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BACKGROUND

Breast cancer diagnosis and staging have been 
revolutionized by new molecular screening assays 

based on immunohistochemistry,[1] fluorescence in situ 
hybridization,[2] and reverse transcription polymerase 
chain reaction,[3] which are all used to personalize care. 
These tools are helping patients live longer and receive 
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Abstract

Background: Mortality in cancer patients is directly attributable to the ability of cancer 
cells to metastasize to distant sites from the primary tumor. This migration of tumor cells 
begins with a remodeling of the local tumor microenvironment, including changes to the 
extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion 
of tumor cells into the bloodstream. In breast cancer, it has been proposed that the 
alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative 
image‑based biomarker for survival of invasive ductal carcinoma patients. Specific types of 
collagen alignment have been identified for their prognostic value and now these tumor 
associated collagen signatures (TACS) are central to several clinical specimen imaging 
trials. Here, we implement the semi‑automated acquisition and analysis of this TACS 
candidate biomarker and demonstrate a protocol that will allow consistent scoring to 
be performed throughout large patient cohorts. Methods: Using large field of view high 
resolution microscopy techniques, image processing and supervised learning methods, we 
are able to quantify and score features of collagen fiber alignment with respect to adjacent 
tumor‑stromal boundaries. Results: Our semi‑automated technique produced scores 
that have statistically significant correlation with scores generated by a panel of three 
human observers. In addition, our system generated classification scores that accurately 
predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals 
that TACS positive fibers are more well‑aligned with each other, are of generally lower 
density, and terminate within or near groups of epithelial cells at larger angles of interaction. 
Conclusion: These results demonstrate the utility of a supervised learning protocol for 
streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.
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better treatment than ever before. However, there 
remains a significant group of breast cancer patients 
for whom these new techniques ultimately fail, due 
to several factors including varying patient genotype 
and primary or acquired resistance to drugs such as 
the HER2/neu receptor targeting drug trastuzumab 
(trade name Herceptin).[4] In addition, molecular screens 
are confounded by the high‑degree of intratumor genetic 
diversity and often require extra tissue sections to be cut, 
stained and evaluated on top of the standard hematoxylin 
and eosin (H&E) preparation. New assays that predict 
patient outcome and response to treatment are therefore 
critically needed if we are to continue improving breast 
cancer treatment and prevention. One promising area of 
development is image based assays, which leverage high 
content imaging hardware and image analysis software 
to classify biological samples.[5‑7] In many cases, image 
based analysis does not require more than the standard 
histopathology H&E stained slides prepared as part of the 
normal clinical workflow. In this paper, we demonstrate 
the use of a new image‑based assay for predicting 
patient outcome using information about tumor‑stromal 
interactions from standard H&E stained histopathology 
specimens.

Aberrant tumor‑stromal interactions have been shown 
to accelerate tumorigenesis in breast cancer.[8‑10] The 
importance of stromal collagen in breast cancer is 
highlighted by the link between breast cancer, breast 
density, and the increased deposition of stromal 
collagen.[11‑15] Interestingly, although mammographic 
density, which is attributable to collagen content, is one 
of the largest risk factors for the development of breast 
tumors, there is currently no clinical intervention based 
on mammographic density alone. This is due in part to 
the lack of a clear correlation observed between increased 
mammographic density and patient outcome. Most of 
the work to date[16‑19] has defined mammographic density 
as a etiological factor and not as a prognostic factor. 
Recently, Cil et al.[20] explored mammographic density as 
predictor of local breast cancer recurrence. They reported 
that women with intermediate and high breast density 
had a significantly elevated risk to develop a local breast 
cancer recurrence. However, follow‑up clinical trials 
that incorporate additional risk factors such as obesity 
are needed to examine the possible prognostic value 
of mammographic density in large and diverse patient 
cohorts before using density as a possible clinical target. 
As well recently there has been an effort to investigate 
the underlying contributor to mammographic density, 
focusing on one of the largest components present in 
the dense stroma, collagen. Several studies have shown a 
link between collagen remodeling and the invasion and 
progression of mammary cancer in mouse models.[21‑23] 
Furthermore, there was a link observed between collagen 
morphology, particularly collagen alignment, and breast 

cancer patient outcome.[24] Provenzano et al.[21] first 
introduced the so called tumor associated collagen 
signature (TACS) nomenclature to describe collagen 
alignment patterns. The TACS phenotypes are currently 
classified into three groups. TACS‑1 describes the 
standard desmoplastic response of increased collagen 
deposition surrounding initiating tumor cells. TACS‑2 
is observed as straightened fibers aligned tangentially 
around developing tumors, while TAC‑3 is seen as 
radially aligned fibers that facilitate local invasion.[25] 
Conklin et al.[24] qualitatively searched for these patterns 
in human breast cancer samples and through extensive 
manual analysis found that the presence of the TACS‑3 
alignment phenotype was a prognostic indicator for 
disease free and disease specific survival (DFS and DSS 
respectively) for invasive breast cancer patients. Our 
quantitative study, presented here, computationally 
builds on this previous work by defining an algorithmic 
model for TACS‑3 and applying this model to the same 
cohort of patients.[24]

Previous collagen alignment studies have largely been 
facilitated by the development of second harmonic 
generation (SHG) microscopy techniques, which have 
the ability to capture high contrast images of the 
collagen fiber extracellular matrix without the need for 
exogenous stains.[26‑29] The application of SHG imaging in 
cancer research is growing rapidly. For example, changes 
in the ratio of the forward SHG (FSHG) to backward 
propagating SHG signal have been recently linked to 
breast tumor progression[30] and positive lymph node 
status.[31] SHG directionality was also used by Ajeti et al. 
to quantify the collagen composition in breast cancer 
models,[32] while Ambekar et al. used Fourier transform 
and polarization‑resolved SHG imaging to differentiate 
malignant from benign tissues in breast biopsies.[33]

