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Abstract: G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described
as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many
GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to
various (hetero) receptors. The formation and structure of these oligomers, their physiological
role and possible therapeutic applications raise a variety of issues that are currently being actively
explored. In this context, synthetic peptides derived from TM domains stand out as powerful
tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level,
eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting
peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short
half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this
review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current
studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and
we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates
for therapeutic application.

Keywords: peptide therapeutics; transmembrane peptides; GPCR oligomers; non-natural amino
acids; cyclic peptides; retro-enantio

1. Introduction

G protein-coupled receptors (GPCRs) constitute the largest and most versatile super-
family of cell membrane-bound proteins, made up of seven trans-membrane α-helices
(TM1 to TM7) [1–3] connected by intracellular (IL-1 to IL-3) and extracellular loops (EL-1 to
EL-3), and coupled to an intracellular heterotrimeric G protein (e.g., Gs, Gi/o, Gq/11,
G12/13) [4]. GPCRs are commonly grouped into six subfamilies (A-F) [5], based on se-
quence homology and functionality. Despite this apparent diversity, all GPCRs mediate
their effects upon agonist-induced activation of the receptor at the extracellular site by
a wide variety of ligands and then transduce the signal into intracellular responses [6].
Endogenous GPCR agonists are physically and chemically very diverse, including neuro-
transmitters (i.e., dopamine, serotonin), hormones (i.e., estrogen, angiotensin), proteins
(i.e., chemokines), odors, photons, lipids (i.e., anandamide) or peptides (i.e., bradykinin),
among many others [7]. Moreover, and more interestingly, ligand affinity for the GPCR
primary (orthosteric) site and efficacy of activation can be increased or decreased by other
effectors that bind to a separate (allosteric) site [8].

Given that GPCR signaling is involved in a diverse number of biological processes,
GPCRs are considered ideal therapeutic targets [9] for a wide assortment of human diseases
ranging from allergic rhinitis to pain, type-2 diabetes mellitus, obesity, depression, insomnia
or cancer, to name just a few [10–12]; indeed, 34% of currently FDA-approved small-
molecule drugs bind to GPCRs [13]. Originally described as cell-surface monomers that
form a ternary complex with the extracellular ligand and the intracellular G protein [14],
GPCR higher-order oligomers have in recent years been increasingly recognized as novel
signaling units with functional properties distinct from their constituent receptors, thus
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opening up a new, only sparingly explored area of study within the GPCR field [15,16]. One
possible strategy to probe into GPCR oligomerization and its impact on health conditions
would consist in interfering in complex formation by means of exogenous synthetic peptides
replicating TM domains involved in helix–helix interactions [17].

In this review, we consider the challenges and opportunities involved in disrupt-
ing GPCR oligomer formation by means of TM peptides targeting the complex interface,
as a way to regulate oligomerization-dependent functions, and we also discuss strate-
gies reported to improve the druggability of such peptide candidates in the context of
cannabinoid-mediated pain management or CNS disorders.

2. GPCR Oligomers

The human genome encodes nearly 1000 different GPCRs, each one highly specific
to a signaling pathway [18]. However, growing evidence indicates that many GPCRs
can form active higher-order oligomers constituted by equal (homo) or different (hetero)
monomers [19–26], with functional properties distinct from their protomer components [27]
and generally involved in both healthy and pathological processes [28], thus making them
ideal targets for the development and screening of novel drugs [29,30].

One of the first reported GPCR oligomers involved δ- and κ-opioid receptors that,
when co-expressed, formed a stable heterodimer with properties not found in cells express-
ing the same receptor monomers [31]. Subsequently, many other GPCR homo- and/or
hetero-complexes have been unveiled, often displaying unique characteristics.

