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Abstract In shotgun proteomics, database search algorithms rely on fragmentation models to pre-

dict fragment ions that should be observed for a given peptide sequence. The most widely used strat-

egy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce

fragments of all charges below that of the precursor ion. More accurate models, based on fragmen-

tation simulation, are too computationally intensive for on-the-fly use in database search algorithms.

We have created an ordinal-regression-based model called Basophile that takes fragment size and

basic residue distribution into account when determining the charge retention during CID/higher-

energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy

of predictions by reducing the number of unnecessary fragments that are routinely predicted for

highly-charged precursors. Basophile increased the identification rates by 26% (on average) over

the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves

simplicity and speed by solving the prediction problem with an ordinal regression equation, which

can be incorporated into any database search software for shotgun proteomic identification.
(Tabb DL).
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Figure 1 Fragment-peak-matches for a +3 CID PSM of

‘‘TLLEAIDAIEQPSRPTDKPLR’’

Short vertical lines (including long dashed and solid lines)

represent a predicted fragment ion in m/z (A) or per peptide bond

(B) under the Naive model. Solid red lines indicate observed

fragments. The long blue dashed lines in panel A indicate the scan

range of the MS/MS spectrum; the rectangles in dotted lines on

Panel B indicate that those ions are out of scan range.
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Introduction

Shotgun proteomics relies heavily on database search software
for identifying peptides from tandem mass spectra (MS/MS)

[1,2]. In general, these algorithms enumerate peptides from a
protein sequence database, predict their fragmentation spectra,
and match them to the experimental MS/MS. Each peptide-

spectrum match (PSM) is scored on the number of peak
matches and mismatches between the predicted and experi-
mental MS/MS. Peptides producing high scoring PSMs are as-
sumed to be present in the sample. The accuracy of a search

engine’s peptide fragmentation prediction model plays a major
role in the success of its scoring method. The Sequest search
engine [3] introduced the Naive model, which is the most com-

monly used fragmentation model. This Naive model works un-
der the assumption that all peptide bonds break with equal
probability and that each resulting fragment will take on all

charges below that of their precursor ion. This model, how-
ever, over-predicts the set of fragments expected for each pep-
tide, especially for peptides carrying more than two protons.

Therefore, peptide identification can benefit substantially from
fragmentation models that generate a set of ions that are most
likely to be observed for each sequence.

Several advanced fragmentation models were introduced to

improve the prediction accuracy. Kapp et al. [4] and Schutz
et al. [5] produced linear regression models for predicting frag-
ment ion intensities. Elias et al. [6] and Arnold et al. [7] applied

machine learning techniques to derive a decision tree from a
number of peptide and fragment attributes to compute the
probability of observing a fragment ion’s intensity. In a similar

fashion, Frank et al. [8] predicted the intensity ranks of obser-
vable peptide fragments. Zhang [9,10] and Sun et al. [11] con-
structed greatly improved methods that produce realistic MS/
MS of a peptide sequence by modeling the gas-phase reaction

kinetics and proton mobility. Both machine learning and ki-
netic models for predicting fragmentation spectra have been
shown to be significantly more accurate than ad hoc models

[12]. These models, however, tend to be too computationally
intensive for routine use in database search algorithms that
perform billions of PSMs per raw data file.

In this study, we have created a new fragmentation model,
Basophile, for accurately predicting the charges of fragments
from a peptide sequence. The observable fragmentation pat-

tern depends on four key components: amino acid composi-
tion, size of the peptide, precursor charge state and the
dissociation method employed [13]. Primary fragmentation
of a peptide bond is either a charge-directed process, which in-

volves a mobile proton migrating to the bond, or a charge-re-
mote process, which is determined by the delicate balance
between the total number of available protons and the number

of proton sequestration sites (basic amino acids) [14–16]. Baso-
phile predicts proton segregation by analyzing the basicity of
the N- and C-terminal fragments surrounding a peptide bond.

