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Abstract

Single-cell RNA sequencing distinguishes cell types, states, and lineages within the context of 

heterogeneous tissues. However current single-cell data cannot directly link cell clusters with 

specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from 

single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated 

bulk expression data and single-cell data by first quantifying the similarity between each single 

cell and each bulk sample. It then optimizes a regression model on the correlation matrix with 

the sample phenotype to identify relevant subpopulations. Applied to a lung cancer single-cell 

RNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with 

TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 
and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor 
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was effective in interpreting Facioscapulohumeral muscular dystrophy (FSHD) and Alzheimer’s 

disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from 

single-cell assays by leveraging phenotype and bulk-omics datasets.

Single-cell sequencing technologies are revolutionizing biomedical research and clinical 

practice by enabling the comprehensive characterization of cells from complex tissues1, 2. In 

contrast to bulk data that measures the averaged properties of whole tissue, single-cell RNA 

sequencing (scRNA-seq) allows identifying cell types, states, and lineages of different cell 

subpopulations in a heterogeneous tissue ecosystem3–5. To recognize critical subpopulations 

from single-cell data, the standard approach is to perform unsupervised clustering to define 

cell clusters, inspect marker genes of each cluster, and assess the enrichment of the marker 

genes in known cell types and pathways to evaluate the importance for each cell cluster6, 7. 

However, identifying cell subpopulations that drive phenotypes, such as disease stage, tumor 

metastasis, treatment response, and survival outcome, is of indispensable importance since 

it will facilitate cell-type targeted therapies as well as prognostic biomarker discovery3, 8. 

Unfortunately, single-cell technology is not practical in large cohorts, and most single-cell 

experiments involve less than twenty patient samples9–11, which lacks the statistical power 

to identify the cell subpopulations driving the phenotype of interest.

Meanwhile, valuable clinical phenotype information is widely available from big data 

consortia like The Cancer Genome Atlas (TCGA)12 through a decade-long collection of 

clinicopathologic annotations. Clinical phenotype information is primarily collected on bulk 

tissue samples, especially in the form of formalin-fixed-paraffin-embedded samples, which 

are not feasible for single-cell profiling. Therefore, there is an unmet need to leverage 

such widely accessible and valuable phenotype information to guide cell subpopulation 

identification from single-cell data.

To the best of our knowledge, there is no bioinformatics tool that uses external bulk 

phenotypes to guide the identification of key cell subpopulations in a unified framework for 

single-cell data analysis. Therefore, in this study, we introduce Single-Cell Identification of 

Subpopulations with bulk Sample phenOtype coRrelation (Scissor). By leveraging bulk data 

and phenotype information, this algorithm automatically selects cell subpopulations from 

single-cell data that are most responsible for the differences of phenotypes. The novelty of 

Scissor is that it utilizes phenotype information from bulk data to identify the most highly 

disease-relevant cell subsets. Our studies suggest that Scissor is a promising tool to explore 

and interpret single-cell data from a new perspective, which can shed fresh light on disease 

mechanisms and improve the diagnosis and treatment of diseases.

Results

Overview of Scissor.

To utilize bulk data and phenotype information for assisting single-cell data analysis, we 

developed an algorithm, Scissor, to identify cell subpopulations from single-cell data that 

are most highly associated with the given phenotypes. Briefly, the three data sources for 

Scissor are a single-cell expression matrix, a bulk expression matrix, and a phenotype of 
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interest (Fig. 1a). The phenotype annotation of each bulk sample can be a continuous 

dependent variable, binary group indicator vector, or clinical survival data. The key step of 

Scissor is to quantify the similarity between the single-cell data and bulk data through a 

measurement like Pearson correlations for each pair of cells and bulk samples. After this, 

Scissor optimizes a regression model on the correlation matrix with the sample phenotype 

(Fig. 1b). The selection of the regression model depends on the type of the input phenotype, 

i.e., linear regression for continuous variables, logistic regression for dichotomous variables, 

and Cox regression for clinical survival data. Since a small subset of cells could drive the 

phenotype of interest13, a sparse penalty and a graph regularization are imposed on the 

regression model to select similar cells that are important for the given phenotype with 

high confidence (Fig. 1b). Based on the signs of the estimated regression coefficients, the 

cells with non-zero coefficients can be indicated as Scissor positive (Scissor+) cells and 

Scissor negative (Scissor-) cells, which are positively and negatively associated with the 

phenotype of interest, respectively (Fig. 1c). The cells with coefficients of zero are indicated 

as background cells. Furthermore, to control the false associations between single-cell and 

bulk data, we designed a reliability significance test to determine whether the chosen data 

is suitable for our phenotype-to-cell associations (Fig. 1d). Finally, the Scissor selected cells 

will be further characterized in downstream analyses, such as exploration of signature genes 

and functionally enriched pathways (Fig. 1e).

Capturing phenotype-associated subpopulations in simulations.

We first assessed the performances of Scissor on a series of simulated datasets to test 

whether Scissor can recover the known phenotype-associated cell subpopulations. To 

achieve this, we employed Splatter14 to simulate two phenotype-specific cell subpopulations 

as the ground truth and one common cell type shared by the two phenotypes as well as the 

corresponding bulk expression data (Fig. 1f; Methods). In one simulation, the two ground-

truth phenotype-specific cell subpopulations were characterized by 21 true differentially 

expressed genes (DEGs) between them but cannot be distinguished by standard single-cell 

analysis pipelines since they were in the same cluster (Supplementary Fig. 1a, b). Utilizing 

bulk gene expressions to guide the cell subpopulation identification, we found that Scissor 

recovered 90.5% and 91.8% of the ground truth cells unique to each phenotype, with low 

false positive rates of 2.1% and 0.9%, respectively (Fig. 1g, h). There were 22 DEGs 

between the two cell subpopulations identified by Scissor, including all 21 true DEGs 

between the two ground-truth phenotype-associated cell subpopulations (Supplementary Fig. 

1b). In contrast, the fold change signals of these 21 true DEGs at the bulk level were weak 

with values less than 1.1 (Supplementary Fig. 1c). Such improved phenotype-specific gene 

signal detection will facilitate the reliable downstream interrogation of different cell types 

and states within a heterogeneous cell population. When performing this simulation 100 

times, Scissor had an average recall of 0.88 and precision of 0.93 in identifying phenotype-

associated subpopulations.

Furthermore, to check whether the performance of Scissor depends on the true DEG signals 

at the bulk level, we reset the expression levels of these true DEGs as the least differentially 

expressed genes (Methods). We found that Scissor can still identify 87.6% and 87.3% of 

the ground truth cells for each phenotype, with slightly higher false positive rates of 4.2% 
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and 5.9% (Supplementary Fig. 1d, e). In this setting, Scissor detected all 21 true DEGs 

with only two false positive DEGs (Supplementary Fig. 1b). Finally, we demonstrated the 

robustness of Scissor on the batch-effects corrected scRNA-seq data (Supplementary Fig. 

1 f–i). Overall, the results from these simulations were largely consistent with each other, 

indicating Scissor’s capacity to identify the phenotype-associated cell subpopulations from 

single-cell data.

Identifying subpopulations of tumors and normal phenotypes.