In addition, many new computational techniques are 
being developed to quantify patterns observed in SHG 
images. For example, a directional gradient method 
developed by Altendorf et al.[34] provides three‑dimensional 
orientation and radius information about fibers in SHG 
images. Due to the fibrous nature of the collagen matrix, 
SHG images are particularly well‑suited for the curvelet 
transform (CT), which is a multiscale, orientation 
sensitive version of the wavelet transform. The CT[35] and 
combined fiber tracking methods[36] have been applied to 
extract fiber orientation, length, curvature and radius from 
SHG images of collagen. One key feature however that is 
missing from all of the available image analysis techniques 
is the ability to incorporate cellular information into 
the analysis. The interaction between tumor cells 
and collagen fibers cannot be fully assessed without 
integration of information about cellular morphology and 
associated collagen morphology. As well this information 
is critical for finding regions of interest (ROI) with 
TACS, an essential task for any type of high‑throughput 
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screening where manual searching is not practical. Herein, 
we describe a computational protocol that achieves this 
goal by integrating information about collagen fibers 
from SHG images with information about cells captured 
through bright field imaging of standard H&E stained 
slides to perform highly automated, prognostic TACS‑3 
scoring.

In order for TACS to become a useful and fully validated 
biomarker, it must be screened for in several large studies 
containing many patients and diverse populations. 
In addition, besides screening in heterogeneous 
populations, it ideally needs to be screened in diverse 
sample types to account for possible subtle differences 
in surgery, pathology or sample preparation that could 
negatively impact sample consistency. This ability to 
rapidly screen in many sample types of large diverse 
populations would also open the door for TACS to be 
explored in other cancer types such as pancreatic and 
renal cancer. Heretofore, there has not been a method 
that automates enough of the process to enable such 
large scale adaptation. In previous studies, collagen fiber 
angles were measured by hand, one at a time, using 
ImageJ ROI marking tools.[21,23] These experiments used 
information gathered a priori or from autofluorescence to 
identify tumor‑stromal boundaries. In addition, imaging 
locations were chosen manually. Conklin et al. manually 
captured each individual image, used bright field images 
to manually identify tumor‑stromal boundaries, and 
manually estimated collagen fiber angles.[24] In each 
of these cases, many subjective decisions were made 

while identifying which areas to image, which fibers to 
measure and what should be considered a tumor‑stromal 
boundary. There has been progress made in automating 
the fiber angle analysis steps of this task.[35‑39] However, 
none of these methods can automate all four steps of 
the TACS analysis process, which are: (1) Image capture, 
(2) Fiber angle measurement, (3) tumor‑stromal boundary 
identification, and (4) relative angle measurement 
between fiber and boundary. In this paper, we use image 
analysis and supervised learning techniques to enable the 
automation of each of these tasks. The block diagram of 
our imaging and analysis protocol is shown in Figure 1. 
Starting with the previously‑imaged invasive breast 
cancer tissue microarray (TMA), we captured registered, 
whole‑slide SHG and bright field images, extracted 
fibers from the SHG images, identified tumor‑stromal 
boundaries from the bright field images, and measured 
relative angles, all in a scripted pipelined process that 
requires little human intervention. We believe that this 
method will allow significantly larger scale studies to be 
performed in order to validate TACS‑3 as a prognostic 
biomarker in breast cancer and potentially other cancer 
types, and to investigate if TACS‑3 can be used to predict 
patient response to targeted therapies.

METHODS

Human Breast Carcinoma Tissue Microarray
The TMA used here was the same as that used by 
Conklin et al.[24] for the manual collagen alignment 

Figure 1: Block diagram of the tumor associated collagen signatures scoring system. The red steps are performed with WiscScan, the 
blue steps are performed with ImageJ/FIJI, and the green steps are performed with MATLAB based tools. The left side shows the steps 
performed on the second harmonic generation images, while the right side shows the steps performed on the bright field images. The 
middle column combines information from both modalities
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analysis. The clinical profiles of all patients whose 
tissue was included in this TMA have been described 
in a previous study.[39] All tissue and patient information 
used in this study were acquired following Institutional 
Review Board approval. Tumor tissues from 353 patients 
diagnosed with invasive carcinoma were resected by the 
same surgeon between 1981 and 1995. Pieces of each 
resected tumor were embedded in paraffin according to 
standard histopathology protocols. After tumors smaller 
than 5 mm and severely damaged samples were excluded, 
196 patients remained for analysis. Sections of 4 μm 
thickness were cut from archived TMA blocks containing 
1.0 mm diameter tissue cores, placed on glass slides, 
stained with H&E and mounted under a glass coverslip. 
Patients were followed for a median of 6.2 years, ranging 
from 1 month to 18.6 years.

Imaging System
All samples in this study were imaged with the custom 
built integrated FSHG/bright field imaging system 
shown in Figure 2. A MIRA 900 Ti: Sapphire laser 
(Coherent, Santa Clara, CA) tuned to 780 nm, with a 
pulse length of approximately 100 fs, was directed through 
a Pockel’s cell ( ConOptics, Danbury, CT, USA), half 
and quarter waveplates (ThorLabs, Newton, NJ, USA), 
beam expander (ThorLabs), a 3 mm galvanometer 
driven mirror pair (Cambridge, Bedford, MA), a 
scan/tube lens pair (ThorLabs), through a dichroic 
beam splitter (Semrock, Rochester, NY) and focused 
by a 20X/0.75NA objective (Nikon, Melville, NY). 
SHG light was collected in the forward direction with 
a 0.54 NA condenser (ThorLabs) and filtered with an 
interference filter centered at 390 nm with a full width 
at half maximum bandwidth of 22.4 nm (Semrock). 