Consequently, Basophile reduces the overall number of frag-
ments predicted for highly-charged (>+2) precursors. Baso-
phile was trained and tested with large collections of PSMs
aggregated from a variety of CID and higher-energy collision

induced dissociation (HCD) data sources, and has been imple-
mented in MyriMatch software [17]. In contrast with machine
learning fragmentation models, Basophile is fast, effective and

easily brought to bear in database search algorithms.
Results and discussion

MS/MS identification of highly-charged (>+2) precursors is

problematic

The Naive model has a predilection to over-predict fragments

expected for a peptide, especially if its precursor carries more
than two protons. For instance, a Naive fragment table for a
high-quality +3 PSM in Figure 1 shows 43% of predicted ions
unmatched. On an average, 57% of fragments predicted for

CID Orbitrap PSMs never matched. Over-prediction rates
are worse for HCD PSMs, with 74% of predicted fragments
missing from the corresponding MS/MS scan. This increases

the probability of peak matching by random chance for low-
resolution or data-independent MS/MS of highly-charged pep-
tides because they are often crowded with peaks. False peak

matches in turn reduce the discrimination between correct
and incorrect PSMs. Also, as the precursor charge increases,
the set of peaks is squeezed into the low m/z area (Figure 1A),

making it more likely that multiple predicted fragments may
fall into single m/z bin, raising the possibility that the search
engine matches the same observed peak to multiple predicted
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peaks. Figure 1B shows patterns of charge segregation. At pep-
tide bonds close to N-term, (b + 1; y + 2) is the dominant
fragment pair; At bonds close to C-term, (b + 2; y + 1) is

the dominant pair. Near the center of the peptide, the pattern
of charge segregation is typically ambiguous. This gradual
change is the target of the Basophile model.

Identification rates are correspondingly lower for highly
charged peptides (Figure 2). Some of the reduced identification
is attributable to less informative fragmentation patterns for

triply and quadruply charged peptides. If a smaller fraction
of peptide bonds is represented by fragment ions in the MS/
MS, less information is available for discriminating between
good and random matches. The use of fragmentation models

that produce excessive fragment predictions, however, worsens
matching further.

Constitution of charge segregation events

The Naive model predicts fragments that take on all the
charges that are less than the precursor charge, but one frag-

ment of the pair could possibly attract all the protons, leaving
the other neutral [26,27]. For example, a + 3 precursor can
take four unambiguous charge segregation events as (b + 3),

(b + 2; y + 1), (b + 1; y + 2), (y + 3) and three ambiguous
ones in between. Attempting to model all seven possible out-
comes fails because some of these outcomes are more than
ten times more common than others. The rare cases have too

little information to establish their boundaries properly.
Examinations of fragments from identified CID and HCD
MS/MS scans revealed the most common charge segregation

events for each precursor class. Figure 3 summarizes the
NIST-CID dataset and Figure S1 summarizes Yeast-Multi-En-
zyme-CID and HCD-Orbitrap-Training datasets. Doubly-

charged precursors fragment in a manner similar to how the
Naive model would predict; with a high percentage of bonds
producing two singly-charged fragments. Triply-charged pre-

cursors yield three main types of outcomes: doubly-charged
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Figure 2 MS/MS of highly charged precursors suffers from low

identification rates

MyriMatch identified peptides from the Yeast-CPTAC-CID

(LTQ-Orbi) dataset, which featured 6 technical replicates for each

of the three instruments. The Naive model was employed to

predict fragments for matching. IDPicker filtered the PSMs at 2%

q-value. Filtered PSMs were segregated by precursor charge state

and normalized by the total number of MS/MS acquired with that

charge state. MS/MS identification rates dropped dramatically at

higher charge states.
N-terminus, doubly-charged C-terminus, or a mix of the
two. Quadruply-charged peptides demonstrate that more
charges imply more possible outcomes. Basophile training

was limited to models of the three most common patterns
for +3 (exemplified in Figure 4) and the five most common
outcomes for +4 peptides.

Although all three training sources give similar patterns of
charge segregation events, HCD-Orbitrap-Training was differ-
ent from the others in that 36% of all bonds in +3 peptides

produced only singly-charged y ions. Initially, these bonds
were mapped to the event ‘‘b + 2; y + 1,’’ leading to a strong
bias toward this segregation event. These bonds, however,
could also potentially be mapped to the ‘‘b + 1, b + 2;

y + 1, y + 2’’ (ambiguous) or ‘‘b + 2; y + 1’’ categories. In
order to associate these low-information bonds with appropri-
ate categories, we developed an adjustment algorithm for +3

HCD peptides. In brief, ordinal labels were assigned, with
‘‘y + 1 only’’ bonds left blank for each peptide. The algorithm
then fills the blanks by forcing the list of bonds to a non-

decreasing order (i.e., N-terminal basicity category can only in-
crease or stay the same as one moves toward the C-terminus).
The detailed algorithm is described in Supplementary File 1.