We then applied Scissor to a lung cancer scRNA-seq data that included tumor cells and cells 

from the tumor microenvironment with known cell types10 (Fig. 1i). In order to demonstrate 

the efficacy of our algorithm, we utilized the tumor and normal phenotypes from 577 

TCGA lung adenocarcinoma (LUAD) bulk samples15 to guide Scissor analysis. We expected 

that, by using these data, Scissor would infer cells that were most highly associated with 

cancer or normal phenotype in this heterogeneous single-cell dataset. Because of the binary 

phenotype settings of this application, where samples with a phenotype indicator value 1 

correspond to tumor samples, Scissor+ cells should be associated with the cancer cells, and 

Scissor- cells should be associated with the normal phenotype. Among 29,888 cells from 

different cell types (Fig. 1i), 361 Scissor+ cells and 534 Scissor- cells were selected by 

Scissor, which were associated with the tumor and normal phenotypes with high confidence 

(Fig. 1j). As anticipated, over 98% of Scissor+ cells were verified to be malignant cells (Fig. 

1k). Such a high proportion of cancer cells in Scissor+ cells cannot be selected by chance 

(Supplementary Fig. 1j, hypergeometric test p<2e-16), which confirmed that Scissor can 

identify the cells associated with the phenotypes of interest. As for Scissor- cells, the cell 

types were relatively more balanced than Scissor+ cells since it was designed to associate 

with more diverse non-malignant cell types (Fig. 1k). Myeloid cells and alveolar cells were 

the two main selected cell types, accounting for 42.3% and 36.9% of total Scissor- cells, 

respectively. All cell types in Scissor- cells, especially the alveolar cells, are important cell 

types in normal lung tissues. Thus, we demonstrated that Scissor can precisely identify 

the most phenotype-associated cells from single-cell data with the guidance of phenotype 

information from bulk data.

Detecting a hypoxic subpopulation related to worse survival.

Cancer cells are heterogeneous and include subpopulations such as cancer stem cells, 

which are known to drive tumor progression and poor prognosis16, 17. Therefore, we 

applied Scissor, guided by 471 TCGA-LUAD bulk samples with survival information15, to 

identify aggressive cancer cell subpopulations within 4,102 cancer cells from the same lung 

cancer scRNA-seq dataset10. These cells were separated into 12 clusters (Fig. 2a), which 

demonstrated the heterogeneous nature of the cancer cells. Out of 205 Scissor selected 

cells, 201 Scissor+ cells were associated with Worse Survival (defined as Scissor_WS cells 

thereafter), and only 4 Scissor- cells were associated with good survival (Fig. 2b). The 

Scissor_WS cells were mainly from clusters 1 and 3 (Fig. 2c). To understand the underlying 

transcriptional patterns of Scissor_WS cells, we compared the gene expressions of those 

cells with all other cells. As a result, 23 up-regulated genes and 205 down-regulated genes 

were differentially expressed in Scissor_WS cells over all other cells, respectively (Fig. 2d 

and Supplementary Table 1). Notably, we found that multiple important hypoxia-related 
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genes were among the above 23 overexpressed genes (Fig. 2e). Functional enrichment 

analysis also confirmed that the hypoxia-related pathways, such as glycolysis and glucose 

metabolism processes, were activated in Scissor_WS cells (Fig. 2f and Supplementary Table 

1). Consistently, motif analysis revealed that the HIF1A binding motif was the most enriched 

motif in the 23 up-regulated genes (Supplementary Table 1), which is a key mediator of 

cellular response to lowered oxygen levels 18. We also observed higher hypoxia pathway 

activities in an identified cell subpopulation related to higher tumor stages (Supplementary 

Fig. 2).

To further examine the clinical relevance of the above 23 overexpressed genes (defined 

as lung cancer signature; Supplementary Table 1), we chose six independent lung cancer 

datasets collected in PRECOG19 (Supplementary Table 1). We found that in 5 out of 

6 datasets, the patients with higher signature scores had significantly worse survival 

time than the patients with lower signature scores (Fig. 2g and Supplementary Fig. 3). 

This observation indicated that the lung cancer signature derived from Scissor_WS cells 

was associated with worse survival and could provide potential drug targets for further 

investigation20. Among the six chosen datasets, two of them have additional clinical 

features. We thereby investigated whether our lung cancer signature had predictive power for 

patient survival beyond clinical features. To achieve this, we examined pathological stage, 

sex, age at diagnosis, and our lung cancer signature in these two datasets. We found that only 

the pathological stage and our signature were significantly associated with patient survival in 

univariate Cox survival analyses (Fig. 2h). Furthermore, our signature remained statistically 

significant in both datasets after adjusting for tumor stage in multivariable Cox survival 

analyses (Fig. 2i).

In summary, Scissor identified an aggressive cancer cell subpopulation from the LUAD 

scRNA-seq data that was associated with worse survival outcomes and can be characterized 

by the overexpression of hypoxia-related genes. The high hypoxia activity might drive 

LUAD progression and thereby conferred poor outcomes to patients whose tumors contained 

significant numbers of such cells.

Profiling a cell subpopulation associated with TP53 mutation.

To further demonstrate the high flexibility of Scissor in exploring a variety of hypotheses 

of cell states in single-cell data, we used other phenotypical features provided by TCGA-

LUAD to guide the identification of cell subpopulations within the same 4,102 lung cancer 

cells. Here we focused on TP53, a commonly mutated tumor suppressor genes found in 

human malignancies.

We collected TP53 mutation status (mutant or wild-type) from TCGA-LUAD as the 

phenotypes of 498 bulk samples. Scissor identified a total of 414 Scissor+ cells associated 

with the TP53 mutant and 318 Scissor- cells associated with the wild-type (Fig. 3a). 

To uncover the transcriptional differences between these cells, we compared the gene 

expressions of Scissor+ cells with that of Scissor- cells. As a result, 337 up-regulated 

genes and 14 down-regulated genes were differentially expressed in Scissor+ cells over 

Scissor- cells (Fig. 3b and Supplementary Table 2). The 337 up-regulated genes include 

multiple E2F target genes and cell cycle progression-related genes, e.g., AURKA, CDK1, 
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CCNB2, and TOP2A (Fig. 3b). Functional enrichment analysis also confirmed that cell 

cycle-related pathways, such as hallmark E2F targets, were activated in Scissor+ cells (Fig. 

3c and Supplementary Table 2). Consistently, master regulator analysis revealed that the 

activities of E2F transcription factors (TFs) family members E2F1 and E2F4 were both 

highly elevated in Scissor+ cells (Fig. 3d). In this analysis, we also found that TFs FOXM1 

and MYC, which are known to be repressed by wild-type TP5321, 22, were activated in 

the cell subpopulation associated with the TP53 mutant (Fig. 3d). FOXM1 is reported as 

a major predictor of unfavorable outcomes in human cancers22. These observations are in 

line with the literature that TP53 mutation leads to tumorigenesis by involving its impaired 

capability to arrest cell cycle and maintain DNA repair in response to oncogenic stimuli23. 

Indeed, master regulator analysis confirmed that TP53 is inactivated in Scissor+ cells (Fig. 

3d), which further demonstrates the capability of Scissor in identifying phenotype-associated 

cell subpopulations.

