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Abstract: The spontaneous depurination of genomic DNA occurs frequently and generates apurinic/
pyrimidinic (AP) site damage that is mutagenic or lethal to cells. Error-prone DNA polymerases are
specifically responsible for the translesion synthesis (TLS) of specific DNA damage, such as AP site
damage, generally with relatively low fidelity. The Y-family DNA polymerases are the main error-
prone DNA polymerases, and they employ three mechanisms to perform TLS, including template-
skipping, dNTP-stabilized misalignment, and misincorporation-misalignment. The bypass mecha-
nism of the dinB homolog (Dbh), an archaeal Y-family DNA polymerase from Sulfolobus acidocaldarius,
is unclear and needs to be confirmed. In this study, we show that the Dbh primarily uses template
skipping accompanied by dNTP-stabilized misalignment to bypass AP site analogs, and the incor-
poration of the first nucleotide across the AP site is the most difficult. Furthermore, based on the
reported crystal structures, we confirmed that three conserved residues (Y249, R333, and I295) in
the little finger (LF) domain and residue K78 in the palm subdomain of the catalytic core domain
are very important for TLS. These results deepen our understanding of how archaeal Y-family DNA
polymerases deal with intracellular AP site damage and provide a biochemical basis for elucidating
the intracellular function of these polymerases.

Keywords: AP site analogs; translesion synthesis; Dbh; little finger domain; Sulfolobus acidocaldarius

1. Introduction

Each organism in the three kingdoms of bacteria, archaea, and eukaryotes possesses
more than one DNA polymerase for genome replication and DNA damage repair. Replica-
tive DNA polymerases interact with many other proteins to form a complex replisome
to synthesize chromosomal DNA [1]. In addition, to replicative DNA polymerases, other
kinds of DNA polymerases perform an error-free repair of the damaged DNA, transle-
sion synthesis (TLS), and somatic hypermutation of immunoglobulin genes [2]. Based on
the sequence similarity and enzymatic properties, DNA polymerases are classified into
six main groups: families A, B, C, D, X, and Y [3]. Families B and C are eukaryotic and
bacterial replicative DNA polymerases, respectively [2,3]. However, archaea from different
phyla use B- and/or D-family DNA polymerases to replicate their genomes [4]. DNA
polymerases from other families mainly function as DNA polymerases during various
DNA repair processes [2,5], such as Y-family polymerases, which are involved in DNA
repair and the somatic hypermutation of immunoglobulin genes [6]. TLS is a specific DNA
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repair affair for severe DNA damage and is carried out by specific DNA polymerases.
Generally, TLS DNA polymerases lack a 3′ to 5′ proofreading activity and synthesize DNA
in an error-prone manner. Both Y- and X-family DNA polymerases are error-prone, but
only the former participates in the bypass of various damages [7,8]. In addition to Y-family
DNA polymerases, the error-prone replicative DNA polymerase DnaE (belonging to the
C-family) was also found to be able to bypass severely damaged DNA, such as AP sites,
and might participate in TLS in vivo [9]. Based on the sequence similarity, Y-family DNA
polymerases are divided into six groups: the DinB (pol IV) and UmuDC subfamilies (pol V)
of prokaryotes, and the Rad30A (pol η), Rad30B (pol ι), DinB1 (pol κ), and Rev1 subfamilies
of eukaryotes [8,10].

In order to elucidate the catalytic mechanism, high-resolution structures of apo-Dbh,
binary and ternary Dbh-substrate complexes have been obtained for almost every family of
DNA polymerases [11,12]. The Y-family DNA polymerases share a structure that comprises
an N-terminal catalytic core domain and a C-terminal Y-family-specific domain that is
known as the little finger (LF) domain or polymerase-associated domain (PAD) [13–15].
The catalytic core domain is similar to that of all the other families of DNA polymerases
and is divided into three structural subdomains: finger, palm, and thumb [14]. The LF
domain is unique to the Y-family of polymerases and has a greater sequence variability
than the catalytic core domain [15]. The DNA substrate is bound between the thumb and
LF subdomains of the catalytic domain [13]. The catalytic group of the thumb subdomain,
assisted by Mg2+ and the LF domain, interacts with the DNA template base and the
nucleotide to be incorporated during the polymerization reaction [8].