Other fragment evidence sets such as ‘‘y + 2 only’’, ‘‘b + 1
only’’ and ‘‘b + 2 only’’ did not cause trouble during HCD-
Orbitrap-Training as they did not trigger bias or comprise a
significant fraction of events. A similar phenomenon was

found for +4 peptides on HCD-Orbitrap-Training dataset,
and a similar adjustment was applied.
Comparison of Basophile models

Three different Basophile models were trained with three di-
verse collections of PSMs: Basophile-NIST with NIST-CID,

Basophile-Yeast with Yeast-Multi-Enzyme-CID and Baso-
phile-HCD with HCD-Orbitrap-Training. Peptides in these
three datasets differ in the relative distribution of basic resi-

dues and also the dissociation method employed to acquire
their MS/MS. Peptides in the NIST-CID and HCD-Orbi-
trap-Training sets are primarily tryptic, whereas Yeast-Multi-
Enzyme-CID contains peptides derived from a variety of diges-

tion enzymes (including Proteinase-K). Also, the first two
datasets have low-resolution ion trap CID MS/MS, whereas
the last dataset contains high-resolution Orbitrap HCD MS/

MS. All models contain two ordinal regression functions, tai-
lored to predict fragmentation spectra for +3 and +4 precur-
sors, respectively.

The standard error (SE) of regression coefficients for all +3
models was all 60.01. However, SEs for +4 Basophile-Yeast
and Basophile-HCD models were larger than the correspond-
ing Basophile-NIST model, reflecting the use of much larger

spectral library for training with Basophile-NIST. We there-
fore chose the Basophile-NIST model as the preferred variant.
However, it is important to note that the values of coefficients

derived from all three training sets followed the same order.
For instance, all three +3 regression functions have coefficient
magnitudes of Arg > His > Lys > LN at the N-terminus and

Arg > Lys > His > LC at the C-terminus, indicating that
coefficients of all models are similar but on a different scale.

We compared the three Basophile models to the Naive

model for peptide identification. To accomplish this, all
trained models were implemented in the MyriMatch database
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Figure 3 Precursor charge segregation events observed for NIST-CID peptides

PSMs in the NIST human ion trap spectral library were segregated by charge state. Charge states of the observed N- and C-terminal

fragments were assessed for all peptide bonds. Frequencies of precursor charge segregation events are summarized here. Label ‘‘others’’

include all ordinal categories which are less than 5% and any other fragment patterns that did not fit a category.

Figure 4 Fragment ion basicity and peptide charge segregation

Progressing from the N-terminus to the C-terminus, the basicity of

the N-terminal fragment increases and the basicity of the C-

terminal fragment decreases. Below the sequence is the ordinal

logit calculated from regression function, and the dashed lines are

the two cutoff values to distinguish ‘‘+2 C-term’’, ‘‘+2 N-term’’

and ‘‘Ambiguous charge’’ regions.
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Figure 5 Comparison of Basophile models and Naive model

For each LC–MS/MS experiment, the prediction model that

produced the most identifications was given a ‘‘vote.’’ Though the

HCD-trained Basophile performed well in HCD data, Basophile-

NIST performed well across the samples. The Naive model was

competitive only in HCD data, reflecting that false positive

matching is a smaller detriment in such data.
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search engine alongside the Naive prediction model. Searches
for each of the four prediction models were run separately

on two LTQ datasets (Yeast-CPTAC-CID (LTQ) and Dicty-
LTQ) and one HCD dataset (HCD-Orbitrap-Testing) with
the standard Multi-Variate Hypergeometrics (MVH) scorer.

Figure 5 shows the number of files from the test datasets that
‘‘vote’’ for a particular prediction model by producing the
most identified spectra at the same q-value. Basophile-NIST

performed slightly better than Basophile-HCD, and both were
significantly better than Basophile-Yeast. These results sug-
gested that Basophile-NIST was reasonably robust for model-

ing HCD fragmentation, even though it was trained on CID
spectra.