In many of these investigations the importance of TM helices in GPCR oligomerization
has been demonstrated, portraying the GPCR complexes as dynamic species in which
activation by the agonist induces a realignment of TM dimerization interfaces [32,33].
Indeed, it has been found that a dynamic equilibrium between monomeric and dimeric
species can take place [34], modulated by ligand binding, which in turn can enhance or
decrease heteromer interaction [35]. Therefore, while the minimal GPCR functional unit can
be regarded as constituted by one monomeric receptor and one heterotrimeric G protein
(1:1) [36], GPCR dimers can occur when: (i) two G proteins bind both dimer protomers
(2:2) [37,38] or (ii) one G protein binds one protomer in the dimer (1:2) [39].

Another distinctive feature of some GPCRs is the switching of the G protein-coupled
protomer when dimerization occurs. For instance, serotonin 5HT2AR couples Gq; however,
heteromer formation by cannabinoid CB1R and 5HT2AR makes both receptors signal via
Gi [40] (Figure 1A). In other words, some GPCR heteromers can couple G protein species
different from those favoured by their protomers. Other reported examples are: (i) a
heterodimer formed by dopamine D1 and D2 receptors that couples Gq instead of Gs
or Gi [41] (Figure 1B); (ii) the heteromer formed by angiotensin AT1 and α2c-adrenergic
receptors couples Gs instead of Gi or Gq [42]; and (iii) a melatonin MT1-MT2 receptor dimer
that couples Gq instead of Gi [43].

Functionally, GPCR complexes can cause a positive or negative cooperation between
promoters, i.e., ligand one binds to protomer one, enhancing or inhibiting, respectively,
the affinity of ligand two for protomer two [44]. In general, intermolecular communica-
tion between GPCR homo- and heteromers tends to produce synergistic responses (i.e.,
functional cross-talk) [45]. A more singular phenomenon is cross-antagonism (Figure 1C),
which occurs when a protomer antagonist blocks the signal activation of the other pro-
tomer [25,40,45]. Such a situation has been described for some GPCR complexes, in-
cluding the metabotropic Gb1-Gb2 receptors [46], opioid δ-µ receptors [47], somatostatin
SST5-dopamine D2 receptors [48], adenosine A2A-dopamine D1 receptors [49], orexin-
corticotropin-releasing factor receptor [50] or angiotensin II AT1/dopamine D2 recep-
tor [51].
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Figure 1. (A) The serotonin 5HT2AR and the cannabinoid CB1R monomers couple Gi and Gq 
proteins, respectively; when dimerized, however, 5HT2AR switches Gq protein with Gi; (B) The 
dopamine D1R and D2R monomers couple Gs or Gi, respectively; however, the heterodimer D1R-
D2R couples Gq; (C) The serotonin 5HT2AR antagonist blocks the signal activation of the cannabinoid 
CB1R agonist when dimerized. 

Despite the extensive literature on GPCR oligomers, in most cases the assessment of 
their functionality has been only partially addressed and needs further investigation. In 
this context, chimeric peptide constructs have shown the ability to disrupt homo- and 
heteromer complexes, altering agonist-induced functionality and providing knowledge 
on the physiological role of GPCR receptor–receptor interactions [52–55]. 

3. Synthetic TM Peptides as Tools for GPCR Complex Exploration 
The identification of protein–protein interaction interfaces constitutes a fundamental 

aspect in the study of GPCR complex formation [56], in that it can expand our 
understanding of the role that receptor oligomerization plays in intercellular 
communication or in some pathological conditions. 

Increasing evidence indicates that specific TM helices are required for 
oligomerization, and that the synthetic peptides reproducing them are powerful tools to 
identify sequences essential for GPCR complexation and, by blocking their assembly, gain 
insights into the functional role of the complex [52,57,58]. 

For instance, Köfalvi et al. (2020) have recently studied how the adenosine-
cannabinoid receptors, specifically the A2AR-CB1R heterotetramer interface, which also 

Figure 1. (A) The serotonin 5HT2AR and the cannabinoid CB1R monomers couple Gi and Gq proteins,
respectively; when dimerized, however, 5HT2AR switches Gq protein with Gi; (B) The dopamine D1R
and D2R monomers couple Gs or Gi, respectively; however, the heterodimer D1R-D2R couples Gq;
(C) The serotonin 5HT2AR antagonist blocks the signal activation of the cannabinoid CB1R agonist
when dimerized.