The back aperture of the condenser lens was imaged 
onto the 5 mm aperture of a 7422‑40P photomultiplier 
tube (Hamamatsu, Hamamatsu, Japan) the signal 
from which was amplified with a C7319 integrating 
amplifier (Hamamatsu) and sampled with an analog 
to digital converter (Innovative Integration, Simi 
Valley, CA). Timing between the galvo scanners, signal 
acquisition, and motorized stage positioning was achieved 
using our custom software called WiscScan.[41] The 
Rapid Automated Modular Microscope system (Applied 
Scientific Instrumentation, Eugene, OR) served as our 
microscope base and we used ASI motorized translation 
stages for x, y, and z motion control. The SHG light 
source was verified to be circularly polarized at the 
sample using the protocol of Chen et al.[29] SHG images 
were captured as stacks of three images spaced 3 μm 
apart, then z‑projected to improve field flatness. Bright 
field images were captured with the same system using a 
MCWHL2 white LED lamp (ThorLabs) set up for Kohler 
illumination. White light from this lamp was separated 
from SHG light traveling through the condenser assembly 
using a short pass dichroic mirror with a cutoff at 
670 nm (Semrock). An RGB camera (QImaging, Surrey, 
BC, Canada) was used to capture bright field images 
through WiscScan to allow for acquisition within a single 
application. Both SHG and white light images were 
tiled with 10% overlap using automation provided by 
WiscScan. Stage positions for individual images and pixel 
size data were stored in Bio‑Formats image metadata[42] 
and this was then used by the grid/collection stitching 
ImageJ plugin[43] to reassemble a high‑resolution large 
field of view image of the entire TMA. When capturing 
large field of view images, the sample plane often 

Figure 2: Photo of imaging system (a) and optical block diagram panel (b). PMT = Photomultiplier tube, QCam = QImaging RGB camera, 
LED = Bright field lamp, DBS = Dichroic beamsplitter, TL = Tube lens, CL = Condenser lens, L = Lens, M = Mirror, BE = Beam expander, 
Z = Z‑direction translation, XY = xy translation, XYG = xy galvonometer driven mirrors, PC = Pockel’s cell, RAMM = Rapid Automated 
Modular Microscope (ASI), λ2, λ4 = half and quarter waveplates
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walks out of the in‑focus imaging plane as the stage is 
translated over large distances in x or y. We alleviated this 
issue using the Continuous Reflection Interface Sampling 
and Positioning autofocus system (Applied Scientific 
Instrumentation), which maintained an accurate distance 
between the coverslip and the objective throughout 
the whole slide stitched image capture. This allowed 
for a single bright field image to be captured at each 
location rather than a z‑stack, improving capture speed, 
reconstruction speed, and reducing production of 
unnecessary data. After SHG and white light images were 
captured and stitched, the two modalities were manually 
registered with the landmark correspondences ImageJ 
plugin using five control points per image. The image of 
the entire TMA was registered in a single step, and then 
each individual TMA core was cropped out of the full 
TMA image, producing 196 images. The resulting TMA 
core images were each 2048 × 2048 pixels, consisting 
of four eight‑bit channels. The first three channels 
represented the red, green and blue planes of the white 
light image, while the fourth channel contained the SHG 
information.

Tumor Associated Collagen Signatures‑3 Model
Our TACS‑3 model was based on previously published 
observations relating collagen structure to breast cancer 
progression and survival. In these studies, the first step 
in the TACS‑3 scoring process was the identification of 
groups of straightened, aligned collagen fibers. The second 
step was to determine if those fibers terminate at or near 
regions of epithelial cells at steep angles. If a fiber met 
both of these criteria, then it was considered TACS‑3 
positive. If one or more TACS‑3 positive fibers were found 
in a sub‑region of an image, then that region was scored 
TACS‑3 positive. The number of regions with TACS‑3 
positive scores was then used to score the entire image. 
There were many details in these steps and defining 
parameters to account for each step would have produced 
a potentially fragile model. Instead, we have implemented 
a supervised learning approach that allows the data to 
most appropriately define the model. We performed this 
task computationally using a series of cascaded classifiers. 
The first classifier was trained to find epithelial regions in 
the images using a small training set of annotated ROIs. 
The resultant epithelial cell model was then used to 
segment epithelial cell regions within the entire cohort of 
images. Features describing the epithelial regions were then 
combined with features derived from our fiber extraction 
algorithm and were fed into a second classifier, which 
was trained to score each image as being TACS‑3 positive 
or negative based on a training set of annotated images. 
TACS‑3 scores were then fed into a cox proportional 
hazard model to regress to censored survival data.

Our entire image cohort can be represented by a set S of 
registered SHG and bright field (RGB) images. 
Each image I u , g Î Si ( )



 was composed of pixels 
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which mapped each pixel to a quartet of intensity values 
corresponding to the R, G, B, and SHG intensity channels 
of the image. The first step of our protocol involved the 
extraction of collagen fiber objects from the SHG channel. 
Next, epithelial cell clusters were segmented from the R, 
G, and B channels. Each fiber from the first step was then 
associated with epithelial cell clusters from the second 
step to create a feature set for each fiber. Average feature 
values for all fibers in the image were then used to classify 
images based on a training set of images.