Basophile reduces fragment peak list size

The ability of Basophile-NIST to reduce the number of frag-
ment predictions was compared to that of the Naive model.
Figure 6 shows the number of fragments predicted and

matched by the Naive and Basophile-NIST models, grouped
by the fragment charge state. Compared to the Naive model,

Basophile-NIST reduced the number of fragment predictions
by an average of 42% with only slight reductions in the num-
ber of matched peaks. A majority of predicted y + 1 frag-

ments (70%) were observed, whereas only a small minority
of the predicted b + 2 fragments were matched (13%). This
is not surprising because the HCD-Orbitrap-Testing dataset
was rich in tryptic peptides that do not produce large numbers

of b + 2 fragments; a dataset that enriches peptides with N-
terminal basic residues might have matched more of these ions.

In contrast to the SQID model [28], Basophile produces a

Boolean output, stating whether a peak is present or absent,
rather than a probability associated with matching an experi-
mental fragment. However, it is completely possible to com-

bine the orthogonal SQID and Basophile models into a
hybrid system that will not only assess the precursor charge
segregation for a peptide bond, but also the likelihood of

observing any fragments produced by dissociation of that
bond. This method may also reduce the over-prediction further
by erasing peptide bonds from the prediction.
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Basophile reduces the number of fragments predicted for peptide

sequences. This reduction has a minimal impact on the number of

matched ions for identified peptides, however. For +3 tryptic

peptides, the number of matched b + 2 fragments lags behind

other classes of fragments.
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The reduction of predicted fragments may also prove

beneficial to selected reaction monitoring (SRM) experi-
ments. When an SRM is initially designed for an unobserved
peptide, a researcher may attempt to monitor all possible

fragments that would be produced for it, then reduce the
set of fragments screened in further iterations of the SRM
assay [29]. The use of Basophile can reduce the size of the
initial set of transitions, enabling fewer mass spectral exper-

iments for the first iteration or enabling the screening of a
broader collection of peptides in the same number of
experiments.

Processing times are frequently substantial since search
algorithms process millions of potential peptide sequences,
especially when protein databases come from a big proteome,

even though this requirement is compromised nowadays by
taking use of modern computational technologies such as mul-
ti-threading and computer clusters. Basophile naturally re-
duces the number of fragment ions by predicting a subset of

Naive model, thus reducing the number of peaks compared be-
tween experimental and theoretical MS/MS. As a result, Baso-
phile reduces search time. We recorded the time used for

searches of Yeast-CPTAC-CID (LTQ) dataset with MVH
scorer. Searches were performed on 25 cluster nodes, each with
two processor cores. In the ten LTQ files, searches using the

Naive model took 42 min on average, while searches using
Basophile took 30 min. Over-prediction of fragments for pep-
tides can contribute to the additional time required to search

datasets.

Effect of the small, but more accurate peak lists on PSM scoring

systems

We tested whether the trained Basophile-NIST models could
improve peptide identification using the MVH and
HGT +RST score systems. By reducing the number of pre-
dicted fragments, Basophile could lose identifications; by
improving prediction accuracy, Basophile might reduce false

positive matching and gain identifications. Figure 7 compares
the number of +3 and Figure S2 compares the number of
+4 peptides identified in four testing datasets when

MyriMatch employed the Basophile-NIST and Naive models
for the search. For LTQ-CID datasets, Basophile-NIST consis-
tently improved the +3 peptide identification over Naive mod-

els (P < 0.01). However, the Basophile-NIST model failed to
improve the peptide identifications when analyzing HCD-Orbi-
trap spectra. It appears that the high-resolution precursor and
fragment masses of HCD MS/MS neutralize any advantage

gained from accurate fragment prediction, reducing the num-
ber of candidates compared to the MS/MS and hence false-po-
sitive matching. We tested this hypothesis by comparing the

performance of the Basophile-NIST model on +4 precursor
MS/MS present in the HCD-Orbitrap-Testing and Yeast-Mul-
ti-Enzyme-CID-trypsin datasets. All spectra were searched

using the above mentioned protocol. Basophile-NIST did not
significantly outperform Naive on +4MS/MS in both datasets
(P > 0.05). Because Basophile attempts to model charge segre-

gation as a function of the full peptide sequence, it may fail to
recognize cases in which secondary fragmentation occurs (as in
HCD, which resembles triple quadrupole CID more than it
does ion trap CID). Also, as Figure 3 shows, +4 peptides typ-

ically have more charge segregation events, which are deter-
mined by observable b and y ions. This could lead to
misclassifications in the training set, however. For example, if

the spectrum is really an ambiguous event (b + 1, b + 2,
y + 3, y + 2), but we only observed (y + 2, b + 2), then we
would mistakenly code it an ‘‘unambiguous event’’. The more