The Y-family DNA polymerases employ three mechanisms (Figure S1), including the
template-skipping [16], the dNTP-stabilized misalignment [17], and the misincorporation-
misalignment [17,18], to perform TLS. The dinB homolog (Dbh) from Sulfolobus acidocaldarius
(S. acidocaldarius), an archaeal error-prone DNA polymerase IV, has also been extensively
studied in vitro as a model to elucidate the TLS mechanism at DNA damage sites. It was
found that the Dbh achieves processive DNA synthesis by skipping a template base and
generating a single-base deletion [19]. The position of this skipped template base strongly
influences the extension speed of the Dbh at the single-base deletion site [19]. When the
jumping base is located three bases upstream of the nascent base pair (defined as the
−3 position), the extension is the fastest. Located at the position two bases upstream
(defined as the −2 position), the extension is five times slower than at the −3 position, and
at the −1 position, it is at least 30 times slower than at the −3 position. In summary, the
extension speed for single-base deletion is in the order of −3 > −2 >> −1 [19]. However,
the TLS mechanism of Dpo4, a dinB homolog from Sulfolobus solfataricus, was inferred to be
a template-skipping [16,20] rather than a dNTP-stabilized misalignment [17,18]. Because of
the slow rate of the mismatch formation in the Dbh, the misincorporation–misalignment is
not the main mechanism of the Dbh [21].

Template skipping and dNTP-stabilized misalignment models have been proposed to
better explain the mechanism of TLS by the Dbh [19]. However, the molecular mechanism
of TLS for the AP site analogs by the Dbh still needs to be further elucidated. Using various
primer–template (PT) DNA substrates with different structures and AP site analogs, the
molecular mechanism of TLS by the Dbh was fully investigated. The results confirm that
the Dbh primarily uses template skipping accompanied by a dNTP-stabilized misalignment
mechanism to bypass the AP site analogs, and the incorporation of the first nucleotide
across the damage site is most difficult. Based on the reported crystal structure, we further
confirmed that three conserved amino acid residues, Y249, R333, and I295, in the LF domain,
and one residue, K78, in the palm subdomain of the catalytic core domain of Dbh, are
very important to TLS, indicating the importance of the LF domain of the Dbh during the
TLS of damaged DNA. These results deepen our understanding of the template skipping
mechanism of the Dbh in TLS and provide a biochemical basis for understanding its
intracellular function in addressing AP site damage.
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2. Materials and Methods
2.1. Materials

The spacer phosphoramidites dSpacer (dS), C3, C6, C12, S9, and S18 were purchased
from Glen Research (Sterling, VA, USA) or ChemGenes Company (Wilmington, MA, USA)
and were used to introduce the specific spacer arm into an oligonucleotide by solid–phase
synthesis. The S. acidocaldarius strain was a gift from Professor Albers (Molecular Biology of
Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany), and its genomic
DNA was extracted by phenol–chloroform. The expression vector pDEST17 and expression
host Escherichia coli Rosetta2 (DE3) pLysS were used throughout this study. KOD-plus DNA
polymerase was purchased from Toyobo (Osaka, Japan). Nickel-nitrilotriacetic acid resin
was purchased from Bio–Rad (Hercules, CA, USA). All other chemicals and reagents were
of analytical grade.

