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Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on
𝛽-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic
control and residual 𝛽-cell function in type 1 diabetes (T1D). As gene expressionmay represent an intermediate phenotype between
genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally
regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate
genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to
proinflammatory cytokines (IL-1𝛽 + IFN𝛾 + TNF𝛼) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each
locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed
T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and
gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a
common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited
for optimizing treatment.

1. Introduction

In type 1 diabetes (T1D) the pancreatic 𝛽-cells are destroyed
by the immune system in a process involving the proin-
flammatory cytokines interleukin-1-𝛽 (IL-1𝛽), interferon-
𝛾 (IFN𝛾), and tumor necrosis factor-𝛼 (TNF𝛼) released
from antigen-presenting cells and T-cells [1, 2]. Genome-
wide association scans (GWAS) have identified more than
40 genomic regions that are associated with T1D risk [3]
(http://www.t1dbase.org). Many of the GWAS candidate
genes have annotated immune-cell functions and most of the

genetic risk variants have therefore been suggested to mod-
ulate immune-regulatory pathways [4, 5]. However, recent
studies have highlighted that a significant proportion of the
candidate genes are also expressed in human islets suggesting
functional effects in𝛽-cells [6–8] and possibly involvement in
inflammation- and immune-mediated 𝛽-cell killing mecha-
nisms thereby potentially affecting disease progression after
clinical onset [9]. As most variants identified through GWAS
contribute to only modest effects to disease risk, it is likely
that a combination of variants will better capture effects of
clinical relevance. In T1D, very few studies have analyzed
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the impact of multiple variants on disease prediction and
progression [10–12], although candidate gene-focused studies
have demonstrated association with parameters of disease
progression [13–16].

In the current study, we aimed at investigating whether a
combined genetic risk score of T1D risk variants can predict
glycemic control and residual 𝛽-cell function as assessed by
HbA1c and insulin dose-adjusted HbA1c (IDAA1c) during
disease progression in children with newly diagnosed T1D.
We exclusively included SNPs for candidate genes expressed
and transcriptionally regulated by cytokines in the target
tissue of T1D, that is, human islets, as we hypothesized that
these qualify as the most directly involved predictors.

2. Research Design and Methods

2.1. Expression Profiling of Candidate Genes in Human Islets.
Human pancreatic islet preparations from nine nondiabetic
donors (aged 8–57 years; 6 males and 3 females) were
obtained from a multicenter European Union-supported
program on 𝛽-cell transplantation in diabetes. None had
classical T1D-associated HLA-DR risk genotypes. The pro-
gram was approved by central and local ethical committees.
Islet preparation, cytokine stimulation (5000U/mL TNF𝛼
+ 750U/mL IFN𝛾 + 75U/mL IL-1𝛽 for 48 h), and RNA
extraction have been described previously [17]. Relative gene
expression of candidate genes was evaluated by TaqMan
assays using the Low Density Array system on TaqMan
7900HT (Applied Biosystems). Target gene expression was
normalized to the geometric mean of three housekeeping
genes (GAPDH, 18S-RNA, and PPIA) and evaluated using
the delta-delta Ct method [18]. One of the identified genes
(IL10) whose expression was modulated following cytokine
treatment was only detected in three of the human islet
preparations. Genes with Ct values < 37 were considered as
expressed.

2.2. Study Populations from the Hvidoere Study Group (HSG)
on Childhood Diabetes. The study population was collected
throughHSG and is described in [19].The cohort included in
total 257 children (126 girls and 131 boys). Eighty-four percent
of the patients were white Caucasian, and age at clinical
diagnosis was 9.1 ± 3.7 years (mean ± SEM), BMI 16.5 ±
3.2 kg/m2, and HbA1c 11.2 ± 2.1% at the time of diagnosis.
DKA (HCO3 ≤ 15mmol/L and/or pH ≤ 7.30) was present
in 20.7% of the cases at the time of diagnosis. Exclusion
criteria were suspected non-T1D (type 2 diabetes, maturity-
onset diabetes of the young (MODY), or secondary diabetes),
decline of enrolment into the study by patients or parents, and
patients initially treated outside of the centers formore than 5
days.Thediagnosis of T1Dwas according to theWorldHealth
Organization criteria. The study was performed according to
the criteria of the Helsinki II Declaration and was approved
by the local ethic committee in each center. All patients,
their parents, or guardians gave informed consent. In the
current study, patients with missing values for genotyping
and clinical outcome measures were excluded leaving a total
of 182 patients with complete genotype profile and clinical
characterization.