the protons carried by a peptide, the higher the chance we erro-
neously classify it. What is more, we have far fewer training
samples for +4 peptides than+3s. These are the two main rea-

sons that +4 identifications are unexpectedly low.
We also tested Basophile-NIST on multiple LTQ–Orbitrap

datasets. It turned out that the number of identifications did
not consistently gain. For example, the Basophile gained +3

identifications on Yeast-Multi-chymo by 6%, on Yeast-Mul-
ti-trypsin by 2%, but lost +3 identifications on Yeast-
CPTAC-CID (ORBI) by 3% when we use MVH scorer. As

a result, Basophile-NIST did not perform consistently better
than the Naive model on LTQ–Orbitrap datasets.

Both MVH and the hypergeometric and rank sum tests

(HGT+ RST) benefited from Basophile in LTQ dataset for
+3 peptide identifications. The average improvement was
30% under HGT + RST system, and 20% under MVH sys-
tem, indicating that HGT + RST system benefited more from

reduced but more accurate predicted fragment list. These find-
ings indicate the interdependence of fragment prediction and
PSM scoring systems; a change in one frequently alters perfor-

mance in the other. Models like Basophile may result in a spec-
trum being compared to some predictions that are dense with
peaks and others that contain relatively few peaks. If a scorer

is designed to normalize away these differences by taking into
account the density of the spectrum prediction (as is the case
for the HGT model), it can benefit from more accurate predic-

tions. In contrast, when a scorer tends to give higher scores on
average to predictions that are denser in peaks (as is true for
MVH), more accurate predictions may provide less benefit.
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Figure 7 Comparison of Basophile and Naive models on +3 peptides identified

MyriMatch employed Basophile-NIST and Naive models for the search of +3 peptides in two LTQ datasets, Yeast-CPTAC-CID (LTQ)

(A) and Dicty-LTQ (B), and one HCD Orbitrap dataset, HCD-Orbitrap-Testing (C). Reduced but more accurate peak list benefits both

scorers by improved peptide identifications in low resolution data, but not in high resolution ones. IDs on axes indicate identification of

peptides. Legend in panel A applies to all panels.
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Figure 8 Comparison of Basophile and BRCount model on +3 peptides identified

MyriMatch employed Basophile-NIST and BRCount model for the search. Basophile-NIST outperformed the latter by improved peptide

identifications on low resolution data, but failed on high resolution ones.

Wang D et al / Basophile for MS/MS Charge Segregation 91
Comparison of Basophile model and BRCount model

The BRCountmodel, adapted from a description on the Protein
Prospector website (prospector.ucsf.edu/) and communications
with Robert Chalkley, predicts maximum fragment charge

based on the count of basic sites (including both basic side chains
and the N-terminus) contained in a fragment. Both Basophile
and BRCount models count basic residues for prediction, but

Basophile is trained from identified spectra and incorporates
overall fragment length, while BRCount is a simple heuristic.

Basophile-NIST model performed better than the BRCount

model when searching +3 precursors (Figure 8). Compared to
the BRCount model, Basophile-NIST increased the +3 identi-
fication rates by 27% (P < 0.001) and 36% (P < 0.01) when

using Yeast-CPTAC-CID (LTQ) and Dicty-LTQ datasets,
respectively. However, Basophile-NIST did not outperform
the BRCount model when using +3 precursors from HCD-
Orbitrap-Testing dataset and +4 precursors from all datasets

(P > 0.05). Comparisons in quadruply charged peptides are
illustrated in Figure S3.
Conclusion

Basophile was designed to rapidly predict peptide fragmenta-

tion spectra (m/z values) from sequences that are matched to
MS/MS of +3 and +4 precursors. The model improves the
accuracy of predictions by reducing the number of unnecessary
fragments that are routinely predicted for high charge state

precursors. By predicting fewer fragments, Basophile poten-
tially could fail to match observed fragments; by increasing
prediction accuracy, Basophile gains identifications by reduc-

ing false positive matching. Basophile balances the two forces,
making significant improvements for +3 identifications and
achieving equivalent performance for +4 identifications com-

pared with the Naive model. Basophile noticeably outperforms
the BRCount model consistently in +3 identifications. Baso-
phile also achieves simplicity and speed by solving the predic-

tion problem with an ordinal regression equation that can be
easily incorporated into the existing database search software
for shotgun proteomic identification.