2.2. Expression and Purification of DNA Polymerase Dbh

The gene encoding Dbh (saci_0554) was amplified by PCR from S. acidocaldarius
genomic DNA and inserted into the expression vector, pDEST17, according to our previ-
ously described method [22]. Recombinant Dbh was expressed in Rosetta 2 (DE3) pLysS
cells by induction with 0.5 mM IPTG for 3 h at 30 ◦C. Recombinant Dbh was purified
from the induced bacteria via immobilized Ni2+ affinity chromatography according to
a standard method. After verifying the purity of the eluate using 15% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), the preparations were dialyzed
against a storage buffer consisting of 20 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 50%
glycerol and then stored in small aliquots at −20 ◦C.

Amino acid substitutions were introduced into Dbh with the QuikChange® Site-
Directed Mutagenesis Kit (Santa Clara, CA, USA) using KOD-plus DNA polymerase and
the appropriate primers (Table S1). The nucleotide sequences were confirmed by DNA
sequencing. The mutant Dbhs were prepared with the same protocol as that used for the
wild-type polymerase.

2.3. Translesion Synthesis Assay

DNA polymerase activity and TLS assays were performed in a reaction buffer con-
sisting of 20 mM Tris-Cl (pH 8.8), 10 mM (NH4)2SO4, 10 mM KCl, 5 mM MgCl2, 0.1%
Triton-X100, 0.1 mg/mL BSA, and 0.2 mM dNTPs. The PT DNA substrates were prepared
by annealing the 5′-6-FAM-labeled primer strand with the complementary template strand
in a molar ratio of 1:1.5. The natural spacer deoxyribose (Figure S1A) is not thermostable
and is not suitable for the biochemical characterization of the thermostable protein Dbh at
the reaction temperature. Therefore, several synthetic, unnatural spacers were used in the
activity assays. The damaged DNA template strands contained specific spacers, including
alkane chains (C3, C6, and C12), polyethylene glycols (S9 and S18), and dSpacer.

Unless otherwise specified, the reaction mixtures (10 µL) contained a 0.1 µM PT DNA
substrate, 200 µM single dNTP or mixed dNTPs, and a specified amount of Dbh, as shown
in each figure. After incubation for the specified time at 45 ◦C, the reactions were stopped by
adding an equal volume of loading buffer (95% formamide, 100 mM EDTA, 0.2% SDS 0.02%
bromophenol blue, and 0.02% xylene cyanol). The extension products were separated by
electrophoresis through a 15% polyacrylamide gel containing 8 M urea and then visualized
and quantified using a Typhoon 9500 (GE Healthcare, Chicago, IL, USA).

2.4. Homology Modeling and Molecular Dynamics Simulation

In order to compare the effect of a spacer C3 on the TLS, PT DNA with a free or
bulging spacer C3 on the template strand was first built in PYMOL-1.8 (Schrodinger LLC,
New York, NY, USA) [23] and, subsequently, an optimized conformer of the PT DNA was
docked into the crystal structure of Dbh (PDB ID: 3BQ1) [19] in AUTODOCK [24]. The
AMBER14 suit package [25] was used to construct solvent–protein systems and perform
molecular dynamics (MD) simulations. For the simulation, the protein–DNA complex and
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ions were solvated in a truncated octahedron box of TIP3P waters with a water thickness of
10 Å. All systems were minimized to 40,000 steps with the steepest descent method and
then heated for 20 ps and equilibrated for 20 ps in the NVT ensemble at room temperature.
Fifty-nanosecond MD simulation trajectories were generated for each system with ff12SB
force fields. To calculate the dynamics information of each system in the converged stage,
the first 20 ns of all trajectories were discarded. Furthermore, routine analysis of trajectory
sampling was carried out using CPPTRAJ in Ambertools14 [26]. Based on the interactions
between Dbh and the substrates, the blocking of the primer extension by spacer C3 was
analyzed in terms of the distance between the 3′-OH of the primer and the α-phosphate
group of the incoming dNTP.