Furthermore, by linking those 337 up-regulated genes (defined as TP53 mutation signature; 

Supplementary Table 2) with clinical outcomes, we demonstrated that the patients with 

higher TP53 mutation signature scores had significantly worse survival time than the 

patients with lower scores (Fig. 3e). For the down-regulated genes, we found that major 

histocompatibility complex (MHC) class-related genes HLA-A, B2M, and CD74 are down-

regulated in Scissor+ cells, and only one of them can be directly identified from the 

bulk level gene expression (Fig. 3f, Supplementary Fig. 4). Notably, B2M is a critical 

component of MHC class I antigen presentation and loss-of-function mutations in B2M have 

been reported in cancer patients resistant to immunotherapy24. Thus, our phenotype-guided 

scRNA-seq analysis implied that TP53 mutation is likely a mechanism of resistance to 

checkpoint inhibitor treatment. In summary, this application demonstrated the versatile 

abilities of Scissor in integrating a variety of phenotypes for single-cell subpopulation 

annotations.

Identifying a T-cell subpopulation related to immunotherapy.

Immune checkpoint blockade (ICB) has achieved exciting results in a wide variety of 

cancers25, 26. To understanding the mechanism underlying ICB response, we performed 

Scissor on a melanoma scRNA-seq dataset to identify a T cell subpopulation related to ICB 

response.

We focused our analysis on 1,894 T cells from the metastatic melanoma tumor 

microenvironment27 and collected 70 melanoma bulk patients with known immunotherapy 

response information from two studies28, 29. In the standard scRNA-seq data analysis, these 

T cells were clustered into six clusters (Fig. 4a). By performing Scissor, we identified 105 

T cells as Scissor+ cells, which were associated with a Favorable immunotherapy Response 

(defined as Scissor_FR cells thereafter), and did not report any cells that are associated with 

the unfavorable immunotherapy responses (Fig. 4b). These 105 Scissor_FR cells mainly 

resided in clusters 2 and 3 (Fig. 4c), indicating clusters 2 and 3 were more associated with 

the effective responses than other clusters. To characterize the transcriptional identities of 

the Scissor_FR cells, we compared the gene expression of these cells with all other cells. In 

total, 17 up-regulated and 120 down-regulated differential expression genes were identified 
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in Scissor_FR cells (Fig. 4d and Supplementary Table 3). The Scissor_FR cells that were 

associated with an effective ICB response had increased expressions of genes linked to 

T cell memory (CCR7 and SELL) and survival (IL7R) as well as lower expressions of 

inhibitory genes (HAVCR2, LAG3, PDCD1, CTLA4) and MHC II class genes (HLA-DRB5, 

HLA-DRB1, HLA-DPA1, HLA-DQB2, and HLA-DRB6) (Fig. 4d, e and Supplementary 

Table 3). The Scissor_FR cells also exhibited enhanced expression of transcript factor TCF7 
that is associated with a favorable outcome in ICB treatment30, 31 (Fig. 4e). In addition, 

pathway enrichment analysis showed the Scissor_FR cells had higher TNF-α signaling and 

lower activity of CTLA4, PD1 signaling, and LCMV/tumor exhaustion pathways (Fig. 4f).

The above 137 differential expression genes related to effective immunotherapy response 

(defined as immunotherapy responsive signature; Supplementary Table 3) could be 

informative in predicting treatment success. We found that our signature scores were 

significantly higher in ICB responders than in non-responders in an independent ICB dataset 

(Fig. 4g, Student’s t-test p=5.0e-4). Additionally, the up-regulated and down-regulated 

genes in our immunotherapy responsive signature were also significantly enriched in 

responders and non-responders (Fig. 4h, Kolmogorov-Smirnov test FDR=0.002 and 0.0085, 

respectively). We further evaluated our immunotherapy responsive signature in five types 

of tumor-infiltrating lymphocytes (TILs) with distinctive differentiation states. We found 

that LAG3-low/PD1-low effector CD8 T cells had the highest signature scores, followed 

by Naïve CD8, Bystander TIL, LAG3-high/PD1-high effector CD8, and exhausted CD8 T 

cells (Fig. 4i). Notably, our signature can significantly distinguish between PD1-low effector 

CD8, PD1-high effector CD8, and exhausted CD8 T cells (Fig. 4i and Supplementary 

Fig. 5a, b). Furthermore, the pseudotime analysis based on our immunotherapy responsive 

signature revealed the relative orders of the six clusters as cluster 2->3->4->5->6->1 

(Supplementary Fig. 5c). Moreover, we found that our signature was more enriched in 

the memory precursor CD8 T cells than the short-lived effector T cells (Fig. 4j, Student’s 

t-test p=0.02). This observation indicated that Scissor_FR cells were more like PD1-low 

memory-precursor cells, which have higher TCF7 expression and are associated with a good 

immunotherapy response.

Collectively, our Scissor analysis of a scRNA-seq melanoma dataset independently revealed 

a PDCD1/CTLA4 low and TCF7 high T cell subpopulation whose distinct transcriptome 

was essential to favorable response to immunotherapy. These results demonstrated that 

Scissor analysis of single-cell data is capable of identifying subpopulations associated 

with the specific phenotype even though the single-cell data itself has no such phenotype 

information.

Identifying cell subpopulations associated with FSHD.

We further applied Scissor on an Facioscapulohumeral muscular dystrophy (FSHD) single-

cell dataset to explore the applicability of our method on non-cancer studies. In total, 6,899 

cells derived from FSHD and control samples32 were analyzed by Scissor with the guidance 

of 35 bulk muscle biopsies (27 FSHD patients and 8 controls). These cells were initially 

grouped into 14 clusters in scRNA-seq data analysis (Fig. 5a). After integrating these cells 

and bulk data by Scissor, 579 cells were identified as Scissor+ cells, which were associated 
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with the FSHD; and 74 cells marked as Scissor- cells were linked with the normal phenotype 

(Fig. 5b). Consistent with the encoded phenotype information for Scissor in this application, 

559 out of 579 Scissor+ cells (97.5%) originated from FSHD patients, and nearly 80% 

of Scissor- cells were from normal samples (Fig. 5c), indicating that Scissor can identify 

phenotype-associated subpopulations with high specificity in non-cancer cases.

Given the adequate number of the Scissor selected cells, we could directly compare the gene 

expression of Scissor+ cells with Scissor- cells to uncover the underlying transcriptional 

patterns of the identified cells with distinct phenotypes. As a result, 299 up-regulated genes 

and 83 down-regulated genes were differentially expressed in Scissor+ cells over Scissor- 

cells, respectively (Fig. 5d and Supplementary Table 4). Among these genes, we found that 

many down-regulated genes in Scissor+ cells are involved in normal muscle functions (Fig. 