http://www.prospector.ucsf.edu


Table 1 Datasets used in this study

Data Species Instrument Enzyme Experiments

Baso-NIST NIST-CID H. sapiens Various ion trap Principally trypsin 703

Baso-Yeast Yeast-Multi-trypsina S. cerevisiae Orbitrap Trypsin 6

Yeast-Muti-chymo S. cerevisiae Orbitrap Chymotrypsin 6

Yeast-Multi-lysC S. cerevisiae Orbitrap Lys-C 45

Yeast-Multi-proK S. cerevisiae Orbitrap Proteinase K 18

Baso-HCD HCD-Orbitrap-Training M. musculus Orbitrap Velos Trypsin 19

HCD-Orbitrap-Training C. elegans Orbitrap Velos Trypsin 12

HCD-Orbitrap-Training E. coli Orbitrap Velos Trypsin 5

HCD-Orbitrap-Training C. griseus Orbitrap Velos Trypsin 94

Testing Yeast-CPTAC-CID(LTQ) S. cerevisiae LTQ Trypsin 10

Dicty-LTQ D. discoideum LTQ Trypsin 10

HCD-Orbitrap-Testing S. oneidensis Orbitrap Velos Trypsin 59

Other Yeast-CPTAC-CID(ORBI) S. cerevisiae Orbitrap Trypsin 18

Note: The ‘‘Experiments’’ column reports the numbers of LC–MS/MS experiments included in each dataset. a These data were used for training

Basophile–Yeast and testing other Basophile models.
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Materials and methods

Datasets

We gathered a diverse collection of peptide fragmentation

spectra (MS/MS) for training and testing the Basophile model.
Table 1 summarizes the datasets used in this study. Detailed
sample processing protocols are included in Supplementary
File 2. The RAW data files are available from the EDRN Cat-

alog and Archive Service (http://cancer.jpl.nasa.gov/ecas/).

NIST-CID

For this dataset, we used the November 29, 2011 version of
the human ion trap spectral library from the National
Institute of Standards and Technology (NIST). This library
contains representative CID-MS/MS spectra for more than

190,539 distinct peptides collected from human samples
[18]. A majority of the candidates (68%) in the library
are tryptic peptides, which include the following numbers

of precursors by charge state: +2: 165 K, +3: 85 K and
+4: 30 K.

Yeast-CPTAC-CID

Yeast whole cell lysates were previously analyzed at Van-
derbilt University (Nashville, TN) as part of the Clinical
Proteomic Technology Assessment for Cancer (CPTAC) ini-

tiative [19,20]. Proteins from the lysates were reduced with
dithiothreitol (DTT), alkylated with iodoacetamide (IAA)
and digested with trypsin. Peptide mixtures were subjected

to replicate LC–MS/MS analyses using either an LTQ or
an LTQ–Orbitrap mass spectrometer (Thermo-Fisher,
Waltham, MA). A total of 262 and 42 K CID-MS/MS were
collected from LTQ and LTQ–Orbitrap analyses,

respectively.

Yeast-Multi-Enzyme-CID

Proteins from yeast whole cell lysates were reduced with DTT
and alkylated with IAA. The protein mixture was appor-
tioned into four aliquots, each of which was digested with
trypsin, chymotrypsin, lys-C or proteinase-K, respectively

(the individual dataset was then named as Yeast-Multi-tryp-
sin, Yeast-Multi-chymo, Yeast-Multi-lysC and Yeast-Multi-
proK, respectively). Resulting peptide mixtures were analyzed

independently in replicates on an LTQ–Orbitrap mass spec-
trometer using LC–MS/MS at Vanderbilt University. A total
of 664 K CID-MS/MS spectra were collected from all

analyses.