3. Results
3.1. The Paired Primers Were More Easily Extended by Dbh on Spacer Skipping

In order to investigate the TLS mechanism of the archaeal Y-family DNA polymerase
Dbh on alkane chain spacers, we designed a set of 26-mer template strands with the
spacers C3 and C6 adjacent to the different upstream 5′ bases (A/T/C/G) and a set of
18-mer 5′-FAM-labeled primer strands with different 3′ bases (A/T/C/G). The primer was
extended in the presence of a dNTP. If template skipping occurred, the template primer
would form various 3′ base pairs, including matched pairs (Figure 1). Our results showed
that a faster and full-length extension occurred for four correctly paired 3′ base pairs of
A/T or C/G (Figure 1), indicating that the Dbh mainly uses template skipping to bypass
the spacers for TLS. In addition, the 3′ mismatches of G/T, G/A, and G/G also generated
several products. However, the product of the G/G mismatch was probably from the
extension of the paired 3′ G/C after skipping both the spacer and the adjacent G. The
mismatches of G/T, G/A, G/G, T/T, T/G/, and T/C also generated a certain number of
extension bands, which were likely derived from a highly error-prone synthesis, as shown
for the normal DNA template (Figure S2, left panel), or from a template-independent
extension activity [27]. With increasing spacer length, the skipping of the spacer and
primer extension by the Dbh became more difficult (Figure 1B). These results indicated
that the Dbh mainly performed TLS using a template skipping mechanism for bypassing
spacers and that the correct pairing of the 3′ base pairs promoted spacer skipping and the
TLS efficiency.

3.2. Incorporation of the First Nucleotide during Bypassing Spacer by Dbh

In order to further confirm that the Dbh adopted a template skipping mechanism
for bypassing the spacer, the 26-mer template strands carrying a spacer C3 or C6, shown
in Figure 1, were annealed with a 17-mer primer strand to place the 3′ end of the primer
adjacent to the spacer (Figure 2). The primer was extended in the presence of dATP,
dTTP, dCTP, or dGTP. During the incorporation of a single dNMP, the first dNMP to
be incorporated matched the AP site damage or the 5′ first base of the AP site after the
Dbh skipping the spacer. Therefore, whether the Dbh adopted the template skipping
mechanism could be determined based on the identity of the incorporated dNMP. The
extension pattern of a single dNMP (Figure 2) was very similar to the results of the above
template skipping and 3′-pairing extension assay (Figure 1). When the incoming dNMP
skipped the spacer and correctly paired with the next base, its incorporation occurred
easily. For the XC template, more than two dGMPs were incorporated. Because two
tandem C bases (X-C-C) were used as templates after skipping spacers, two dGMPs were
correctly paired and incorporated. In addition to the correctly paired incoming dNMPs,
some mismatched dNMPs, including A/A, G/A, A/C, and G/A, were also incorporated,
with the preferential incorporation of A and G. The preferential incorporation of the
mismatched dAMP and dGMP at the 3′-terminus was probably derived from the strong
template-independent polymerase activity of the Dbh, which prefers dAMP and dGMP
(Figure S3) [27]. With an increasing spacer length, the skipping of the spacer by the Dbh,
followed by a dNTP-stabilized misalignment, became more difficult (Figure 2B).
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Figure 1. Primer extension of paired or mispaired 3′ base pairs with a bulging spacer. The PT DNA
substrates are shown at the top of the figure, where the letter X denotes spacers C3 (A) and C6 (B). The
first 3′ base of the primer strand is A, T, C, or G. The first base upstream of the AP site in the template
strand is A, T, C, or G. Four primer strands were annealed with four different template strands to
form 16 kinds of PT DNA substrates with a bulging spacer C3 or C6, which were incubated with
0.5 µM Dbh and dNTPs at 45 ◦C for 0, 10, 20, and 60 min. Asterisks denote the terminal fluorescent
group FAM.
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Figure 2. Single dNMP incorporation during AP site bypass. The PT DNA substrates are shown at
the top of the figure, where the letter X denotes spacers C3 (A) and C6 (B). The first base upstream
of the AP site in the template strand is A, T, C, or G. The PT DNA substrates were incubated with
0.1 µM Dbh in the presence of dATP, dCTP, dGTP or dTTP at 45 ◦C for 0, 10, 20, and 60 min. Asterisks
denote the terminal fluorescent group FAM.