Despite the extensive literature on GPCR oligomers, in most cases the assessment
of their functionality has been only partially addressed and needs further investigation.
In this context, chimeric peptide constructs have shown the ability to disrupt homo- and
heteromer complexes, altering agonist-induced functionality and providing knowledge on
the physiological role of GPCR receptor–receptor interactions [52–55].

3. Synthetic TM Peptides as Tools for GPCR Complex Exploration

The identification of protein–protein interaction interfaces constitutes a fundamental
aspect in the study of GPCR complex formation [56], in that it can expand our understand-
ing of the role that receptor oligomerization plays in intercellular communication or in
some pathological conditions.

Increasing evidence indicates that specific TM helices are required for oligomerization,
and that the synthetic peptides reproducing them are powerful tools to identify sequences
essential for GPCR complexation and, by blocking their assembly, gain insights into the
functional role of the complex [52,57,58].

For instance, Köfalvi et al. (2020) have recently studied how the adenosine-cannabinoid
receptors, specifically the A2AR-CB1R heterotetramer interface, which also includes A2AR-
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A2AR and CB1R-CB1R homodimers, is established. To this end they have used compu-
tational modelling, with input from several biophysical and biochemical techniques, to
design TM interference peptides reproducing each of the A2AR and CB1R TM1-7 helices.
The synthetic versions, fused to the cell-penetrating HIV-Tat sequence, were tested by
in vitro bimolecular fluorescence complementation (BiFC) experiments. Peptides repli-
cating TM5 and TM6 of both receptors were able to disrupt the heterotetramer; thus, the
involvement of their interfaces in the complex formation was confirmed. On the other
hand, in the absence of the CB1R receptor, BiFC assays showed that the A2AR-A2AR ho-
modimer was only disrupted by peptide A2AR TM6, while when A2AR was missing, CB1R
TM4 was the only peptide disturbing CB1R-CB1R homodimer formation, altogether indi-
cating that TM6 and TM4 sequences are involved in A2AR and CB1R homodimer interfaces,
respectively [59].

Once the interfering peptides are identified, they can be used to investigate GPCR
complex implications in numerous physiopathological disorders. As an example, Borroto-
Escuela et al. (2018) found that rat A2AR TM5 peptide microinjection into the nucleus
accumbens causes A2AR-D2R heteromer dissolution plus abrogation of the inhibitory effects
of the A2AR agonist CGS21680 on cocaine self-administration, therefore confirming that the
A2AR-D2R hetero-complex can be used as a novel target to treat cocaine disorders [53].

More examples where synthetic peptides replicating TM helices involved in dimeriza-
tion have been shown to be able to split GPCR complex formations are included in Table 1.
The in vitro (biophysical and/or biochemical) and in vivo assays used to confirm the exis-
tence of GPCR dimers in live cells and their implication (if known) in health disorders, are
also presented.
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Table 1. GPCR complexes disrupted by synthetic TM peptides.

GPCR Complex TMs Involved in Dimerization Synthetic TM
Disruptor Peptide

In Vitro/In Vivo
Assays Performed Patho-Physiological Implication Ref.

A2AR-D2R TM4/5 interface A2AR TM5
• BRET
• PLA
• Cocaine self-administration

Cocaine use [53]

APJR-OX1R TM4/5 interface APJ TM4, TM5 • BRET
• Co-IP

- [60]

APJR homodimer TM1, TM2, TM3, TM4 TM1, TM2, TM3, TM4

• BRET
• FRET
• TIRFM
• Co-IP

- [61]

A2AR-CB1R TM 5/6 interface CB1R TM5 TM6
A2AR TM5 TM6

• BiFC
• BRET
• CODA-RET
• Glutamate release

Glutamate release [59]

A1R-A2AR TM 5/6 interface A2AR TM4, TM5, TM6
A1R TM5 and TM6

• BiFC
• PLA
• BRET
• cAMP production
• DMR

Neurodegeneration
Neuroinflammation [62]

CB1R-5HT2AR TM 5/6 interface CB1R TM5, TM6

• BRET
• PLA
• BiFC
• NORT
• Hot plate test

Cognitive impairment [40]

M3R homodimer TM1, TM5, TM7 TM1-TM5-TM7 • BRET - [63]
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Table 1. Cont.