Fiber Extraction
We applied a technique called CT‑FIRE[36] to the SHG 
images to enhance, trace and extract a network of 
collagen fibers for each SHG image I u gshg( , )



. CT‑FIRE 
combines the advantage of the CT[44] for denoising the 
image and enhancing the fiber ridge features with the 
advantage of a fiber tracing algorithm[45] for automatic 
fiber extraction, being capable of extracting fiber 
geometric information such as length, angle, width, and 
curvature of each fiber. We applied the fast discrete 
CT (FDCT) to capture a collection of coefficients CD in 
curvelet space, which are defined as the inner product of 
the input SHG image channel with each of the curvelet 
basis functions.
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 is the digital curvelet waveform and jkl 
represent the scale, orientation, and location indices, 
respectively. We used the open source 
FDCT  MATLAB (The Mathworks, Natick, MA, USA)[44] 
library and specifically the “wrapping” version of the 
FDCT due to its simplicity. To denoise the image, we set 
all curvelet coefficients to zero that fall below a user 
defined threshold T as shown below
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This threshold was determined empirically on a small 
subset of SHG images to determine the appropriate level 
of noise reduction. The inverse FDCT was then applied 
to reconstruct an edge enhanced, noise reduced version 
of the SHG image. After reconstruction, CT‑FIRE 
traced fibers, using the method of Stein et al.,[45] by 
first finding local maxima in the result of the smoothed 
distance transform. The distance transform computed 
the distance from each foreground pixel to the nearest 
background pixel. Fiber branches were formed by creating 
regions surrounding each local maxima, the size of which 
were defined by the result of the distance transform at 
the location of the local maximum point. The edges of 
this region were then searched for further local maxima. 
This process was repeated until no new local maxima 
were found indicating the end of a fiber branch. Short 
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branches were then pruned from the network and closely 
spaced, similarly oriented fibers were merged. Fiber width  
(FW) was quantified for each extracted fiber by averaging 
the fiber widths (2Ri) at n points that were used to form 
the fiber

FW
n

Ri
i

n

=
=
∑1 2
1

Where  Ri is the fiber radius at the ith point, estimated by 
the result of the distance transform at that location. Fiber 
straightness (FS) was quantified for each extracted fiber by 
dividing the distance between the end points of the fiber 
(dn) by the distance along the path of the fiber (d0).

FS
d
d
n=
0

Thus for perfectly straight fibers FS=1.0 and wavy fibers 
FS<1.0. After fiber objects have been extracted from 
each of the images, we next segment epithelial cell 
regions.

Epithelial Cell Segmentation
The TACS‑3 phenotype consists of straightened aligned 
collagen fibers that terminate near regions of epithelial 
cells such that the angles of the collagen fibers appear 
perpendicular to the epithelial stromal boundary. Detecting 
this TACS‑3 phenotype requires knowledge of the locations 
of epithelial cells within the sample. We must then identify 
regions of epithelial cell clusters and identify a boundary 
between the epithelial cells and surrounding stroma. This 
task was performed in two steps outlined here. Step 1 
used the Trainable Weka Segmentation ImageJ plugin[46] 
to find epithelial cell nuclei and step 2 applied a cascaded 
matched filter, threshold operation to identify clusters and 
boundaries. The details of these steps are given below.

For step 1, a training set of 15 cropped 256 × 256 pixel 
images denoted as t u g Si t( , )

���
∈  was created that contains 

representative features from five classes: Epithelial cell 
nuclei, other cell nuclei (including lymphocytes and 
fibroblasts), cytoplasm, collagen, and background. 
A further subgroup of pixels within the training images 
u ua t

��� ���
∈  were annotated as belonging to each class 

w u kk a( ), ( ,..., )
���

∈1 5 . A feature vector p u gi t( , )
���

 was 
computed for each pixel and each channel of the training 
image where i∈(1....d) was the feature index and d was 
the dimensionality of the feature subspace. The feature 
set we used is listed in Table 1 and incorporates features 
at five scales for a total of 80 feature planes for each 
image channel. The detailed implementations for each of 
these features are given in the online documentation for 
the Weka Segmentation plugin.[47] We then used a 
multithreaded implementation of the random forests 
classifier[48,49] with a forest of 200 trees and two random 
features per node to build a model based on ua

���
 and wk. 

The trained model was then applied to every pixel u


 in 
the cohort producing a probability map for each class and 
each image using a scripted version of the plugin.

For the second step in the segmentation process, the 
epithelial class probability map was filtered with a Gaussian 
filter matched to the average width of the epithelial cell 
nuclei (three microns) and thresholded such that the 
top 80% of resulting pixels were retained. The resulting 
image was then filtered with a Gaussian filter matched to 
the width of the average sized epithelial cell cluster (25 
microns), then finally thresholded such that, again, the top 
80% of resulting pixels were retained. Following the final 
threshold step, regions smaller than 50 pixels in area were 
discarded and a mask was generated with epithelial cell 
clusters in the foreground and all else in the background. 
Epithelial mask pixels are represented here as ei while 
epithelial region boundary pixels were created using an 
eight‑connected neighborhood and are denoted as bi.

Mask images were saved as tiff files and read, along 
with the extracted fiber data, into the custom, open 
source  CurveAlign software, described more below, for 
fiber/epithelial region feature extraction. Outlines of the 
resulting mask files were overlaid onto the original white 
light images to qualitatively validate the segmentation 
accuracy of the applied epithelial region model.