In addition, two template strands (normal base and dSpacer, which has the most similar
structure with a natural spacer) were annealed with the 17-mer primer strand to form a
substrate for the incorporation of four different single dNMPs (dAMP, dTMP, dCMP, and
dGMP) (Figure S2). For the normal base T template (Figure S2, left panel), more than one
single dNTP was incorporated continually, which is a typical property of the low-fidelity
DNA polymerase Dbh. For the dSpacer template (Figure S2, right panel), the incorporation
of dAMP was consistent with the spacer C3 and C6 templates (Figure 2). The higher dGMP
incorporation efficiency might have been due to the dS-T sliding together or the extension of
the dGMP/T mismatch. The dTMP incorporation, comparable to that of the dGMP, might
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have occurred due to the X-T-C sliding together or the incorporation of the dTMP/T mismatch.
The lowest incorporation efficiency of the dCMP might have been due to the incorporation
of the dCMP/dS or dCMP/T mismatch. Another interpretation of the differences in the
unpaired dNMP incorporation efficiencies was that the template-independent polymerase
activity preferred dAMP and dGMP (Figure S2) [27]. Based on the above results, we concluded
that the Dbh mainly used template skipping accompanied by a dNTP-stabilized misalignment
to bypass the AP site analogs, resulting in a spacer-deletion extension.

3.3. Incorporation of the First Nucleotide Downstream of AP Sites Was the Most Difficult

To investigate the rate-limiting step during TLS by the Dbh, we designed PT DNA
substrates with a 1-mer loop of A, C3, C6, C12, S9, S18, and dSpacer. Three groups of PT
DNA substrates with 3′-pairing regions 1 bp, 2 bp, and 3 bp downstream of the 1-mer loop
were used for the TLS assays and compared with the normal template. The results showed
that, compared with the normal template, the spacer greatly decreased the TLS efficiency
in the order 1 bp < 2 bp < 3 bp (Figure 3). Moreover, the TLS efficiency decreased with the
increasing molecular length of the spacer. These results suggested that the correct base
pairing +1/2 downstream of the AP site facilitated the efficiency of the elongation of the
primer end by the Dbh. Furthermore, the TLS of the 1-mer spacer loop was compared
with that of the spacer–base mismatch (Figure S4). For three base pairs of 1 bp, 2 bp, and
3 bp, the TLS efficiency of the 1-mer loop was largely higher than that of the spacer–base
mismatch, especially for the 1 bp base pair. These results further confirmed that the
Dbh mainly bypassed the AP site via spacer-skipping accompanied by a dNTP-stabilized
misalignment mechanism.

The modeled complex structure of the Dbh, PT DNA, and the incoming dNTP
(Figure 4A,B) also showed that the formation of a phosphodiester bond was favored for
the PT with the bulging spacer C3 (forming a 1 bp paired 3′-terminus upon sliding the
spacer; Figure 4B, right panel) compared with that with the free spacer C3 (without sliding
the spacer to form a 1 bp paired 3′-terminus; Figure 4B, left panel). The distance between
the incoming dATP and the 3′-OH group of the primer strand also indicated the favorable
formation of the new phosphodiester bond after sliding the spacer and forming the 1 bp
paired 3′ primer terminus (Figure 4C, C3-1 bp vs. C3-0 bp). Compared with the normal PT
DNA substrate, the insertion of the spacer C3 caused significant fluctuations at the residues
34S, 35G, 36R, G58, G118, G160, G186, G188, L191, 194R, A221, R283, and N340, which
weakened the hydrogen bond interactions between the DNA and Dbh and blocked the
formation of new phosphodiester bonds (Figure 4D).