GPCR Complex TMs Involved in Dimerization Synthetic TM
Disruptor Peptide

In Vitro/In Vivo
Assays Performed Patho-Physiological Implication Ref.

CCKR homodimer TM6 TM6 • BRET
• FRET

- [64]

CCR5 homodimer TM1, TM2, TM4 TM1, TM4 • FRET Calcium determination - [65]

RhoR homodimer TM1,TM2, TM4, TM5, H8 TM1, TM2, TM4, TM5 • BRET
• cAMP production

Phototransduction [66]

β2AR homodimer TM1, TM5, TM6, H8 TM6 • Adenylyl cyclase activity
• Densitometric analyses

- [17]

SCTR TM4 TM4 • FRET
• BRET

Liver diseases [55]

AT1aR-SCTR TM1/2 interface
TM4/4 interface

AT1aR TM1, TM4
SCTR TM2, TM4

• BRET
• FRET
• cAMP

Hyperosmolality-induced drinking [54]

FZD6 homodimer TM4, TM5 TM4, TM5 • FRAP
• FCCS

Cancer and neurologic disorders [67]

MOR-DOR MOR TM1 MOR TM1
• Co-IP
• Immunoblotting
• Tail immersion

Morphine tolerance [68]

Abbreviations: 5HT2AR, serotonin receptor type 2 A; A1R, adenosine receptor type 1; A2AR, adenosine receptor type 2A; APJR, apelin receptor; AT1aR, angiotensin receptor type 1a;
BiFC, bimolecular fluorescence complementation; BRET, bioluminescence resonance energy transfer; cAMP, cyclic adenosine monophosphate; CB1R, cannabinoid receptor type 1;
CCKR, cholecystokinin receptor; CCR5, chemokine receptor type 5; CODA-RET, complemented donor-acceptor resonance energy transfer; Co-IP, co-immunoprecipitation; D2R, dopamine
receptor type 2; DMR, dynamic mass redistribution; DOR, δ-opioid receptor; FCCS, fluorescence cross-correlation spectroscopy; FRAP, fluorescence recovery after photobleaching; FRET,
fluorescence resonance energy transfer; FZD6R, Frizzled-6 receptor; M3R, muscarinic acetylcholine receptor type 3; MOR, µ-opioid receptors; NORT, novel object recognition test;
OX1R, orexin receptor type 1; PLA, proximity ligation assay; RhoR, rhodopsin receptor; SCTR, secretin receptor; TIRF, total internal reflection fluorescence; β2AR, adrenergic receptor
type β2.
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3.1. TM Peptides: Challenges and Opportunities to Drug the Undruggable

Despite presenting great in vitro and in vivo potential in terms of efficacy, selectivity
and safety, TM peptide disruptors of GPCR complexes are viewed as undesirable leads for
therapeutic application due to their peptide-intrinsic poor pharmacokinetics, including low
water solubility, high susceptibility to proteases, poor membrane permeability (including
challenging physiological barriers such as the BBB), rapid clearance and immunogenic-
ity [69]. These caveats notwithstanding, an array of peptide engineering strategies have
been used over the years to improve druggability (see next paragraph and below) and
can be also implemented in this case to develop optimized versions of GPCR complex-
disrupting TM peptides and explore their therapeutic applications.