Combined Fiber‑Epithelial Features and Fiber 
Classification
In the sections above, we described our methods for 
epithelial cluster segmentation and collagen fiber 
extraction. With these two pieces of information, we 
associated fibers with epithelial cell clusters and measured 
the interaction between the two using the features 
described here. This task was performed by an open 
source, MATLAB based tool called CurveAlign.[35] This 
tool started by reading in a fiber database file (generated 

Table 1: Features used in epithelial cell segmentation 
and TACS‑3 fiber classification tasks

Task Feature 
description

Total number 
of features

Epithelial cell 
classification

Gaussian blur 5
Sobel filter 5
Hessian 40
Difference of Gaussians 24
Membrane projections 6

TACS‑3 fiber 
classification

Fiber curvature 1
Fiber width 1
Fiber length 2
Fiber density 9
Fiber alignment 9
Epithelial proximity 3
Relative epithelial angle 2

TACS: Tumor associated collagen signatures
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by CT‑FIRE) and an epithelial mask file (generated by 
our epithelial segmentation script). A feature vector 
pi was then built for each fiber endpoint vi∈R2 in the 
image. The feature vector was populated directly with 
features derived above in the fiber extraction section 
including fiber length, curvature, radius and grey level. 
Both endpoints were given the same values for these 
single fiber derived features. The rest of the features 
were unique to each fiber end point. All features used 
in TACS‑3 fiber classification are listed in Table 1. Many 
of the features in this section rely heavily on the nearest 
neighbor search routine which is formulated here as

ϕ ρn
X DX Q X Q( , ) ( , )argmin= ∈

Where D X Xn={ }1,...,  is a set of vectors in R2,Q is a query 
vector, ρ(X,Q) is the Euclidean norm X Q−

2
, and the 

result ϕn(X,Q) is a vector of n points in X that are nearest 
to each point in Q. Given a collection of points on a 
two‑dimensional plane, if we select a query point, this 
algorithm will return the nearest neighbors within our 
collection of points. For example, a fiber end point can be 
used as the query point and we can use this algorithm to 
search for the nearest point in the list of epithelial cell 
boundary points, as described below. In addition, some of 
the features compute a metric for alignment using vector 
addition according to the following algorithm

s q( ) ( )Q
1
n

iX = åexp ´2
X

 

where θ∈{0,...,π} is a vector of orientations associated 
with the vector of n positions in X. The factor of two is 
included since we used fiber orientations supported from 
0toπ rather than full 0to2π oriented direction vectors. 
In words, the alignment metric is calculated as the 
normalized vector sum of orientation vectors. The larger 
the vector sum, the more aligned the group of fibers. 
On the other hand, if the vector sum is small, then the 
group of fibers is more randomly oriented. Fiber density 
features were computed as the average distance from the 
current fiber endpoint to the n =2, 4, 8, and 16 nearest 
neighbors. The density features for fiber endpoint v are 
therefore given by:

fd
n

v v vn v j
n

j
i j, ( ( , ))= −∑1 ρ ϑ

If fiber density is higher, then this result will be lower, 
since it is measuring the average distance between fibers. 
Fiber alignment features were computed as the absolute 
values of the vector sum of the nearest neighbor fiber 
endpoints and are given by fan v v vj

n
i v

, (
([ , ])

, )
=σ θ θ

ϑ
 for fiber 

endpoint . In the equation for fan,v,[.,.]  indicates vector 
concatenation and n =2, 4, 8, and 16. Features that 
incorporate epithelial cell information included distance to 
nearest epithelial mask point dev=ρ(v–ϕ1(ei,v)) and 
distance to nearest epithelial region boundary  

dbv=ρ(v–ϕ1(bi,v)). These features had the same value if 
the fiber end point was outside an epithelial cell region; 
however, they were different if the end point was colocal 
with an epithelial region. Next, we extracted relative angle 
features. Angle with respect to nearest epithelial region 
boundary point was computed as abv v bi v

=σ θ θϕ([ , ])( , )
, and 

angle with respect to nearest “extension boundary 
intersection point” was given by aev

r
v l vi

r=σ θ θ
ϕ

([ , ])
( , )

, 
where the set of points in lr was computed by taking the 
intersection of all epithelial boundary points bi and a line 
of length 2r extending from the fiber endpoint at an angle 
θ and is formulated below

lr=bi∩bres(v–q,v+q)

where bres indicates a modified Bresenham algorithm[50] 
which is used to find all pixels along a line between two 
points. The term q=[r exp(θv)] is the offset from v in the x 
and y directions. For this last feature, three values of r (50, 
100 and 200 μm) were calculated. These three lengths 
corresponded to 5, 10, and 20 times the diameter of a 
typical epithelial cell and were selected based on estimates 
of intercellular signaling distances.[51] If no intersection was 
found, then the aev

r  feature value was set to zero. The 
angle of the tumor stromal boundary line θ

ϕ( , )l vi
r  was 

estimated by fitting a quadratic to nine contiguous points 
on the boundary surrounding the intersection point (or 
nearest boundary point in the previous feature) and 
computing the tangent angle of the line fit at the midpoint. 
The steps in the process of relative angle feature extraction 
are diagrammed in Figure 3.

Each of these fiber level features pi were calculated 
for every fiber endpoint viin the cohort. Fiber level 

Figure 3: Integrated fiber angle and epithelial boundary feature 
algorithms. Panel A shows a single fiber (green) and epithelial 
region boundary (red) with one highlighted fiber endpoint.  Zoomed 
versions of panel a are shown in panels b, c and d where individual 
image pixels are represented as filled circles. The nearest distance 
from   to the boundary is indicated in panel B, intersection between 
the endpoint extension line and the boundary is shown in panel C 
and the quadratic curve fit to the boundary at the intersection 
point and tangent line are shown in panel D

dc

ba
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features were then averaged among all fibers in a given 
image and training was performed with a subset of 16 
images It∈Ii that had been manually annotated as being 
TACS‑3 positive or negative. A linear support vector 
machine (SVM) was used to build a model, which was 
then applied to all 196 images in the cohort for classifying 
each image as being TACS‑3 positive or negative.

Classification and Survival Analysis
The TACS‑3 scores were correlated with DFS and DSS data 
using the Cox‑proportional‑hazards regression method.[52] 
DFS was defined as the time from date of diagnosis to 
the first date of recurrence and DSS was defined as the 
time from diagnosis to death from breast cancer or date 
of last follow‑up evaluation. In both cases, all other events 
were censored. The Kaplan‑Meier method was used to 
compare DFS and DSS between TACS‑3 negative and 
TACS‑3 positive patients. Hazard ratios were computed 
using a log‑rank test. Correlations between manual and 

computationally generated TACS‑3 scores were made 
using the Pearson’s linear correlation coefficient.