Dicty-LTQ-CID

Membrane proteins were extracted from cultured Dictyosteli-

um discoideum cells, reduced with DTT, alkylated with IAA
and digested using porcine trypsin. The 10 different peptide
mixtures were analyzed on an LTQ-XL mass spectrometer in
LC–MS/MS analyses at Vanderbilt University. A total of

169 K CID MS/MS spectra were collected.

HCD-Orbitrap

A diverse collection of HCD MS/MS spectra was assembled
from 5 different samples: Mus musculus brain tissue, Caeno-
rhabditis elegans cells, Escherichia coli cells, Cricetulus griseus
cells, and Shewanella oneidenesis MR-1 (formerly Shewanella

putrefaciens) cells. Chi et al. [21] analyzed the C. elegans and
M. musculus samples at the National Institute of Biological Sci-
ences (Beijing, China). E. coli cells were analyzed at Vanderbilt

University’s Mass Spectrometry Research Center. Baycin et al.
[22] analyzed the C. griseus cells at Johns Hopkins University
(Baltimore, MD). S. oneidenesis MR-1 cells were analyzed at

Pacific Northwest National Laboratory (Richmond, WA).
Sample processing protocols are detailed in Supplementary File
2 and summarized here. In brief, proteins from these samples

were reduced with DTT, alkylated with IAA and digested with
trypsin. Peptide mixtures were subjected to replicate LC–MS/
MS analyses using LTQ–Orbitrap mass spectrometers located
at the respective institutions. A total of 211, 105, 16, 855 K

and 1.19 million HCD MS/MS spectra were collected from
M. musculus, C. elegans, E. coli, C. griseus and S. oneidenesis
MR-1 samples, respectively. Data from the first four samples

http://www.cancer.jpl.nasa.gov
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were used to train the Basophile-HCD model (‘‘HCD-Orbi-
trap-Training’’), whereas S. oneidenesis MR-1 data were re-
served for testing Basophile (‘‘HCD-Orbitrap-Testing’’).

Raw data produced by the mass spectrometers were trans-
coded into either mzML or mz5 format using the msConvert
tool of the ProteoWizard library [23] for further processing.
Peptide identification and results filtering

MS/MS spectra were identified using MyriMatch database

search software. A complete list of MyriMatch search
parameters are presented in Table S1. MyriMatch was
configured to derive semitryptic peptides from the sequence

database while looking for the following variable modifications:
carbamidomethylation of cysteine (+57.0125 Da), oxidization
of methionine (+15.996 Da), and formation of pyro-glutamic
acid from N- terminal glutamines (�17.0265 Da). When modi-

fied, the software used the Basophile model for augmenting the
theoretical MS/MS predictions for +3 and +4 precursors.

MyriMatch matched peaks between experimental and pre-

dicted MS/MS. Resulting PSMs were scored with three differ-
ent systems: MVH, HGT and RST. The MVH system
segregates experimental peaks into three intensity classes and

measures the point probability of matching a given combina-
tion of peaks by random chance using a multivariate hypergeo-
metric distribution [17]. The HGT system employs a
hypergeometric distribution to measure the P value of obtain-

ing more than the observed number of peak matches between
the predicted and experimental MS/MS by random chance
[18]. The RST system ranks experimental MS/MS peaks by

increasing order of intensity, computes the intensity rank
sum of peak matches, and estimates the P value of obtaining
a better rank sum by random chance via a normal distribution

[18]. MyriMatch was configured to sort the spectrum matches
using either the MVH point probability or a P value derived
from combining HGT and RST scores via Fisher’s method.

The software produces peptide identifications in standard pep-
XML formatted files. IDPicker [24] filtered peptide identifica-
tions from all searches at a q-value [25] of 2% using either
MVH score or an optimized combination of HGT and RST

scores.
Pattern of charge segregation events for highly charged peptides

Basophile was trained to predict fragment charge segregation
for highly charged precursors. Three different models were
trained using high-quality peptide identifications derived from

‘‘NIST-CID’’, ‘‘Yeast-Multi-Enzyme-CID’’ and ‘‘HCD-
Orbitrap-Training’’ datasets (Table 1). Evidence of observed
fragment ions for a PSM can be grouped in terms of charge

segregation. Peptide bonds close to the N-terminus produce
longer y ions than b ions; similarly, y ions near the N-terminus
are likely to contain more basic residues than b ions. These two
factors imply that y ions near the N-terminus compete more

strongly for the protons that ionized the intact peptide.
Conversely, when fragmentation occurs near the C-terminus,
the b ions are longer and contain more basic residues. We

separated the possible outcomes from charge segregation into
regions of unambiguous and ambiguous charge segregations.
For example, a +3 precursor can produce four unambiguous
charge segregation outcomes: a triply-charged y ion (y + 3), a
doubly-charged y ion and singly-charged b ion (b + 1; y + 2),
a singly-charged y ion and doubly-charged b ion (b + 2;

y + 1), and a triply-charged b ion (b + 3). For some peptide
bonds, both outcomes may result; for example, a peptide bond
may produce both singly and doubly-charged b and y ions. For

+3s, three ambiguous regions fall between the four unambig-
uous outcome regions. Because these outcomes are not all
equally spaced for peptides, we opted to emphasize only the

most common charge segregation outcomes in Basophile, as
discussed in subsection ‘‘Constitution of charge segregation
events.’’