The first useful item in the toolbox is trimming off some N-terminal or C-terminal
residues until a minimally active primary structure can be established (Figure 2A). This
reductionistic approach is particularly efficacious in the case of TM peptides since, by
removing (almost invariably hydrophobic) residues from the cognate TM sequence, water
solubility is improved [70–72], while synthesis time and costs are considerably reduced. An-
other strategy to improve peptide solubility is PEGylation, i.e., attaching several polyethy-
lene glycol (PEG) units to the peptide lead structure (Figure 2B). PEG moieties, apart from
being highly hydrophilic, are also good non-immunogenic spacers able to shield the pep-
tide from proteolytic enzymes [73,74]. Additionally, related to this issue, the replacement
of natural L- by non-natural D-amino acids is a common manoeuvre to improve peptide
stability towards proteases in the digestive tract (e.g., trypsin), plasma and other biologi-
cal fluids (Figure 2C). Furthermore, non-natural amino acids can enhance target affinity
and selectivity by the induction or stabilization of secondary structure motifs (α-helices,
β-sheets, β-turns) [75,76]. Along similar lines, the so-called retro-enantio approach can
likewise give rise to peptides fully resistant to natural proteases. In a retro-enantio peptide
both amino acid sequence and residue chirality are reversed relative to the parent structure,
but despite these substantial changes the orientation of the side chains is preserved, hence
a resemblance in overall shape (Figure 2D), while the inverted chirality curbs protease
degradation, enhancing half-life and thus the potential as a new drug lead [77]. Moreover,
the retro-enantio analogue tends to be less immunogenic than the cognate sequence [78].
Lastly, cyclization (head-to-tail (Figure 2E), side-chain-to-tail, side-chain-to-side-chain),
including disulfide bond formation from native or (more frequently) engineered cysteine
residues, is another quite valuable tool in the box that is regularly shown to reinforce serum
stability [79]. Low membrane permeability, poor cellular uptake and inadequate homing
specificity [80] are well-recognized snags that seriously jeopardize the success of peptide
drugs. In this regard, a variety of drug carriers [81,82], with cell-penetrating peptides
(CPPs) as a preeminent, successful example, have emerged as safe and efficient strategies
to improve bioavailability. CPPs are a family of short peptide vectors with a remarkable in-
built ability to traverse membranes, including important physiological hurdles such as the
blood–brain or the skin barriers or the intestinal and nasal mucosae. Acting as drug delivery
vectors (Figure 2B), CPPs can deliver into cells a plethora of payloads with therapeutic or
diagnostic purposes, overcoming pharmacokinetic limitations and poor access to difficult
areas, such as the central nervous system [80]. In sum, CPPs have become a powerful tool
to address one of the main bottlenecks in drug development, namely the successful delivery
of active compounds to target sites [80]. Moreover, in the specific case of GPCR complexes,
CPPs can also determine the trajectory of the peptide disruptor into the membrane [80].
Peptide backbone modification is also an important and widely used approach to improve
bioavailability [83,84]. Still another strategy to increase target affinity and cell uptake, as
well as to protect against proteolytic degradation, involves stapling, whereby a synthetic
brace (staple) introduced between two preestablished sites in the sequence helps to lock
the peptide into a specific secondary structure (Figure 2F), thus reducing conformational
entropy [85–87]. In the context of CB1R-5HT2AR complex disruption, the stapling approach
has been recently applied [88], with preservation of in vitro GPCR oligomer disrupting
activity along with improved proteolytic resistance.
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Figure 2. Useful synthetic strategies towards drug-like peptide design: (A) Peptide truncation at
both N- and C- termini to identify the shortest active amino acid sequence; (B) peptide conjugation to
PEG and/or CPP to enhance solubility and cell membrane permeation; (C) replacement of L- with D-
amino acid to improve proteolytic stability; (D) retro-enantio approach to achieve a protease-resistant
peptide with overall shape resemblance; (E) head-to-tail cyclization to increase half-life of peptides;
(F) Stapling to constrain the peptide into a specific conformation.

