.
For instance, the peak angular velocity at the shoulder
during reaching toward T105 was faster than the others
(see Figure 4), thus resulted in more interaction torque
produced at the elbow (Figure 8).

The role of interaction torque and dynamic muscle torque
For every target, flexion DMUS and flexion INT always
contributed in an additive fashion to flexion movement at
the shoulder (i.e., INT assisted the shoulder movement).
In other words, DMUS utilized the INT to produce a spe-
cific shoulder movement over a range of movement
speeds. This can especially be seen by the contribution of
DMUS to joint movement during T105 reaching. On the
other hand, the contribution of DMUS also counteracted
elbow movement. Because the INT overwhelmingly con-
tributed to net torque production, DMUS was forced to
compensate for the magnitude of the INT. Interestingly,
when reaching to T45 and T60 the contribution of the
DMUS to NET was quite low and the joint motion was
produced solely by passive interaction torques caused by
the shoulder joint.

Torque profile for T105 reachingFigure 7
Torque profile for T105 reaching. Time course for the torque components during T105 reaching from one subject. Posi-
tive values in ordinate indicates flexion. NET: net torque, INT: interaction torque. DMUS (dynamic muscle torque) is shown 
instead of muscle and gravity torque.
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Our results were consistent with the "shoulder-centered
pattern" [12] or "leading joint hypothesis" [30], in which
shoulder muscle torque predominates in the production
of movement while the elbow muscles play a minor role.
The torque profiles at the elbow (Figure 7) showed that

DMUS was generated prior to NET. This result is consist-
ent with the notion that the central nervous system (CNS)
can predict coming interaction torque during multi-joint
movement in a feed-forward manner [3-6,8,31].

Absolute torque impulseFigure 8
Absolute torque impulse. Averaged absolute torque impulses against the target height at each joint under different speed 
conditions. iNET: absolute impulse of the net torque, iINT: absolute impulse of the interaction torque, iG: absolute impulse of 
the gravity torque, iDMUS: absolute impulse of the dynamic muscle torque.
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Contribution indexFigure 9
Contribution index. Averaged relative contributions of the interaction torque (INT) and the dynamic muscle torque 
(DMUS) to the net joint torque (NET) against the target in both joints.
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Implications for multi-joint coordination
The trajectory of reach examined in the present study was
always linear to each target and the linearity was preserved
regardless of movement speed (Figure 2). The linear tra-
jectory of reach has been generally observed in planar
reaching, except in the extreme margins of the work space
[21]. Therefore, the angular movements of joints involved
in reaching should be also coordinated so that a linear tra-
jectory is produced. This inter-joint coordination is dem-
onstrated in Figure 3 for our reaching task. The
relationship between shoulder and elbow joints is the
result of inverse kinematics from the linear trajectory.

The question then arises as to how muscular torque acts
on each joint in order to produce coordinated joint move-
ment, or "By what rule has the CNS selected an appropri-
ate muscle activation pattern to achieve the inter-joint
coordination?" [2]. If interaction torque can be neglected
in multi-joint reaching, then the inter-joint coordination
should closely correspond to the invariant relationship
between the muscle torques of each joint. However, the
joint net torque that produces inter-joint coordination
cannot be determined solely by muscle torque (or
dynamic muscle torque), because of the essential contri-
bution of INT to NET. Consequently, muscle torques per
se may be variable from trial to trial without correspond-
ing to joint kinematics. This indeterminacy of muscle

Relation between the magnitude of torque impulses and peak angular velocityFigure 10
Relation between the magnitude of torque impulses and peak angular velocity. iNET: Absolute impulse of the net 
torque, iDMUS: Absolute impulse of the dynamic muscle torque, PV: Peak angular velocity. Lowercase letter "s": shoulder, "e": 
elbow.
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torque is indeed demonstrated in Figure 10 and Table 2
for the elbow joint in our reaching task. Also, the dynamic
muscle torque could not predict the elbow peak velocity.
In addition, the elbow muscle torque was opposed to the
direction of the elbow movement.