3.4. Effect of the Structure of Sliding PT DNA on the TLS Efficiency of Dbh

To investigate the effect of the structure of the sliding loop in the DNA template
strand on the TLS efficiency of the Dbh, we designed five 1-mer sliding loops with different
compositions of C, G, T, A, and dSpacer, two mismatches of T:C and G:dS, and one T:A
match as a positive control (Figure 5A). The mismatches of T:C and G:dS were extended
less efficiently than the corresponding 1-mer loops of loop-1 C and loop-1 dS, indicating
that the spacer skipping mechanism is mainly used by the Dbh. The TLS efficiency of the
four 1-mer loops of the bases was in the order loop-1 C > T≈A≈ G, and loop-1 C exhibited
an extension percentage comparable to that of loop-1 dS (Figure 5A). Furthermore, the
effect of the size of the bulging loop on the TLS efficiency of the dSpacer was characterized.
With the increase in the number of the skipped dSpacers and C bases, the bulging loops
became larger, the corresponding TLS efficiency gradually decreased, and the loop of dSC3
almost completely inhibited the primer extension (Figure 5B). In summary, the size of
the skipped loop in the DNA template strand had a greater effect on the TLS efficiency
of the Dbh, while the base composition of the skipped loop of the same size had a very
slight effect.
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Figure 3. Primer extension with increasing pairing numbers of 3′ base pairs with a bulging spacer.
The PT DNA substrates are shown at the top of the figure. The letter X denotes a skipped base A
and spacers C3, C6, C12, S9, S18, and dS. The symbol X denotes the normal DNA template. The PT
DNAs, with 3′ base pairs of 1 bp (A), 2 bp, (B) and 3 bp (C) after the bulging spacer or base A, were
used as substrates to characterize the extension reactions. The PT DNA substrates were incubated
with 0.1 µM Dbh and dNTPs at 45 ◦C for 0, 1, 3, 10, 30, and 60 min. Asterisks denote the terminal
fluorescent group FAM.

3.5. Key Amino Acids of Dbh Involved in Stabilizing the Bulging Damaged Base

The crystal structure of the Dbh shows that the LF domain determines the TLS
specificity [19]. Based on the schematic diagram of the interactions between the Dbh
and the DNA substrate [19], it was found that the amino acid residues Y249, I287, I289,
I295, and R333 in the LF domain of the Dbh interact with the DNA damage sites, including
the AP site analogs. The PT DNA substrates, with a 2-bp paired 3′ terminus and a 1-mer
loop structure (Figure 6, panels C, C3, and C6) or normal template (Figure 6, panel X),
were used to characterize the potential function of the above-conserved residues. Consid-
ering that those mutations also affected the efficiency of DNA elongation on the normal
template, the extension product ratio of the damaged to the normal template was used
to confirm the specific function of mutations on TLS. The extension product ratios of the
Y249A, I295D, and R333A mutants were significantly lower than those of the wild-type
Dbh (Figure 6B,E,F), but the ratios of the I287D and I289D mutants (Figure 6C,D) did not
change much compared with those of the wild-type Dbh, indicating that the amino acid
residues Y249, R333, and I295 in the LF domain of the Dbh might play a major role in the
TLS process.
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Figure 4. Effect of spacer C3 on TLS efficiency. (A) Schematic depiction of the domain composition
of Dbh and its modeled structure with bound PT DNA carrying a free spacer C3. (B) Modeling of
the formation of the phosphodiester bond between the incoming dNTP and the 3′-OH of the primer
paired with the DNA template strand with a free (left panel) or bulging (right panel) spacer C3.
(C) Distance between the 3′-OH of the primer strand and the alpha phosphate group of the incoming
dNTP. PT DNA with a free (C3-0 bp) or bulging (C3-1 bp) spacer C3 was used to calculate the distance.
(D) Hydrogen bond interactions between Dbh and normal PT DNA substrate (left panel) or the
counterparts carrying a spacer C3 in the DNA template strand (the middle panel is for free spacer C3,
and the right panel is for bulging spacer C3).