Even though the resources in the peptide engineering toolbox just mentioned have
allowed overcoming many of the factors limiting the therapeutic use of natural peptides
with moderate success, for GPCR complex-disrupting peptides in particular, the goal of
turning a canonical TM sequence into a viable drug lead may still entail a hazardous journey
fraught with formidable obstacles. Even so, the latest literature reveals a slowly growing
body of reports, including recent work from our group, where some of the aforementioned
strategies are creatively applied to improve the druggability of GPCR complex-disrupting
peptides. Two such accounts, dealing with the medical use of cannabinoids to fight pain and
CNS disorder exploration and treatment, are discussed at some length below, illustrating
the design and structural optimization process where TM peptides involved in GPCR
dimer interfaces are developed into promising leads in two therapeutic areas with still
unmet needs.

3.2. TM Peptides Restricting CB1R-5HT2AR Dimer for Cannabinoid Management in Pain Therapy

While cannabinoid-based therapy has proven effective in alleviating chronic pain [89–91],
its psychotropic side effects such as memory loss, disorientation or dizziness are major ob-
stacles in attempts to deploy cannabinoids as analgesics [92–95]. To this day, cannabinoids,
both synthetic and naturally occurring, remain at the center of social, legal and medi-
cal debates concerning their therapeutic value, while the need for novel pain-alleviating
medicines whose beneficial effects outweigh adverse ones is quite obvious in everyday
clinical practice.

Various strategies have been investigated to minimize the unwanted outcomes of
long-lasting cannabinoid exposure in patients undergoing cannabis-based therapies, so far
to little avail. In line with this goal and with the topic of this review, we will now discuss
work from our group and allied laboratories exploring the possibility of dissociating
∆9-tetrahydrocannabinol’s (THC) beneficial effects from its detrimental effects by using an
optimized TM peptide disruptor to alter the CB1R-5HT2AR complex, i.e., the heterodimer
formed by the cannabinoid CB1 and serotonin 5HT2A receptors that is responsible for the
undesirable cognitive impairment [40].

In order to identify the functional properties of the CB1R-5HT2AR heterodimer, we
first used synthetic peptides reproducing the entire amino acid sequences of the CB1R
TM5 and TM6 helices, fused to a cell-penetrating sequence derived from HIV-Tat, to
disturb the formation of the heteromer [96]. These peptides were confirmed to be able
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to interfere with the CB1R-5HT2AR complex, both in vitro (BiFC, cAMP assay and p-
ERK1/2 signalling) and in vivo (hot plate test and novel object recognition tests, after ICV
administration in mice), allowing the selective activation of CB1R by THC [96]. However,
their poor pharmacological profiles (i.e., long size, rapid proteolytic digestion, no trans-BBB
permeability) were major drawbacks vis-á-vis any medical application. Therefore, with the
goal in mind of preserving analgesic properties while minimizing cognitive side effects,
our next step was to improve TM5 and TM6 peptide druggability by a combined effort
aimed at reducing toxicity, prolonging serum half-life, avoiding immunogenicity, achieving
BBB permeability and generally enhancing bioavailability, with oral activity as the final
goal [96] (Figure 3).
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After in silico identification of hotspots (i.e., close contact residues) in the CB1R-
5HT2AR heterodimer interfaces, streamlined versions of the TM5 and TM6 peptides, i.e.,
containing mainly those amino acid residues predicted as involved in the interaction do-
main, were designed, synthesized and assayed, again juxtaposed to a CPP shuttle sequence
(several size-optimized options tested). The results indicate that: (i) the downsized versions
were as efficient as the original TM sequences in disrupting the CB1R-5HT2AR heteromer,
and (ii) the previously used HIV-Tat CPP motif could be replaced, without loss in disruptive
capacity, by a BBB shuttle peptide (BBBsP) sequence that ensured bioavailability of the
novel analogs into their brain target [96].

In a last optimization round, candidates with reversed (i.e., non-natural D-residue)
chirality were generated as the retro-enantio versions of the previous, shortened interfering
peptides, again fused to a BBBsP motif also made up of D-residues. As mentioned earlier,
by virtue of the retro-enantio approach the spatial orientation of the TM peptide side chains,
hence the global shape, roughly resembles the canonical versions, and in tune with this,
remains able to disturb the CB1R-5HT2AR heterodimer (in the BiFC assay). In addition,
the BBBsP tag ensured efficient crossing of an in vitro BBB model and, given the all-D
configuration, the peptide turned out to be highly resistant to serum proteases [96].