RESULTS

Registered SHG and bright field images of a subsample of 
the TMA are shown in Figure 4 along with two zoomed 
versions of regions within the image. SHG information is 
added as an alpha channel on top of the raw RGB bright 
field image and pseudo colored yellow. The fully zoomed 
panel shows the detail available in the full resolution 
images captured with the 20X, 0.75 NA lens and shows a 
region with a positive TACS‑3 signature. A collection of 
three more TACS‑3 positive and three TACS‑3 negative 
regions were cropped out of the TMA images and shown 
in Figure 5. These images illustrate the features that are 
common to the TACS‑3 signature including straightened, 
aligned fibers terminating in or near regions of epithelial 
cells at near perpendicular angles with respect to the 
epithelial region border. In addition, the TACS‑3 negative 
cases show wavy fibers, fibers that terminate at adipose 
tissue, and a curved fiber encapsulating an epithelial cell 
cluster [Figure 5d‑f, respectively].

A sample of our fiber extraction and epithelial region 
segmentation results are shown in Figures 6 and 7, 
respectively. In both cases, epithelial region segmentation 
and fiber extraction were observed to accurately represent 
the data. The orientations of the epithelial cell region 
boundaries were compared to collagen fiber angles derived 
from the results of a fiber object extraction algorithm 
CT‑FIRE which has been shown to perform well in 

Figure 5: Examples of tumor associated collagen signatures (TACS‑3) positive and negative regions within our cohort of breast cancer 
samples. Collagen fibers (yellow) registered and overlaid onto bright field images of an H&E stained tissues. These images illustrate the 
features of the TACS‑3 signature (green arrows, top row), particularly, straightened aligned collagen fibers that terminate at steep angles 
relative to epithelial region boundaries (a‑c). Three TACS‑3 negative cases are shown for comparison (red arrows, bottom row), where 
collagen fibers are wavy (d), terminate at adipose tissue (e), and wrap around epithelium (f) scale bar = 25 μm

d

cb

f

a

e

Figure 4: The forward second harmonic generation image was 
overlaid upon the bright field image for an entire H&E stained 
tissue microarray slide. Scale bar = 25 μm
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comparison to other techniques.[36] A representative sample 
of the results produced by this algorithm are shown in 
Figure 6. The intermediate product after the CT denoising 
step is shown in Figure 6a, while the extracted fiber 
network is shown overlaid on the original SHG image 
as shown in Figure 6b. Although some fibers are over‑or 
under‑segmented (annotated by green arrows), most of the 
extracted fibers properly represent the data. Figure 7 clearly 
demonstrates the ability of our epithelial cell segmentation 
algorithm to properly classify many of the regions of 
epithelial cells as positive. However, a few small regions of 
stromal fibroblasts and endothelial cells are included in the 
epithelial cell regions (annotated by green arrows). Although 
these errors occurred occasionally throughout the cohort, the 
noise they generated did not overcome the TACS‑3 signal. 
Another feature evident in Figure 7d is the smoothness of 
the epithelial region boundaries. The boundary smoothness 
was dependent on the selection of our filter widths and 
binary mask thresholds. These parameters were selected to 
accurately represent the boundary orientation at the spatial 
scale of the epithelial cell regions.

Although correlation with survival is our ultimate goal, 
automated TACS‑3 scores should also correlate with 
manual scores for each of the images. The Pearson 
linear correlation coefficient was used to determine this 
correlation, the results of which are tabulated in Table 2. 
The manual analysis performed by Conklin et al. produced 
three scores. Score 1 was the number of TACS‑3 positive 
regions divided by the total number of regions analyzed, 
score 2 was the average number of TACS‑3 positive votes 
per region among three observers, and score 3 indicated 
if one or more region received a TACS‑3 positive rating. 
Table 2 shows positive correlation between all manual 
scoring methods and our computational scoring system 
presented here, with the highest correlation observed to 
be with manual score 2.

The Kaplan‑Meier curves in Figure 8 demonstrate the 
prognostic potential of our TACS‑3 scoring system. 
TACS‑3 negative patients showed significantly better 
disease‑free and disease‑specific survival compared to 
TACS‑3 positive patients. In addition, Cox proportional 
hazard regression showed significant correlation 
between our computationally generated TACS‑3 scores 
and survival as listed in Table 3. We also correlated 
scores created by individual fiber feature metrics with 

Table 2: Correlation between manual and 
supervised learning approaches

Scoring method Correlation coefficient P value

Manual score 1 0.295 2.7E‑5
Manual score 2 0.311 0.9E‑5
Manual score 3 0.271 1.2E‑5

There is statistically significant positive correlation between the supervised learning 
approach and all manual scoring approaches

Figure 8: KM curves for disease free survival and disease specific 
survival showing the prognostic classification produced by our 
supervised learning based tumor associated collagen signatures‑3 
scoring approach

Figure 6: Sample fiber extraction results. The resulting image after 
curvelet denoising (a) shows likely fiber pixels in white and likely 
background pixels in grey. The extracted fiber network is overlaid 
on the original second harmonic generation image (b) with many 
appropriate segmentations and a few under‑and over‑segmentations 
(green arrows). Scale bar = 50 μm

ba

Figure 7: Sample epithelial cell segmentation results. The raw 
probability map produced by the trainable Weka Segmentation 
ImageJ plugin (a) is filtered to estimate epithelial cluster density 
(b) and thresholded (c) to produce epithelial region boundaries 
which are overlaid onto original bright field images to validate the 
segmentation (d) scale bar = 100 μm

dc
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survival. Although fiber features alone were correlated 
with survival, the highest correlation was observed 
when the TACS‑3 scores were composed of multiple 
integrated fiber/epithelial features. This result shows 
that a multimodality imaging and analysis approach that 
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combines features of not only collagen fibers, but both 
collagen fibers and cellular structures is most likely to 
succeed in predicting survival.