2.2.1. HbA1c and IDAA1c (Insulin Dose-Adjusted HbA1c).
HbA1c was analyzed centrally by ion-exchange high-per-
formance liquid chromatography at onset and 1, 3, 6, 9, and
12 months after diagnosis. IDAA1c is defined as actual HbA1c
+ (4 × insulin dose (U/Kg/24 h)). A calculated IDAA1c ≤ 9
corresponds to an estimated maximal C-peptide level above
300 pmol/L and has been used to define clinical remission
[20].

2.3. Genotyping. Genotyping of rs2290400/GSDMB, rs2327832/
TNFAIP3, rs4948088/COBL, rs7202877/CTRB1, rs7804356/
SKAP2, rs1990760/IFIH1, rs3184504/SH2B3, rs6897932/IL7R,
rs3024505/IL10, rs3825932/CTSH, and rs689/INS was done
using the KASPar system (KBioscience, Hoddesdon, UK).
Typing of the HLA-class II DRB1 locus was performed by
direct sequencing of exon 2 of DRB1 according to Immuno
Histocompatibility Working Group. The HLA risk groups
were defined as high risk (DRB1 03/04, 04/04), moderate risk
(DRB1 03/03, 04/08), and low risk (all other DRB1 genotype
combinations).

2.4. Gene Ontology Terms and Network Construction. We
used PANTHER [21] to perform functional annotation of the
11 input candidate genes. The enrichment for gene ontology
(GO) terms in the biological process category was identified
based on binomial test. The human genome was used as
the reference list. To construct protein networks on the
11 input candidate genes, the STRING network tool was
used. STRING is a database of known and predicted protein
interaction data from multiple sources including experi-
ments, coexpression, and text mining. In total, STRING
covers nearly 10,000,000 proteins from over 2,000 organisms
(http://string-db.org). Network was built with a medium
confidence score (0.400) and up to 10 interactors.

2.5. Statistical Analysis. A genetic risk score was calculated
for each individual based on the cumulative number of risk
alleles carried for the 11 SNPs and was used as a continuous
variable to test for association with IDAA1c and HbA1c levels
at 1, 3, 6, 9, and 12 months after T1D onset in linear regression
models. The assigned risk alleles for CTSH and SKAP2
were opposite compared to risk of T1D due to regression
analyses from individual SNP models. Regression models
were adjusted for the covariates sex, age group (0–5, 5–10,
and >10 years at diagnosis), and HLA risk groups. Forward
stepwise regression models were selected from all SNPs and
covariates. A 𝑝 value below 0.05 was considered statistically
significant. All statistical analyses were performed in SAS
version 9.2.

3. Results

3.1. Cytokine-Induced Gene Expression in Human Islets.
Gene expression may represent an intermediate phenotype
between genetic variation and disease.We therefore first eval-
uated the expression of established/pinpointed T1D GWAS
candidate genes in human islets left untreated or exposed to
a combination of proinflammatory cytokines (IL-1𝛽 + IFN𝛾
+ TNF𝛼) for 48 hrs to mimic disease. We found 31 out of
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Figure 1: Cytokine-regulated candidate genes in human islets. Isolated human islets were left untreated or exposed to cytokines (IL-1𝛽 +
IFN𝛾 + TNF𝛼) for 48 h. Gene expression of candidate genes was determined by real-time PCR. Target gene expression was normalized to the
geometric mean of three housekeeping genes. (a) Genes upregulated in response to cytokine treatment. (b) Genes downregulated in response
to cytokine treatment. Data are means ± SEM of 𝑛 = 8-9, except for IL10 (𝑛 = 3). ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

46 tested genes to be expressed. Of these, 11 significantly
changed their expression level following cytokine treatment
(𝑝 < 0.05) (Table 1). Six candidate genes were upregulated by
cytokines, TNFAIP3, IFIH1, GSDMB, IL7R, IL10, and SH2B3,
whereas 5 genes were downregulated, COBL, CTRB1, CTSH,
SKAP2, and INS (Figure 1). Comparable expression profiles
of these genes were observed in a recently published human
islet dataset [6].

3.2. Genetic Risk Score Modelling of Glycemic Control and 𝛽-
Cell Function. A genetic risk score model was constructed
from the GWAS-identified SNPs linked to the 11 genes
identified above to investigate the cumulative effect of T1D-
associated risk alleles on disease progression in new-onset
T1D children. The risk allele distribution is described in
Supplementary Table 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/9570424. HbA1c and
IDAA1c (a surrogate marker for 𝛽-cell function [20]) levels
were increased in carriers with risk allele numbers at and
above the 75th percentile (corresponding tominimum 15 risk
alleles) during disease progression (HbA1c: 3, 6, and 9months
after disease onset, 𝑝 = 0.04, 𝑝 = 0.0004, and 𝑝 = 0.03, resp.;
and IDAA1c: 9 months, 𝑝 = 0.04) (Figures 2(a) and 2(b)).