The last stage in our approach was evaluation in vivo: the two best-performing
candidates were given intravenously to mice, co-administered with THC. While analgesic
effects were observed for both peptides, only one of them was able to prevent THC-induced

https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00484
https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00484
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cognitive impairment. This peptide, wliymyayvaGilkrw (lower case one-letter notation
for D-residues), was additionally shown to be orally available and non-immunogenic
and is hence regarded as a highly promising lead in therapeutic approaches involving
cannabinoid pain management without undesirable cognitive side effects [96].

3.3. TM Peptide Restricting A2AR-A2AR Dimer for CNS Disorders

Several functional G-protein heterodimers (Table 2, entries 1–7) and heterotrimers
(Table 2, entries 8–10) with other GPCRs have been observed and described for the adeno-
sine A2A receptor (A2AR), playing significant roles in neurodegenerative diseases or drug
abuse. Apart from heteromerization, A2AR homodimerization is well-recognized and
raising attention as A2AR-A2AR homodimer inhibition has been recently reported to be
involved in CNS disorders [97].

Table 2. A2AR complexes with other GPCRs and their implications.

Heteromer Ligand Implication Ref.

A1R-A2AR Caffein (A1R, A2R antagonist) Drug tolerance [98]

A2AR-D2R A2AR antagonists, D2R agonists Parkinson’s disease,
schizophrenia, drug addiction [99,100]

D3R-A2AR CGS-21680 (A2AR agonist) Schizophrenia [101]

CB1R-A2AR CBD (CB1R agonist) Cognitive impairment [102,103]

A2AR-mGlu5R CHPG (mGluR5 agonist) Parkinson’s disease [23]

A2AR-H3R RAMH (H3R agonist) Autism, obsessive and
compulsive disorder [104]

A2AR-5HT1AR
CGS 21,680 (A2AR agonist), 8-OH-DPAT (5HT1AR

agonist), SCH 58,216 (A2AR antagonist),
methysergide (5HT1AR antagonist)

Dyskinesia [105]

A2AR-D2R-mGlu5R A2AR agonists, A2AR antagonists, D2R agonists,
D2R antagonists, mGlu5R agonists

Psychosis, Parkinson’s
disease, drug abuse [106]

CB1R-A2AR-D2R TBD Endocannabinoid modulation [107]

A2AR-D2R-NMDAR α-synuclein Neurodegeneration,
neuroinflammation [108]

Abbreviations: 5HT1AR, serotonin receptor type 1 A; 5HT2AR, serotonin receptor type 2 A; A1R, adenosine receptor
type 1; 8-OH-DPAT, 8-Hydroxy-2-(di-n-propylamino)tetralin; A2AR, adenosine receptor type 2A; CBD, cannabid-
iol; CB1R, cannabinoid receptor type 1; CHPG, (R,S)-2-chloro-5-hydroxyphenylglycine; CG6-21680, 4-[2-[[6-
amino-9(N-ethyl-beta-d-ribofuranuronaminoamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid; D2R,
dopamine receptor type 2; D3R, dopamine receptor type 3; mGlu5R, metabotropic glutamate receptor type 5; H3R,
histamine receptor type 3; NMDAR; ‘N-metil-D-aspartate receptor; RAMH, (R)-(alpha)-(−)-methylhistamine di-
hydrobromide; SCH 58216, [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo[1.5-c]pyrimidine];
TBD, to be determined.

One strategy to explore A2AR-A2AR homodimer expression and its impact on brain
disorders would consist, as in previous accounts above, in interfering in their formation by
means of synthetic peptides replicating TM domains involved in helix–helix interactions.
Thus, our laboratory recently ventured to assess A2AR- A2AR homodimer functionality
using a peptide comprising the A2AR TM5 sequence, involved in the homodimer interface,
fused to a linear HIV-Tat (47–57) CPP. Unfortunately, the outcome was unclear due to the
fast in vivo degradation of the peptide.