3.6. Effect of Residues Interacting with Normal DNA Strands on TLS

The main residues interacting with the normal DNA strands also participate in
TLS [19]. Based on the crystal structure of the Dbh and DNA, these residues mainly
include K78, R283, and K337. K78 is located at the N-terminus of the palm subdomain
of the catalytic core domain; R283 and K337 are located in the LF domain. The effects of
the K78, R283, and K337 residues on DNA synthesis were compared using the normal
and the damaged templates. The percentages of their extended substrates were in the
following order: K78A < R283A ≈ K337A < wt Dbh for the spacer C12 template, with the
incorporation of only 1–2 nucleotides into the primer for K78A (Figure 7). However, the
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order for the normal DNA template was as follows: K78A < R283A < K337A ≈ wt Dbh
K337A (Figure 7). Moreover, the truncation of the LF domain decreased the DNA synthesis’
activities for both the normal and the damaged DNA templates, with the incorporation of
only one nucleotide into the primer (Figure S5). These results suggested that K78 and R283
in the palm subdomain of the catalytic core domain played a role in both normal synthesis
and TLS, and the LF domain, especially K337, played a major role in TLS.

Figure 5. Effect of the bulging loop on TLS. The PT DNA substrates are shown at the top of the
figure, where the letter X denotes bases A, T, C, G, and dSpacer, and the letter Y denotes bases A, C,
and dSpacer. The symbol X denotes without spacer or base. (A) Effect of the base mismatches (T:C
mismatch and T:dS mismatch) and a bulging base loop or dSpacer loop (1-mer loops of dS, C, G, T,
and A) on TLS efficiency. (B) Effect of the size of the bulging loop (dS, dS-C, dS-C2, and dS-C3) on
TLS efficiency. The PT DNA substrates were incubated with 0.1 µM Dbh and dNTPs at 45 ◦C for 0, 1,
3, 10, 30, and 60 min. Asterisks denote the terminal fluorescent group FAM.
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Figure 6. TLS by LF domain mutants of Dbh. The PT DNA substrates are shown at the top of the
figure, where the letter X denotes base C and spacers C3 and C6. The symbol X denotes the normal
DNA template. The PT DNA substrates, with 3′-pairing two normally paired base pairs downstream
of the AP site in the template strand, were incubated with dNTPs and 0.2 µM wt Dbh (A), or the
mutant Y249A (B), I287D (C), I289D (D), I295D (E), or R333A (F) at 45 ◦C for 0, 10, 20, and 60 min.
2 bp downstream of the 1-mer loop. Asterisks denote the terminal fluorescent group FAM.

Figure 7. TLS by palm and linker mutants of Dbh. The PT DNA substrates are shown at the top
of the figure, where the letter X denotes base A (normal DNA template) and spacer C12. DNA
substrates were incubated with dNTPs and 0.2 µM wt Dbh (A), or the mutant K78A (B), R283A (C), or
K337A (D), at 45 ◦C for 0, 10, 20, and 60 min. Asterisks denote the terminal fluorescent group FAM.
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4. Discussion

Here, we found that the Dbh efficiently carried out TLS across the dS/C3/C6 spacer,
which mimics an abasic site. However, a previous report showed that the Dbh could
not bypass an abasic lesion [15]. The discrepancies in the results were likely derived
from the different experimental conditions used during the activity assay. In our assay,
more Dbh was used, and the ratio of the Dbh to the PT DNA substrate was five. Our
results further suggested that the Dbh might use template skipping accompanied by a
dNTP-stabilized misalignment to bypass the spacer damage, resulting in a single-base
deletion. The incorporation of the first nucleotide downstream of the damage site was the
major rate-limiting step during the TLS of the AP sites; in other words, it was the most
difficult and slow step. The Dbh efficiently extends primers with normally paired 3′ base
pairs of A/T or C/G downstream of the bulging spacer (Figure 1), suggesting that the
correct pairing of base pairs downstream of the spacer promotes template sliding of the AP
site and improves the Dbh TLS efficiency. In addition, because the Dbh is an error-prone
DNA polymerase, more mismatches are generated during the TLS of AP sites (Figure 1).