Table 4 lists the 14 most informative features in the 
TACS‑3 scoring process ranked according to their weight 
produced by the linear SVM algorithm. The SVM weight 
was used to assess, which features were more or less 
informative in the classification. Of particular interest 
are the features labeled as “nearest distance to boundary” 
and “inside epithelial region”. These features indicate 
the proximity between fibers and epithelial cell regions 
and were highly important in the TACS‑3 classification. 
In addition, the difference in mean feature scores  
df=fp– fn for the training set is shown in Table 4 for each 
of the ranked features. If df is >0, then the TACS‑3 
positive images had larger values for those features and 
if df is < 0, then the TACS‑3 negative images had larger 
values. For example, the density features resulted in 

lower df values in the TACS‑3 positive cases indicating 
that the TACS‑3 positive images had lower density 
collagen fibers. On the other hand, df was positive for 
the alignment features indicating that TACS‑3 positive 
images tended to have more aligned fibers. Interestingly, 
relative boundary angle was not as highly informative as 
many other features; however, still was ranked within the 
top 14 of 27 features.

DISCUSSION AND CONCLUSIONS

The search for new prognostic and predictive breast 
cancer biomarkers is motivated by the need to improve 
patient outcome. A significant number of patients present 
with none of the currently available markers. In addition, 
survival and treatment response is often heterogeneous 
among patients within current biomarker classifications. 
The discovery and validation of new biomarkers will help 
to further improve breast cancer diagnosis and treatment 
planning. These new biomarkers need to be quantifiable, 
scalable and ideally correlate with both disease outcome 
and treatment specific response. The candidate biomarker 
we are focused on in this study (TACS‑3) measures 
collagen alignment relative to tumor‑stromal boundaries 
and has been associated with progression in mouse 
models and has been shown to predict disease recurrence 
and survival in human patients. Here, we demonstrate a 
protocol for using large field of view imaging techniques, 
image analysis and supervised learning to automate and 
quantify all of the steps in the process of TACS‑3 scoring. 
These advances provide the tools for increasing the scale 
of TACS‑3 investigations and applying TACS‑3 scoring to 
cancers in other tissues such as ovarian[53] and pancreatic 
cancer[54,55] where collagen fiber characteristics are predicted 
to correlate with prognosis. These techniques could also be 
used to characterize other TACS both current and yet to 
be identified to see if they have research value in animal 
models or prognostic value in clinical specimens.

Tumor associated collagen signatures (TACS) analysis 
requires the simultaneous analysis of information about 
epithelial cells and extracellular collagen. The interactions 
between collagen and cells can only be assessed 
computationally if the cellular information is carefully 
registered with images of the collagen. We have therefore 
optimized our imaging system for highly automated 
capture of large fields of view, registered SHG and bright 
field images of stained microscope slides with the purpose 
of analyzing collagen angle with respect to cell cluster 
boundaries. For this paper, we originally planned to use the 
same SHG and bright field images captured by Conklin 
et al.[24] since these were already manually annotated. 
Unfortunately, these images contained artifacts, which, 
although trivial for the human visual perception system to 
overcome, were extremely difficult for our computational 
systems to handle effectively. For example, SHG images 

Table 3: Univariate Cox proportional hazard 
analysis results for various feature combinations

Feature type DFS DSS

Hazard ratio P value Hazard ratio P value

Fiber curvature 1.432 0.179 1.657 0.077
Fiber density 2.195 0.003 1.831 0.032
Fiber alignment 1.958 0.011 1.588 0.100
TACS‑3 score 2.588 0.002 2.250 0.008

The TACS‑3 scoring method that includes both fiber and cellular information 
produces the more significantly prognostic scores compared to fiber information 
alone. TACS: Tumor associated collagen signatures, DFS: Disease free survival, 
DSS: Disease specific survival

Table 4: Feature ranking based on SVM feature 
weight for a 16 patient (8 TACS‑3 positive and 
8 TACS‑3 negative) training set including the 
average feature value difference between the 
positive and negative training cases fp-fn

Feature description w fp-fn

Standard nearest align 0.716 −0.004
Nearest distance to bound 0.491 −0.086
Inside epithelial region 0.393 0.572
Standard nearest distance 0.348 0.211
Mean nearest distance 0.238 0.188
Curvature 0.219 0.010
Box density 128 0.190 −0.311
Width 0.183 −0.050
Box alignment 64 0.155 0.136
Box alignment 32 0.150 0.079
Box alignment 128 0.111 0.145
Box density 64 0.109 −0.249
Nearest relative boundary angle 0.087 0.004
Total length 0.079 0.004

SVM: Support vector machine, TACS: Tumor associated collagen signatures. These values 
show the trend of the feature values between TACS‑3 positive and TACS‑3 negative
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were originally captured in the backwards direction with 
elliptically polarized light, causing two artifacts. The first 
was simply a low signal to noise level due to few SHG 
photons traveling in the backward direction from the thin 
tissue sections.[56,57] The second artifact was observed as 
a larger relative SHG signal from fibers in the direction 
parallel to the long axis of the laser polarization ellipse.[58] 
Artifacts in the bright field images included significant 
vignetting at field edges and low signal to noise due to 
short exposure times. These artifacts were easily hurdled 
by the human observers making TACS‑3 assessments in 
a previous study.[24] However, they are particularly difficult 
to handle by a computer vision based approach. We 
therefore decided to develop an optimized imaging system 
and protocol that would fix many of these artifacts and 
allow for more consistent automated imaging. Similar 
image quality and consistency can be achieved with other 
SHG microscopes including commercial systems with 
the appropriate hardware, but our analysis protocol did 
identify a necessary rigorous acquisition protocol that is 
best achieved with our new automated SHG microscope. 
In general, the system should allow for FSHG and bright 
field imaging with a field of view as large and flat as 
possible, numerical aperture of at least 0.75, automated 
xyz motion control with appropriate position logging, 
circular polarization at the sample for SHG imaging, 
autofocus and automated switching between SHG and 
bright field imaging.