5e), like myogenesis (LSP1, MEF2C, MYL1), muscle contraction (IGFBP5, MYBPC1, 
MYOM1), and actin filament or myosin-based functions (PDLIM3, TTN, SGCD). As 

for the up-regulated genes in Scissor+ cells, we found a proportion of these genes may 

be dysregulated due to fibrotic infiltration33, which includes extracellular matrix proteins 

as collagen types III and IV (COL3A1, COL4A1) and fibronectin (FN1). FSHD region 

gene 1 (FRG1) was also over-expressed in Scissor+ cells (Fig. 5e), which is crucial for 

angiogenesis and epithelial to mesenchymal transition34. The functional enrichment analysis 

also confirmed that Scissor+ cells were characterized by the reduction of muscle fibers as 

well as loss of myogenesis and muscle contraction functions (Fig. 5f and Supplementary 

Table 4), which is consistent with the molecular hallmarks of FSHD35, 36. To further 

demonstrate the characteristics of the phenotype-associated cells identified by Scissor, we 

built an FSHD molecular signature using the 382 differentially expressed genes between the 

two cell subpopulations (Supplementary Table 4) and examined the signature’s ability in 

distinguishing FSHD patients from normal controls. We found that on all three independent 

datasets, the enrichment scores of the FSHD molecular signature were significantly higher 

in FSHD patients than in normal controls (Fig. 5g, Student’s t-test p=5.44e-3, 3.46e-2, and 

4.99e-2, respectively).

Therefore, our Scissor analysis of FSHD scRNA-seq data identified disease-associated 

subpopulations characterized by the dysfunction of fibrinolysis, myogenesis, as well as 

muscle contractions, which substantiates the utility of Scissor on non-cancer studies.

Discerning subpopulations related to Alzheimer’s disease.

Single-cell technology presents immense opportunities to disentangle cellular diversity and 

alterations in neurological disorders. Here, we applied Scissor on three brain cell types 

from an Alzheimer’s disease (AD) scRNA-seq study37 to explore the cell subpopulations 

that are most highly associated with the disease status and progression. Collectively, 7,432 

oligodendrocytes, 1,078 oligodendrocyte progenitor cells (OPCs), and 2,171 astrocytes 

(Supplementary Fig. 6a) were analyzed separately by Scissor with the guidance of 14 bulk 

samples (7 AD patients and 7 healthy controls). For oligodendrocytes, Scissor identified 206 

Scissor+ cells associated with the AD patients and 194 Scissor- cells associated with the 

healthy controls (Fig. 6a). When compared with the cell sources, 203 out of 206 Scissor+ 

cells (99%) were from AD patients, and 86% of Scissor- cells were from normal samples 
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(Fig. 6b). For OPCs, 20 Scissor+ cells and 201 Scissor- cells were identified (Fig. 6c), with 

90% Scissor+ cells from AD patients and 95% Scissor- cells from normal samples (Fig. 

6d). As for astrocytes, the identified cell subpopulations consisted of 179 Scissor+ and 14 

Scissor- cells (Fig. 6e), with 83% Scissor+ cells from AD patients and 93% Scissor- cells 

from normal samples, respectively (Fig. 6f). Therefore, Scissor successfully associated cell 

subpopulations with the desired phenotype in all three brain cell types.

We then investigated DEGs between Scissor+ cells and Scissor- cells within each cell 

type (Fig. 6g; Supplementary Fig. 6b and Supplementary Table 5). In oligodendrocytes 

and OPCs, multiple heat shock and chaperone genes involving proper protein folding 

(e.g., HSPA1A, HSPB1, DNAJB1) were up-regulated in Scissor+ cells, consistent with the 

previous observation38. Pathway enrichment analysis confirmed that the HSF1 pathway, a 

master activator of chaperone gene expression39, is highly activated in Scissor+ cells to 

protect cells against protein misfolding (Fig. 6h and Supplementary Table 5). In astrocytes, 

most DEGs were down-regulated in Scissor+ cells, including GRIA2, which increases 

NMDA receptor activity40. Pathway enrichment results also suggested the impaired NMDA-

dependent long-term potentiation in Scissor+ astrocytes (Fig. 6h and Supplementary Table 

5), which has been observed in AD41. Additionally, glial fibrillary acidic protein (GFAP) 

was coordinately up-regulated in Scissor+ cells across all three cell types (Fig. 6g). It 

has been reported that GFAP expressions correlate with amyloid-β plaque density in AD 

brain tissue42, and elevated GFAP levels in the blood positively correlate with cognitive 

impairment43. All these results showed that Scissor indeed identified cell subpopulations 

with characteristics consistent with the corresponding bulk phenotype.

To further demonstrate the phenotypic associations of the cell subpopulations identified 

by Scissor, we constructed molecular signatures based on the DEGs in Scissor-identified 

cell subpopulations (Supplementary Table 5) and used independent AD datasets to evaluate 

the functions of these signatures. As a result, the enrichment scores of the corresponding 

molecular signatures in each cell type were significantly higher in AD patients than in 

normal controls (Fig. 6i–k, Student’s t-test p=2.66e-4 for oligodendrocytes, 5.43e-5 for 

OPCs, and 5.45e-7 for astrocytes). Notably, we also found that our astrocytes molecular 

signature is positively associated with the progression of AD from incipient, moderate, 

to severe conditions (Fig. 6l, Kruskal-Wallis test p=1.44e-2). Thus, this Scissor+ cell 

subpopulation of astrocytes could play a vital role in the early stages of AD.

Taken together, our Scissor analysis identified cell subpopulations that are most highly 

associated with AD in three brain cell types, which could contribute to comprehending the 

underlying pathogenesis of Alzheimer’s disease and might facilitate disease diagnosis and 

therapy.

Discussion

Identifying the phenotype-specific cell subpopulations from single-cell data can give rise 

to breakthroughs in understanding disease mechanisms. Multiple efforts have been made 

to discern disease-relevant cells from single-cell data44. For example, HoneyBadger45 and 

inferCNV46 can identify cancerous cells by predicting copy number variations from scRNA-
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seq data. However, there are a variety of external phenotypes beyond tumor-vs-normal 

in cancer and non-cancer diseases, such as treatment resistance, disease stages, survival 

outcomes and aging, which are widely available in bulk data. Therefore, there is a great 

need for further methodological progress to utilize these abundant phenotypes in single-cell 

data analysis. To this end, we introduce Scissor as a new computational tool to leverage the 

phenotype information from bulk data to identify the most highly phenotype-associated cell 

subpopulations.

We demonstrated the broad utilities of Scissor in a total of ten applications across different 

diseases, ranging from engineered simulations, cancer cells, immune cells, and FSHD cells 

to multiple types of brain cells in AD (Supplementary Table 6). One of the advantages is 

that Scissor does not require any unsupervised clustering on single-cell data, which avoids 

subjective decisions of cell cluster numbers or clustering resolution47. Most importantly, 

Scissor provides a flexible framework to integrate various external phenotypes in bulk data 

to guide single-cell data analysis, enabling hypothesis-free identification of clinically and 

biologically relevant cell subpopulations.

The signs of the regression coefficients were used to infer the relation of the Scissor selected 

cells with the phenotypes. We designed generalized criterion for proper interpretation of 

Scissor results (Supplementary Table 7 and Methods) since we observed little proportions 

of negative correlations between single-cell and bulk samples in real applications 

(Supplementary Table 8). Based on our criterion, those little proportions of negative 

correlations did not affect our current results and interpretations. Furthermore, we also 

performed correlation evaluations for the Scissor selected cells in each application, which 

could help check the validity of the Scissor result (Supplementary Table 9–11). Besides, 

we tested Scissor’s performance in various perturbed bulk samples and demonstrated 

that the Scissor identification results were robust to noise (Supplementary Fig. 7 and 8, 

Supplementary Table 12) and had no model-driven preferences to experimental noise or bias 

(Supplementary Fig. 9). For computational efficiency, the running time and memory usages 

of Scissor in real applications are acceptable, with cell numbers ranging from ~1,000 to 

~30,000 (Supplementary Table 13).