The mechanism of the template spacer skipping accompanied by a dNTP-stabilized
misalignment was further confirmed by the easy and fast incorporation of a single dNMP,
which, correctly paired with the 5′ first base of the AP site after the Dbh, skipped the
spacer on the template strand (Figure 2). In contrast, if the dNTP did not pair with the
5′ first base of the skipped spacer on the template strand, it was hardly incorporated
or was incorporated at a very slow rate. These results imply that the Dbh mainly uses
spacer sliding accompanied by a dNTP-stabilized misalignment to incorporate the first
nucleotide after easily skipping the AP site analogs. During the incorporation of a single
dNMP, an AMP extension with similar efficiency was observed for the unpaired template
bases of C, G, and A (Figure 2). This result could have been derived from the template-
independent extension activity of the Dbh, i.e., the A-rule, where the AMP is preferably
incorporated at the primer 3′-OH, independent of the DNA template (Figure S3). The
A-rule or misincorporation/misalignment mechanism is adopted by the Dbh when a larger
spacer exists, or the 5′ base of the AP site does not correctly pair with the incoming dNTP.
Moreover, our results showed that correct base pairing +1/2/3 downstream of the AP site
facilitated the efficiency of the primer elongation by the Dbh. This result is similar to the
extension of a single-base deletion by the Dbh [19], where for the different locations of the
jumping base upstream of the nascent base pair, the Dbh extends the single-base deletion
primer in the speed order +3 > +2 >> +1 [19].

The Y-family DNA polymerases all consist of an N-terminal polymerase catalytic core
domain and a C-terminal LF domain/PAD that helps bind DNA [13–15,28,29]. Interestingly,
the amino acid sequence of the polymerase catalytic core domain is highly conserved, while
the sequence similarity of the LF domain/PAD is very low. Thus, it is likely that the
LF domain/PAD is the main determinant of the reaction properties of TLS. The Dbh is
highly prone to single-base deletion because the gap between the polymerase catalytic
core domain and C-terminal LF domain of the Dbh provides ample space to accommodate
the skipped base [15,19]. The Dbh does not strictly limit the entry of the mismatched
template base–dNTP pair into the enzymatic active center as the high-fidelity replicative
polymerases have [30]. This lower stringency may allow template misalignment to occur
more easily [19], and the low sustained synthesis capacity of the Dbh provides more
opportunities for the DNA strand rearrangement [29,31]. Our results also indicate that the
skipping of the spacer is the first step and the correct pairing of incoming dNTPs, where
the 5′ first base of the skipped spacer is the second step for the efficient TLS of the AP site
analogs by the Dbh.

The spatial orientation of the C-terminal LF domain relative to the catalytic core
domain of the polymerase may be a key factor in determining the molecular mechanism
of a single-base or spacer deletion employed by the Dbh. The three conserved amino acid
residues (Y249, R333, and I295) on the LF domain play a key role in the TLS of the spacers.
In addition to the LF domain, the residues for binding DNA are also important for TLS;
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K78, R283, and K337 all interact with the DNA strand [19]. We tested the importance of the
amino acid residues contacting the template bases. Residues K78 and R283 are required
for normal DNA synthesis and the TLS of the spacer. In contrast to the mutants K78A
and R283A, the truncation of the C-terminal LF domain or the mutation K337A led to a
greater decrease in the extension for TLS than normal DNA synthesis (Figures 7 and S5),
suggesting that they play a specific, major role in TLS.

In summary, the Dbh mainly uses template skipping accompanied by a dNTP-stabilized
misalignment to bypass the AP site analogs, and the incorporation of the first nucleotide
across the AP site is the main rate-limiting step. The conserved residues Y249, R333, I295,
and K337A in the LF domain play key roles during TLS by the Dbh.
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