Our system of imaging and analysis to produce 
prognostic TACS‑3 scores uses standard histopathology 
H and E slide preparations. The technique is therefore 
completely compatible with routine clinical protocols 
and is intended to augment currently available diagnostic 
tests. The current process requires no changes to current 
clinical protocol and the sample is returned to the 
clinician unmodified. We present a system that uses 
SHG imaging to capture collagen fiber images; however, 
wide field polarization sensitive techniques[59] such as 
LC‑PolScope[60] or Picrosirius red staining[61,62] might be 
used to alternatively capture images of collagen fibers. 
One advantage of using SHG is that it does not require 
additional stains and can capture three‑dimensional 
fiber information in thick, unstained tissue samples. 
Unfortunately, when imaging in thick unstained tissue, 
the identification of epithelial regions can be difficult; 
however, techniques using autofluoresence and fluorescent 
lifetime imaging have been shown to be capable of this 
task.[63,64] As implemented here, our TACS‑3 scoring 
algorithm is necessarily two‑dimensional, since we are 
relying on H&E stained slides for our epithelial cell 
information. However, fiber extraction, epithelial region 
segmentation and relative angle measurements can 
be extended to three‑dimensions without significant 
alteration of our general protocol. In addition, although 
our current TACS‑3 scoring protocol is able to process 

standard H&E stains, staining for epithelial cells, with, for 
example, pan‑cytokeratin conjugated stains, may simplify 
and improve epithelial cell segmentation. Future methods 
may also be adapted to segment clusters of fibroblasts, 
macrophages and other stromal cells, whose proximity 
and relative morphological structure with respect 
to surrounding collagen fibers may further improve 
correlation with survival or metastatic potential.

Collagen alignment related image features are interesting 
not only because they have been shown to be prognostic, 
but because they have been shown to be directly linked to 
cancer biology. Researchers have found that cells are more 
likely to invade along parallel, aligned collagen fibers,[25,65] 
features that are directly being measured by our system. 
Access to the breadth of fiber data available with our 
techniques could lead to advances in our understanding 
of these biological phenomena. Relevant feature sets are 
not always available with other machine vision systems 
developed for biological image classification. For example, 
although WNDCHRM[5] is an extremely powerful image 
classification tool, informative image features often do 
not relate to the biology at hand. In the case of our 
TACS‑3 analysis system, biological observations have 
driven the image analysis model; therefore, features are 
more easily linked back to biological functions potentially 
revealing new insights.

High mammographic density is one of the largest risk 
factors for the development of breast cancer and has 
been associated with increased epithelial cellularity 
and increased collagen density.[12,14,19] Increased collagen 
density has been observed to promote tumor progression 
in a mouse tumor model[23] and in node positive breast 
cancer[31] leading one to potentially conclude that 
collagen density causes elevated risk. However, Maller 
et al.[66] observed that high density, nonfibrillar collagen 
protected against tumor progression and alternatively, 
that linearized collagen fibers induced invasive cellular 
behavior. In agreement with these recent findings, we 
observe here that TACS‑3 fibers are more commonly 
present in regions of lower fiber density and are more 
likely to be thinner, more linearized fibers. Thick, 
curvy, and denser collagen fibers are unlikely to contain 
TACS‑3 fibers and are observed to be associated with 
a better prognosis. These observations support the 
hypothesis that collagen fiber shape and organization is 
a key aspect of the invasive extracellular matrix (ECM) 
phenotype.

The imaging instrumentation presented here consists of 
a relatively compact and highly automated multiphoton 
microscope with an integrated bright field slide 
scanner. The system has been optimized to capture 
registered whole slide images of both bright field and 
SHG images of histopathology slides by imaging each 
small × 20 field of view and automatically aligning and 
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stitching each image together. Capturing large fields 
of view in this manner allows for a more thorough and 
consistent data collection potentially reducing sampling 
bias and supporting pipelined computational image 
analysis. The registration of cellular with extracellular 
collagen information provided by our system allows 
for the quantitative analysis of key relative structural 
features between collagen fibers and cancer cell clusters. 
In addition to SHG, our multiphoton system is capable 
of imaging other endogenous fluorophores such as 
nicotinamide adenine dinucleotide (NADH) or flavin 
adenine dinucleotide (FAD) as well as any of the routine 
exogenous multiphoton probes used to stain tissue.

CONCLUSION

We present an imaging and analysis protocol that uses 
high content imaging techniques coupled with supervised 
learning to perform semi‑automated TACS‑3 scoring of 
slide mounted biopsy samples. We apply our technique 
to a previously annotated TMA containing tissue from 
207 patients with invasive breast cancer. The resulting 
scores are shown to positively correlate with manual 
annotations and to predict patient outcome with good 
statistical significance. Future work will attempt to 
validate this technique on larger cohorts of breast cancer 
patients, to study ECM targeted drug responses in animal 
models, and to study collagen alignment in other cancers. 
As well, future work will focus on improving the clinical 
application of these techniques so they can be run by 
untrained clinical personnel and be run at the time of 
acquisition to find ROIs and TACS within those regions 
automatically. Together with more automation, TACS 
screening has great potential as a clinical diagnostic tool 
that can provide relevant prognostic information from 
large numbers of tissue samples.
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