The construction of the correlation matrix is a key step in Scissor to quantify the dependence 

or similarity between the single-cell data and bulk data. Except for the Pearson correlation 

applied in Scissor, we will explore other similarity measurements like entropy-based 

mutual information and hypothesis testing-based methods. Furthermore, although we only 

conducted the integration of bulk gene expressions with scRNA-seq data, Scissor can 

also be applied to other single-cell measurements like chromatin accessibility48 and DNA 

methylation49.

Overall, Scissor demonstrates promise for integrating single-cell data with phenotype 

information to dissect clinically significant subsets from heterogeneous cell populations. 

This strategy will boost biological discoveries and interpretation. We anticipate that Scissor 

will enable a broad application of widely available phenotype information on single-cell 

data analysis and help unravel the most disease-relevant subpopulations for cell-targeted 

therapies.
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Methods

Phenotype-guided single-cell subpopulation identification by Scissor

The workflow of Scissor is shown in Fig. 1. Denote m and n as the cell number and 

the bulk sample number, respectively. The three data sources for Scissor inputs are a single-

cell expression matrix with m cells, a bulk profiling data with n samples, and a sample 

phenotype Y of interest (Fig. 1a). Y annotates each bulk sample and can be a continuous 

dependent variable, binary group indicator vector, or clinical survival data. Scissor first uses 

quantile normalization on the single-cell and bulk expression data to remove the underlying 

batch effect. After this, a Pearson correlation matrix S = sij n × m is calculated for each pair 

of cells and bulk samples to quantify the similarity between the single-cell data and bulk 

data, where Sij is the correlation of sample i and cell j across common genes in normalized 

single-cell and bulk data.

Scissor optimizes a regression model on the correlation matrix S with the sample phenotype 

Y (Fig. 1b). Let β denote a vector of coefficients on cells, and l(β) denote an appropriately 

chosen log-likelihood function. The formula of l(β) depends on the input phenotype Y, i.e., 

linear regression for continuous dependent variables, logistic regression (classification) for 

dichotomous variables, and Cox regression for clinical survival data (see more details in 

next section). Since a cell subpopulation alone could drive the phenotype of interest, we 

impose a sparse penalty (l1-norm) on the model to select the high confidence cells that are 

important for the given phenotype. Furthermore, the network-based penalty enforces the 

tightly connected nodes (cells) in the network to have more similar coefficients50, making 

the phenotype-to-cell association results more consistent and interpretable. Inspired by this, 

we use the shared nearest neighbor graph calculated in Seurat51 to serve as a cell-cell 

similarity network G and impose a corresponding graph regularization on the regression 

model.

Overall, Scissor is formulated as the following network regularized sparse regression model 

(Fig. 1b):

min
β

− 1
nl β + λ α β 1 + 1 − α

2 βTLβ ,

where L is a symmetric normalized Laplacian matrix, which is defined as

L = D− 1
2 D − A D− 1

2 = I − D− 1
2AD− 1

2,

where A = aij m × m is a binary or weighted adjacency matrix of G. aij equals one or a value 

ranging from 0 to 1 if cell i and j are connected in G, and aij=0, otherwise. D = dij m × m

is the degree matrix of G, where dii = ∑j = 1
m aij, and di,j=0 for i≠j. The tuning parameter λ 

controls the overall strength of the penalty and λ balances the amount of regularization for 

smoothness and sparsity.
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The non-zero coefficients of β solved by the above optimization model are used to select 

the cell subpopulations associated with the phenotype of interest (Fig. 1c). According to 

the sign of β, we denote the selected cells by Scissor+ cells and Scissor- cells, which are 

positively and negatively associated with the phenotype of interest, respectively. The cells 

with coefficients of zero are denoted as background cells. Furthermore, to control false 

associations between the single-cell and bulk data, we designed a reliability significance test 

to determine whether the chosen data is suitable for our phenotype-to-cell associations (Fig. 

1d). Finally, the Scissor selected cells will further be investigated by several downstream 

analyses, such as the differential expression gene analysis, functional enrichment analysis, 

and motif analysis, to reveal the underlying biological mechanisms of the selected cell 

subpopulations (Fig. 1e).

Log-likelihood functions

The formula of log-likelihood function l(β) depends on the type of the phenotype Y. 

Scissor can do: (1) linear regression for continuous dependent variables; (2) classification 

for dichotomous variables; (3) Cox regression for clinical survival data.

In detail, denote Si = si1, si2, ⋯, sim
T  as the correlation coefficients for sample i across all 

m cells. If Y = y1, y2, ⋯, yn
T  is a continuous variable, the linear regression log-likelihood 

function is used:

l β = − ∑
i = 1

n
yi − βTSi

2

If Y is a binary group indicator vector, e.g., yi ∈{0,1}, the logistic regression log-likelihood 

function is used:

l β = ∑
i = 1

n
yiβTSi − log 1 + exp βTSi

For time-to-event outcomes subject to independent censoring, the Cox regression is 

considered. Let Ti be the non-negative event time, and Ci be the censoring time. Denote 

T i = min Ti, Ci  as the observed event time or censoring time, and δi = I Ti ≤ Ci  as the event 

indicator, where I(·) is an indicator function. The following log-likelihood function is used:

l β = ∑
i = 1

n
δi βTSi − log ∑

k ∈ Ri
exp βTSk

where Ri = k:T k ≥ T i  denotes the risk set at time T i.

Parameter tunings and implementations

The algorithm proposed by Li et al.52 is used to solve the above network regularized sparse 

regression. In Scissor, two model parameters need to be determined. First, parameter λ 
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controls the overall strength of the whole penalty term. For a fixed λ, we set 100 possible 

λ and applied 10-fold cross-validation to select the optimal λ with the minimum averaged 

error. Second, parameter α∈[0,1] balances the effect of the l1-norm and the network-based 

penalties. A larger λ inclines to emphasize l1-norm to encourage sparsity. And a smaller 

λ gives more weight to the network term to encourage selecting similar cells. In real 

applications, a fixed value of λ cannot work for all kinds of datasets since different datasets 

could have different sensitivities to the changes of λ. In order to select similar cells as many 

as possible, thus they can be drawn from similar cell types, we will start to search λ from a 

small value, and the default searching list for λ in Scissor is {0.005, 0.01, 0.05, 0.1, 0.2,0.3, 

⋯, 0.9}. For each fixed α,λ is determined by grid search based on the cross-validation. 

The goal of Scissor is to identify a small group of cells that are most highly correlated 

with the specific phenotypes with high confidence. Based on this motivation as a priori, 
we determined λ using the following criteria: the number of Scissor selected cells should 

not exceed a certain percentage of total cells (default 20%) in the single-cell data. In each 

experiment, a search on the above searching list is performed from the smallest to the largest 

until a value of λ meets the above criteria.