Ordinal regression-training of Basophile

Peptides from raw MS/MS data (Yeast-Multi-Enzyme-CID
and HCD-Orbitrap-Training) were identified with MyriMatch

software configured to use MVH score as primary sort order
for matches. IDPicker filtered the resulting peptide identifica-
tions at a stringent 2% q-value. PSMs were grouped by precur-

sor charge state and peptide sequence (including
modifications). We selected the highest scoring MS/MS from
each group for training.

Ordinal regression is a classification algorithm that deals
with data with multiple outcomes, whichmodels the probability
of observing a positive outcome by using a sigmoid function:

p ¼ hðxÞ ¼ 1
1þe�bx, where bx denotes the product of vectorized

coefficients and factors. This is equivalent to
logit ¼ logð p

1�pÞ ¼ bx. This logit function then gives cutoff val-

ues to discriminate neighboring ordinal outcomes. Given a

peptide cleavage site, Basophile computes the logit value (loga-
rithmic odds) of observing a charge segregation event using an
ordinal logistic regression function: logð p

1�pÞ ¼ b1RN þb2HNþ
b3KN þ b4LN þ b5RC þ b6HC þ b7KC þ b8LC, where RN, HN,

and KN are number of Arg, His and Lys residues in N-terminal
fragment; RC, HC, and KC are number of Arg, His, and Lys res-
idues in C-terminal fragment; LN and LC are number of other
residues at N- and C-terminals, respectively.

Two training tables (one each for +3 and +4 precursors)
were generated from the above PSMs of each dataset by cus-
tom software. Each row of the table corresponds to a peptide

bond in a PSM. The row summarizes the counts of residues
(RN, HN, KN, RC, HC, KC, LN and LC) for each peptide bond
as well as the set of fragment ions observed in the MS/MS. The

table generator removed noise peaks from the spectra using a
95% total ion current (TIC) threshold filter [17]. Having lo-
cated the set of fragment ions for a given bond from the
MS/MS spectrum, the software maps the fragment evidence

to an ordinal label to describe the charge segregation outcome
region. For example, if y ions from a bond of a triply-charged
peptide were observed in both singly and doubly-charged

form, the software would map this bond to a charge ambiguity
region where both termini were capable of attracting two of
the three protons. Table S2 presents a complete list of charge

segregation events and evidence of observed fragment ions
monitored for +3 and +4 precursors, while Table S3 presents
a sample training table generated from triply-charged PSMs.

We employed ordinal logistic regression to process each
training table and derive an ordinal logit function for predict-
ing fragment charge states from the fragment basicity. A 5-fold
cross-validation strategy was used to avoid over-fitting of the
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function to the data. The regression provided weights for the
basicity calculation function and decision table to predict
which segregation region best models a given peptide bond.

Table S4 presents the detailed ordinal functions of the trained
models and the corresponding decision values. We imple-
mented these advanced fragment prediction models for +3

and +4 precursors in MyriMatch alongside the Naive model.
For comparison, we implemented a simple basic residue count
(equal weights) based fragment charge state predictor in Myr-

iMatch (BRCount model). This model allows the fragments to
take on any charge below that of their precursor and less than
or equal to the number of basic residues in that fragment.
Searches with BRCount model followed the same pipeline.

MyriMatch can be instructed at run time to apply a particular
model for the database search.
Testing the efficacy of Basophile

High resolution precursor and fragments in the ‘‘HCD-
Orbitrap-Testing’’ dataset were utilized to measure the efficacy

of Basophile in reducing the number of fragments predicted
for peptides. The MS/MS of +3 and +4 precursors were
identified with the MyriMatch database search engine con-

figured to use the Naive model for MS/MS prediction and
MVH for results ranking. IDPicker filtered the resulting
peptide identifications with MVH score to a stringent 2%
q-value. Custom software in the C# programing language

inspected each PSM, independently recapitulated the frag-
ment predictions using Naive and Basophile-NIST models,
matched the predicted fragments to experimental peaks

and assessed the number of fragment hits and misses by
each fragment charge state.
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