Gottlieb et al. [32,33] previously reported data indicating
that shoulder and elbow torques keep a linear relation in
averaged trials of their reaching task (i.e., "linear syn-
ergy"). Based on this data, Gottlieb et al. postulated that
the CNS uses a single command that is transmitted to the
muscle at two joints in a predetermined proportion,
thereby reducing the degree of freedom for movement.
However, their later work failed to provide evidence that
shows the generality of "linear synergy" for reaching [24].
Their studies on elbow muscle torque appeared to show
linear relationship with shoulder torque, but it was often
opposed to the direction of elbow movement depending
on the target direction. The central command must desig-
nate the direction of elbow torque in this case, thereby
requiring an additional degree of freedom.

The indeterminacy of motor command to produce inter-
joint coordination has been previously suggested [34]
(i.e., "functional non-univocality of the connections
between the motor center and the periphery"). Bernstein
stressed that "movements are not completely determined
by effector process" (P105). Consistent with this idea, the
findings in this study suggest that the traditional notion of
deterministic connection from motor command (and
hence, muscle activation) to the coordinated movement is
no longer holds true for multi-joint movements. Alterna-
tively, our data indicate that motor command must adjust
the direction and magnitude of dynamic muscle torque to
passive torques on a trial to trial basis so that the coordi-
nated joint movements are organized. A possible connec-
tion between muscle and passive torque, and the joint
coordination in multi-joint movement, is illustrated in
Figure 11. The passive torques in Figure 11 include inter-
action and gravity torques, and also the torque due to
visco-elastic forces within muscle tissue [35]. Of particular
interest is the behavior of elbow muscle torque examined
in this study. Dynamic muscle torque at the elbow tended
towards an opposite direction of elbow movement (Fig-

Table 2: Correlate coefficients between peak angular velocity and torque impulse.

Subject PV s – iNETs PV e – iINTs PV s – iDMUSs PV e – iNETe PV s – iINTe PV e – iDMUSe

1 0.998 ** 0.986 ** 0.989 ** 0.999 ** 0.998 ** 0.720 **
2 0.999 ** 0.993 ** 0.985 ** 0.999 ** 0.990 ** 0.484 n.s
3 0.994 ** 0.985 ** 0.965 ** 0.997 ** 0.990 ** 0.394 n.s
4 0.998 ** 0.979 ** 0.981 ** 0.998 ** 0.998 ** 0.550 *
5 0.998 ** 0.991 ** 0.983 ** 0.999 ** 0.999 ** 0.557 **
6 0.996 ** 0.979 ** 0.964 ** 0.998 ** 0.994 ** 0.173 n.s
7 0.999 ** 0.991 ** 0.980 ** 0.998 ** 0.997 ** 0.589 *
8 0.996 ** 0.962 ** 0.976 ** 0.996 ** 0.996 ** 0.494 n.s
9 0.999 ** 0.987 ** 0.971 ** 0.999 ** 0.998 ** 0.341 n.s
10 0.999 ** 0.988 ** 0.970 ** 0.999 ** 0.995 ** 0.457 n.s

PV: Peak angular velocity, s: for the shoulder, e: for the elbow. iNET: Absolute torque impulse of net torque, iINT: Absolute torque impulse of 
interaction torque, iDMUS: Absolute impulse of dynamic muscle torque. ** p < 0.01, * p < 0.05

Non-deterministic connection between muscle activation and inter-joint coordinationFigure 11
Non-deterministic connection between muscle activation and inter-joint coordination. MUS: muscle torque, INT: 
interaction torque, G: gravity torque, NET: net torque.
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ure 9), and its magnitude varied from trial to trial in order
to compensate for the variability of interaction torques at
the joint (Figure 10). Nevertheless, the joint coordination
was kept invariant irrespective of motion speed. We spec-
ulate that motor command does not control muscle activ-
ity by a rigid computational rule, and the CNS may
instead have to learn through everyday experience to
adjust muscle torque production against the perturbation
caused by these passive torques.

Conclusion
The relative contributions of interaction torque to net
torque were independent of reaching speed. Effect of the
interaction torque was significant in reaching movement
even at slow speeds. Muscle torque at the two joints was
not adequately related to each other to produce coordi-
nated joint movement. These results support Bernstein's
idea on the multi-joint coordination.
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