Different strategies to boost CPP protease resistance while preserving cell penetra-
tion efficiency have been developed [109]. One noteworthy approach is that afforded by
cyclic versions of CPPs (CCPPs for short) such as cyclo Tat [110] or CPP12 [111]. These
novel platforms have shown superior translocation ability over the linear versions and,
importantly, a higher imperviousness to protease degradation. Based on such precedents,
we set out to develop a construct where the TM5 peptide disruptor was linked to a cyclic
Tat-like construct (Figure 4), with a view of ensuring an extended lifespan that might prove
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useful for future in vivo A2AR-A2AR homodimer studies. The hypothesis proved correct,
and the CCPP afforded higher AA2R-A2AR disrupting capability than the linear HIV-Tat
counterpart. Moreover, by including non-natural amino acids, the desired high proteolytic
stability under physiological conditions was also achieved [97].
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4. Conclusions

G protein-coupled receptors are preeminent among drug targets and, given the inten-
sive research efforts devoted to them, are arguably likely to remain valuable sources of
future pharmaceutical leads with important therapeutic indications. In this context, the
emerging evidence of naturally existing GPCR oligomers has upended the conventional
wisdom of the GPCR monomer as functional unit, opening up new horizons for pharmaco-
logical intervention. However, in contrast to well-studied GPCR monomer transduction,
the mechanisms of GPCR oligomerization and, more importantly, their implication in health
or disease, remain in most cases only partially elucidated and need to be studied further.

Several approaches have been made to gain insights into the functional relevance of
GPCR oligomerization. For example, bivalent ligands that simultaneously bind the two
physically interacting GPCRs orthosteric sites can be used as valuable pharmacological
tools to study the quaternary structure of receptor dimers. Alternatively, mutant receptors
that do not dimerize can be applied to probe the role of oligomers in the modulation of
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signal transduction. In this scenario, GPCR complex disruption by peptides reproducing
TM sequences involved in dimer interfaces is increasingly recognized as a fruitful method
for GPCR oligomer functional exploration, thus holding significant promise for the rational
design of new GPCR-homing peptide drugs.

Despite their undisputed potential in medicinal applications, naturally occurring
peptides have long been singled out as therapeutically problematic for intrinsic weaknesses
such as low bioavailability and/or short in vivo half-life. To redress these shortcomings,
an extensive array of structural modifications including C- or N-terminal truncation, use
of non-natural amino acids, PEGylation or different cyclization tactics, to name just a
few, have been successfully deployed over the years to fulfil the switch from natural (vul-
nerable) to engineered (drug-like), best-performing peptide leads. In the specific realm
of TM peptides targeting GPCR oligomers, increasing research shows how, contrary to
deeply rooted prejudice, educated structural elaboration of an initially naive sequence
can enact its evolution into a full-fledged medicinal peptide entity. The first example of
such transition shows that the analgesic properties of cannabinoids can be exploited while
keeping their adverse side reactions (i.e., psychoactive effects and cognitive impairment) at
bay by co-administration with a novel optimized CB1R-5HT2AR heterodimer-disrupting
peptide. Such an approach has predictable potential in alleviating the plight of patients
undergoing chronic pain medication. In this study, inclusion in the late-stage candidate of
a substantially engineered CPP tag has turned out to be decisive, by endowing the peptide
with BBB-crossing properties and hence access to brain cells where it can productively dis-
rupt the CB1R-5HT2AR heterodimer. Similarly, an A2AR homodimer-disrupting construct,
efficiently delivered by a protease-resistant cyclic CPP, was designed and produced for
in vivo studies on the A2AR-A2AR homodimer implication in CNS disorders, including
schizophrenia and Parkinson’s disease. Understanding its CNS delivery may pave the way
to eventually harnessing some of the most challenging problems faced in the treatment of
neurodegeneration. These encouraging developments are to be viewed as the first fruits in
the quest for GPCR complex-disrupting agents, a field holding undoubtable promise for
therapeutic application but where much work remains to be done.
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