Reliability significance test

We designed a reliability significance test to exclude the false association between the 

identified cell subpopulations and bulk phenotypes (Fig. 1d). This statistical test can 

determine whether the inferred phenotype-to-cell associations are reliable (statistical p-

value less than 0.05) or are false positives. Our motivation for the test is: if the chosen 

single-cell and bulk data are not suitable for the phenotype-to-cell associations, the 

correlations would be less informative and not well associated with the phenotype labels. 

Thus, the corresponding prediction performance would be poor and not be significantly 

distinguishable from the randomly permutated labels. Inspired by this, we used the following 

procedures to perform the reliability significance test:

First, we performed k-fold cross-validation (CV) on correlation matrix S and used the 

training sets only to estimate the coefficients of cells in Scissor. The prediction performances 

of the trained Scissor models were evaluated on testing sets, and an averaged evaluation 

measurement was obtained to serve as an actual test statistic. Second, we randomly 

permutated the bulk sample labels multiple times to break up the original bulk phenotype-

genotype relationships. By performing the same Scissor analysis and CV evaluation using 

each permutated bulk data, we obtained a background distribution of the corresponding 

evaluation measurement quantifying the prediction performances at the random level. 

Finally, the actual test statistic calculated in the original data was compared to the 

background distribution values. The reliability significance test p-value was the number 

of the permutation-based test statistics above (or below) the actual test statistic, divided by 

the permutation times. In this study, the evaluation measurements used in the reliability 

significance test are the mean squared error (MSE) for linear regression (smaller is 

better), the area under the ROC curve (AUC) for classification (higher is better), and the 

concordance index (c-index) for Cox regression (higher is better).
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Then, we explored whether the reliability significance test can effectively detect the ‘false 

positive’ associations between the single-cell and bulk data by reporting non-significant 

p-values. We performed two kinds of randomizations on bulk data to generate false 

positive examples. After Scissor analysis of those randomized bulk data, our reliability 

significance test reported that the p-values for these counterexamples were all greater 

than 0.05 (Supplementary Table 14), indicating that these randomized bulk data were not 

suitable to use in Scissor to identify the corresponding phenotype-associated cells. We also 

performed the reliability significance test on the main applications used in this study and 

found that the test p-values were all less than 0.05 (Supplementary Fig. 10), indicating that 

the inferred phenotype-to-cell associations are reliable.

Scissor selected cells interpretations

Both Scissor+ cells and Scissor- cells are the Scissor selected cells that are most highly 

associated with the specified phenotypes, corresponding to the cells with the estimated 

coefficients greater than and less than zero, respectively. The associations between the 

Scissor selected cells and phenotypes depend on the model in use and should be interpreted 

in a context-specific manner. For both linear regression and classification models, the 

initial values in Y will affect the interpretations. The Scissor+ cells will be associated 

with the phenotypes encoded as a higher value in Y, and Scissor- cells will correspond 

to the phenotypes encoded as a lower value. For example, in Scissor’s application on 

the FSHD single-cell dataset, if the FSHD patients are encoded as one, and the normal 

controls are encoded as zero in Y, Scissor+ cells will be associated with the FSHD, and 

Scissor- cells will be associated with the normal phenotype. If the encoding for the two 

phenotypes is reversed in Y, the interpretations of Scissor+ cells and Scissor- cells are 

reversed accordingly. For Cox regression, Scissor+ cells are always associated with worse 

survival, and Scissor- cells are associated with good survival.

Scissor can associate cells with phenotypes, and this kind of association is a relative 

concept between phenotypes. Namely, Scissor assigns which phenotype a cell is more likely 

associated with than the other phenotype. Considering the possible negative correlations 

between the single-cell and bulk samples, we can further interpret a cell by assigning it to 

the following three categories: if the average of a cell’s correlations with all bulk samples 

is greater than 0 and the number of positive correlations is larger than the number of the 

negative correlations, this cell is more similar to the associated phenotype; if the average 

of a cell’s correlations is less than 0 and the number of negative correlations is larger than 

the number of positive correlations, this cell should be interpreted as more dissimilar to 

the other phenotype; otherwise, this cell’s association with the phenotype is undeterminable 

(Supplementary Table 7). In most cases, the negative correlation values are very few and the 

identified cells fall into the “more similar” category.

In total, there are ten applications of Scissor in this study. The corresponding phenotype 

encoding and the interpretations of the Scissor selected cells were summarized in 

Supplementary Table 6. We showed that Scissor was capable of detecting both Scissor+ 

and Scissor- cells through a variety of applications. In some datasets, Scissor+ cells and 

Scissor- cells can be largely unbalanced. Scissor can detect more cells of one phenotype than 
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the other phenotype depending on how strong the cells in a dataset are associated with the 

specific phenotypes.

Simulation setup

We used Splatter14 to simulate a single-cell dataset with 1,000 cells and 5,000 expression 

genes. These cells were from three simulated cell types with group probabilities of 0.8, 

0.1, and 0.1, respectively, leading to one large and two small cell subpopulations. The 

probabilities of a gene being differentially expressed in each of the three groups were 

set as 0.1, 0.01, and 0.01. Then, we assigned these cells to two different phenotypes 

(named phenotype I and phenotype II) to simulate the known relationships between cells 

and phenotypes as the ground truth. To achieve this, we set the large cell subpopulation 

as common cells shared by the two phenotypes and assigned the other two small cell 

subpopulations to each phenotype, respectively. These two small subset cells are unique 

to each phenotype and thus can be viewed as the ground truth phenotype-specific cell 

subpopulations. To simulate the expression profiles of bulk samples for each phenotype, we 

randomly selected 1000 cells with replacement from the cell subpopulations contained by 

each phenotype and then averaged the expressions. In this way, we generated bulk gene 

expressions of 50 samples for each phenotype.

The differential expression genes between the two cell subpopulations were called by 

Seurat51 using the default two-tailed Wilcoxon rank-sum test. To explore how the 

performance of Scissor was affected by the true DEG signals at the bulk level, we simulated 

another bulk data that the true DEGs are not differentially expressed. In detail, we first 

selected the least differentially expressed gene from bulk data and then used its expression 

profiles to replace the expressions of all the true DEGs. This true DEG signal-removed bulk 

expression data would make Scissor more challenging to capture the real phenotype-to-cell 

associations.

We used precision and recall measurements in supervised learning to evaluate the 

performance of Scissor. The precision is defined as the proportion of the Scissor-identified 

ground truth cells among all Scissor selected cells, and recall is the proportion of the 

Scissor-identified ground truth cells among all ground truth cells.

Single-cell RNA-seq data preprocessing

We applied Seurat R package (version 3.2.1)51 functions to preprocess the scRNA-seq data 

used in Scissor. Similar to the standard quality control step in single-cell data analysis, 

we first filtered out the genes with low expressions in cells. After this, we normalized the 

filtered expression matrix using the NormalizeData function with the default parameters. 

Furthermore, we focused on the genes that exhibited high cell-to-cell variation and identified 

the variable genes using the FindVariableFeatures function with the default ‘vst’ method. We 

then performed the principal components analysis on the scaled variable gene expressions. 

Using the first ten principal components, we constructed a shared nearest neighbor graph 

for cells and identified cell clusters using the FindClusters function. Finally, we applied 

the Uniform Manifold Approximation and Projection (UMAP)53 technique using the 

RunUMAP function to visualize cells in low dimensions.
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Differential expression gene analysis

The differentially expressed genes in Scissor+ cells versus Scissor- cells (or all other 

cells in some applications) were identified using the FindMarkers function in Seurat51 

with the default Wilcoxon rank-sum test. We required the following criteria to obtain 

the differential expression genes: First, the gene expression between the two groups is 

statistically significant with a false discovery rate (FDR) less than 0.05. Second, the absolute 

value of expression fold change between the two groups is greater than 1.25. We used 

the VlnPlot function to exhibit the relative expression levels of the selected differential 

expression genes.

We built several Scissor-derived signatures based on the differential expression genes in each 

experiment. The complete lists of signature genes can be found in Supplementary Tables.

Pathway enrichment analysis

The pre-ranked version of CAMERA54 (function name: cameraPR) in the limma R package 

(version 3.42.2) was used to evaluate the enriched pathways. cameraPR needs a pre-ranked 

gene list according to a user-defined statistic score. This study used the differential 

expression genes output of the FindMarkers function to obtain the pre-ranked gene list. In 

detail, the statistic ranking score for each gene was calculated using the following formula:

logFC∗ log10
1

FDR + 10−100

where logFC stands for the log-transformed fold change between the two groups, and 

FDR is the adjusted Wilcoxon rank-sum test p-value. The pathways used in CAMERA 

were downloaded from the Molecular Signatures Database (MSigDB, version 7.3)55. The 

Mognol_LCMV_Tumor_Exhaustion gene set contains the up-regulated genes in exhausted 

T cells from both OT-I mouse model and lymphocytic choriomeningitis virus (LCMV) 

infected mice56.

Survival analysis

We performed some survival analyses to examine the clinical relevance of the Scissor-

derived signatures (lung cancer signature and TP53 mutation signature). The gene set 

variation analysis (GSVA) algorithm57 with the default settings, as implemented in the 

GSVA R package (version 1.34.0), was applied to calculate our signature score for each 

sample. Next, the samples were stratified into two groups based on the quantile values of 

the signature scores (upper quartile versus lower quartile). Survival curves of these two 

groups of patients were estimated by the Kaplan-Meier method with statistical significance 

calculated using the log-rank test.

We used the univariate Cox proportional hazard (Cox PH) model to examine the association 

between survival time and clinical features (Pathological Stage: Stage I=1, Stage II=2, Stage 

III=3; Sex: ‘Male’=1, ‘Female’=2; Age at diagnosis). The significant prognostic factors (p 
< 0.05) in the univariate Cox PH model were included in the subsequent multivariable Cox 
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PH model. The Kaplan-Meier estimator, log-rank test, Wald test and Cox PH models were 

calculated in the survival R package (version 3.2–3).

Motif analysis

The oPOSSUM software58 (version 3.0) was used to detect the motifs of the transcription 

factor binding sites for the lung cancer signature genes. We used the transcription factor 

binding site annotations provided by the tool (JASPAR CORE Profiles). For the parameter 

settings, we set 2000 base pairs in upstream and downstream sequences and kept other 

parameters as default values. Only motifs with a Z-score larger than ten and a Fisher score 

larger than seven were reported in the final motif list.

Master regulator analysis

Transcription factor activity was inferred using the master regulator inference algorithm 

(MARINa)59 in the viper R package (version 1.20.0). A pre-ranked gene list with scores 

and a regulatory network are the two data sources required as the inputs. In this work, 

we used the same pre-ranked gene list calculated in the pathway enrichment analysis. The 

transcription factor regulome was curated from several databases as previously described60.

Signature enrichment score calculation

A pseudo-regulon was built based on the significantly up-regulated and down-regulated 

genes between the cell subpopulations identified by Scissor. These genes were served 

as the positive and negative target genes of the constructed pseudo-regulon, respectively. 

The single-sample extension of MARINa61 (function name: viper) in the viper R package 

(version 1.20.0) was employed to infer the activity of the constructed pseudo-regulon, which 

was used as the signature enrichment score for each sample.

Data availability

All datasets analyzed in this study were published previously. The corresponding 

descriptions and preprocessing steps are described in Supplementary Materials.

Software availability

The open-source Scissor R package and tutorial are available at GitHub: https://github.com/

sunduanchen/Scissor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The workflow of Scissor and its performance in applications with known phenotype-
associated cell subpopulations.
a, The inputs for Scissor are a single-cell expression matrix, a bulk expression matrix, 

and a corresponding phenotype of interest such as drug response or clinical information. 

b, Scissor calculates a correlation matrix and a cell-cell similarity network based on input 

sources, which are further integrated with the phenotype into a network regularized sparse 

regression model to select the most relevant cell subpopulations. c, The selected cells by 

Scissor with red and blue dots indicating the cells positively or negatively associated with 
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the phenotype of interest. d, The Scissor results are evaluated by a reliability significance 

test to control the false associations between single-cell and bulk data. MSE, mean squared 

error; AUC, area under the ROC curve; c-index, concordance index. e, The selected cells 

by Scissor can be further investigated by downstream analyses. f, The UMAP visualization 

of the simulated cells. The orange and green dots are the ground truth cell subpopulations 

specific to phenotype I and II, respectively. g, The visualization of the Scissor selected cells 

on the same UMAP as in a. The red and blue dots are the Scissor selected cells associated 

with phenotype I and II. h, The Venn diagrams show overlaps between the Scissor selected 

cells and the ground truth phenotype-specific cells. i, The UMAP visualization of 29,888 

LUAD cells. The color encoding the cell types defined in the original paper. j, The UMAP 

visualization of the Scissor selected cells. The red and blue dots are cells associated with 

the tumor and normal phenotypes. k. The pie chart of the Scissor selected cells with the 

corresponding bar plots showing the detailed constitutions in each type defined in i.
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Fig. 2. Scissor identification results on lung cancer cells guided by TCGA-LUAD survival 
outcomes.
a, The UMAP visualization of 4,102 LUAD cancer cells. b, The UMAP visualization 

of the Scissor selected cells. The red and blue dots are Scissor+ (worse survival) and 

Scissor- (good survival) cells. c, The bar plot shows the constitution of Scissor+ cells in 

different clusters. d, The volcano plot of differential gene expressions in Scissor+ cells 

versus all other cells. The two vertical dashed lines represent ± ln(1.25) fold-changes in 

gene expression, and the horizontal dashed line denotes FDR cutoff 0.05. The FDR was the 
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adjusted p-value calculated by the two-tailed Wilcoxon rank-sum test. e, The violin plots of 

expression levels of selected up-regulated genes in Scissor+ cells. The FDR was the adjusted 

p-value calculated by the two-tailed Wilcoxon rank-sum test. f, The enrichment bar plot of 

selected hypoxia-related Reactome and Hallmark pathways. g, The Kaplan-Meier survival 

curves show the clinical relevance of the lung cancer signature on four independent datasets. 

Tick marks indicate censoring events. The statistical p-values were determined by the two-

tailed log-rank sum test. h, The forest plots show the hazard ratios and 95% confidence 

intervals for the lung cancer signature and three additional clinical features according to 

the univariate Cox model. i, The forest plots show the hazard ratios and 95% confidence 

intervals for the lung cancer signature and stage information according to the multivariable 

Cox model. Squares represent the hazard ratios and the horizontal bars extend from the 

lower limits to the upper limits of the 95% confidence intervals of the estimates of the 

hazard ratios. These statistics are calculated on GSE11969 (n = 149 biologically independent 

samples) and GSE13213 (n = 117 biologically independent samples), respectively. The 

statistical p-values were determined by the two-tailed Wald test.
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Fig. 3. Scissor identification results on lung cancer cells guided by TP53 mutation status.
a, The UMAP visualization of the Scissor selected cells. The red and blue dots are 

cells associated with the TP53 mutant and wild-type phenotypes. b, The volcano plot of 

differential gene expressions in Scissor+ cells versus Scissor- cells. Red and blue points 

mark the genes with significantly increased or decreased expressions in Scissor+ cells (FDR 

<0.05 and absolute fold-change > 1.25). The two vertical dashed lines represent ± ln(1.25) 

fold-changes in gene expression, and the horizontal dashed line denotes FDR cutoff 0.05. 

The FDR was the adjusted p-value calculated by the two-tailed Wilcoxon rank-sum test. c, 

The enrichment bar plot of selected cell cycle-related pathways in the Hallmark domain. 

d, The master regulator analysis reveals the top 10 most activated TFs in Scissor+ cells 

and Scissor- cells, respectively. The targets of each TF are shown as tick marks with red 

vertical lines representing positive targets and blue vertical lines for negative targets. Each 

row also illustrates the statistical p-value and the inferred differential activity for each 

transcription factor. e, The Kaplan-Meier survival curve shows the clinical relevance of the 

TP53 mutation signature. Tick marks indicate censoring events. A table is attached below 

to display the number of alive patients at given time points. The statistical p-value was 

determined by the two-tailed log-rank sum test. f, The violin plots of expression levels 

of selected down-regulated genes in Scissor+ cells. The FDR was the adjusted p-value 

calculated by the two-tailed Wilcoxon rank-sum test.
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Fig. 4. Scissor identification results on melanoma T cells.
a, The UMAP visualization of 1,894 melanoma T cells in six clusters. b, The UMAP 

visualization of the Scissor selected cells. c, The bar plot shows the distribution of Scissor+ 

cells across the six T cell populations. d, The volcano plot of differential gene expressions in 

Scissor+ cells versus all other cells. The two vertical dashed lines represent ± ln(1.25) fold-

changes, and the horizontal dashed line denotes FDR cutoff 0.05. The FDR was the adjusted 

p-value calculated by the two-tailed Wilcoxon rank-sum test. e, The violin plots show the 

expression levels of important immune genes in Scissor+ cells. The FDR was the adjusted 

Sun et al. Page 26

Nat Biotechnol. Author manuscript; available in PMC 2022 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p-value calculated by the two-tailed Wilcoxon rank-sum test. f, The enrichment bar plot 

shows the significantly enriched pathways in Scissor+ cells compared with all other cells 

(FDR <0.05). g, The boxplot shows the enrichment scores of the immunotherapy responsive 

signature in the non-responders and responders from Sade-Feldman’s cohort. h, The GSEA 

enrichment plot of the up and down signature genes in the responder vs. non-responder 

comparison from Sade-Feldman’s cohort. i, The boxplot shows the enrichment scores of 

the immunotherapy responsive signature in five types of CD8 T cells from a mouse liver 

tumor model (n = 3 biologically independent replicates per group from left to right). j, 
The boxplot shows the enrichment scores of the immunotherapy responsive signature in the 

memory precursor CD8 T cells and short-lived effector CD8 T cells (n = 3 biologically 

independent replicates in each condition). Box plot center line and box limits represent 

median value, upper, and lower quartiles, respectively. Box whiskers indicate the largest and 

smallest values no more than 1.5 times the interquartile range from the limits. The statistical 

p-value was determined by the two-tailed Student’s t-test, unless otherwise indicated.
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Fig. 5. Scissor identification results on Facioscapulohumeral muscular dystrophy (FSHD) cells.
a, The UMAP visualization of 6,899 cells derived from FSHD and control samples. b, The 

UMAP visualization of the Scissor selected cells. The red and blue dots are representing 

Scissor+ and Scissor- cells, associated with FSHD and control phenotypes, respectively. c, 

The bar plot shows the detailed phenotypic constitutions of the Scissor selected cells. d, The 

volcano plot of differential gene expressions in Scissor+ cells versus Scissor- cells. Red and 

blue points mark the genes with significantly increased or decreased expressions in Scissor+ 

cells compared to Scissor- cells (FDR <0.05 and absolute fold-change > 1.25). The two 
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vertical dashed lines represent ± ln(1.25) fold-changes in gene expression, and the horizontal 

dashed line denotes FDR cutoff 0.05. The FDR was the adjusted p-value calculated by the 

two-tailed Wilcoxon rank-sum test. e, The violin plots show the expression levels of selected 

dysregulated genes in Scissor+ cells. The FDR was the adjusted p-value calculated by the 

two-tailed Wilcoxon rank-sum test. f, The enrichment bar plot of selected muscle-related 

pathways in the Hallmark, GO’s biological process, and cellular component domains. g, 

The boxplots show the enrichment scores of the FSHD molecular signature in the FSHD 

and normal controls from three independent validation datasets. The statistical p-values were 

determined by the two-tailed Student’s t-test. Box plot center line and box limits represent 

median value, upper, and lower quartiles, respectively. Box whiskers indicate the largest and 

smallest values no more than 1.5 times the interquartile range from the limits.
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Fig. 6. Scissor identification results on Alzheimer’s disease.
a-f. The UMAP visualizations of the Scissor selected cells on oligodendrocytes (a), OPCs 

(c), and astrocytes (e) with corresponding bar plots showing the phenotypic constitutions 

of the Scissor selected cells on oligodendrocytes (b), OPCs (d), and astrocytes (f). g, The 

heatmap of differential gene fold-changes in Scissor+ cells versus Scissor- cells across all 

three brain cell types. Red and blue elements mark the genes with significantly increased 

or decreased expressions in Scissor+ cells (FDR <0.05 and absolute fold change > 1.25). 

h, The heatmap of enriched Reactome pathways. The red and blue elements represent the 
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activated and repressed pathways in corresponding cell types. i, The boxplot shows the 

enrichment scores of the oligodendrocytes molecular signature in AD patients and normal 

controls from GSE109887. j, The boxplot shows enrichment scores of the OPCs molecular 

signature in AD patients and normal controls from GSE109887. k, The boxplot shows 

the enrichment scores of the astrocytes molecular signature in AD patients and normal 

controls from GSE109887. l, The boxplot shows the enrichment scores of the astrocytes 

molecular signature in control, incipient, moderate, and severe stage AD patients from 

GSE28146 (n = 8, n = 7, n=8, and n = 7 biologically independent patients per group 

from left to right). The statistical p-value was determined by the Kruskal-Wallis test. The 

linear regression line represents the relationship between median enrichment scores and 

AD stages. Box plot center line and box limits represent median value, upper, and lower 

quartiles, respectively. Box whiskers indicate the largest and smallest values no more than 

1.5 times the interquartile range from the limits. The statistical p-value was determined by 

the two-tailed Student’s t-test, unless otherwise indicated.
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