We then performed a multiple linear regression analysis
adjusted for age, sex, and HLA risk groups and found signif-
icantly increased HbA1c and IDAA1c levels with increasing
genetic risk score (GRS) from 3–12 months following T1D
onset (Table 2). The validity of including GRS in the regres-
sion analysis was tested by comparing the variance explained
by the model (𝑅2). This clearly showed that including GRS
as explanatory factor improved the model (Supplementary
Table 2). These findings suggest that residual 𝛽-cell func-
tion declines faster following diagnosis in patients carry-
ing increased genetic load of islet-expressed and cytokine-
regulated candidate genes.

3.3. Network and GO Analyses of Candidate Genes. We next
asked if any of the 11 candidate genes may interact with each
other in a functional protein network which could explain
their cumulative effects on disease progression. This was
evaluated by the STRING network tool which constructed
a network that contained 7 out of the 11 genes (Figure 3).
Consistent with this, the functional annotation of these
candidate genes based on GO analyses revealed significantly
enrichedGO terms in biological processes category (Table 3).
The 11 candidate genes were found enriched for various
immune-mediated processes including regulation of immune
response (𝑝 = 0.0008) and immune system process (𝑝 =
0.01). These findings support that several of the 11 candidate
genes act in common networks and pathways to affect disease
risk and progression.

4. Discussion

Recent GWAS have identified a large number of loci affecting
T1D risk [3]. In this study, we investigated the clinical
relevance of a genetic risk score on markers of disease
progression. An increased genetic risk score associated with
increasing HbA1c and IDAA1c levels the first year after
disease onset, indicating that a higher genetic load of islet-
expressed candidate genes predicts poorer glycemic control
and residual 𝛽-cell function, respectively. One additional
risk allele resulted in a 0.15% point increase in HbA1c
after 12 months and a corresponding 0.19% increase in
IDAA1c corresponding to a calculated 4% lower stimulated
C-peptide [20]. Our cumulative genetic risk score assumes
that each risk variant contributes with equal effects to the
traits, which probably does not reflect the true underlying
biology. An alternative approach would be to weight each
variant by published effect sizes for T1D risk, which has been
done in type 2 diabetes [22, 23]. We chose the unweighted
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Table 1: The 46 T1D candidate genes tested for expression and cytokine regulation in human islets.

Region GWAS SNP Locus Gene tested
1p13.2 rs2476601 PTPN22 PTPN22
1p31.3 rs2269241 PGM1 PGM1
1q31.2 rs2816316 RGS1 RGS1
1q32.1 rs3024505 IL10 IL10
2p25.1 rs1534422 (Gene desert)
2q12.1 rs917997 IL18RAP IL18RAP
2q24.2 rs1990760 IFIH1 IFIH1
2q33.2 rs3087243 CTLA4 CTLA4
3p21.31 rs11711054 CCR5 CCR5, CCR3
4p15.2 rs10517086 (Gene desert)
4q27 rs4505848 IL2 IL2, IL21, ADAD1
5q13.2 rs6897932 IL7R IL7R
6p21.32 rs9268645 MHC Not included
6q15 rs11755527 BACH2 BACH2
6q22.32 rs9388489 CENPW (C6orf173) Not tested
6q23.3 rs2327832 TNFAIP3 TNFAIP3
6q25.3 rs1738074 TAGAP TAGAP
7p15.2 rs7804356 SKAP2 SKAP2
7p12.1 rs4948088 COBL COBL
9p24.2 rs7020673 GLIS3 GLIS3
10p15.1 rs12251307 IL2RA IL2RA
10p15.1 rs11258747 PRKCQ PRKCQ
10q23.31 rs10509540 RNLS RNLS
11p15.5 rs7111341, rs689 INS INS
12p13 rs4763879 CD69 CD69
12q13.2 rs2292239 ERBB3 ERBB3
12q24.12 rs3184504 SH2B3 SH2B3
14q24.1 rs1465788 C14orf181 C14orf181
14q32.2 rs4900384 (0; gene desert)
15q25.1 rs3825932 CTSH CTSH
16p13.13 rs12708716 CLEC16A CLEC16A, PRM3, TNP2
16p12.3 rs12444268 UMOD UMOD
16p11.2 rs4788084 IL27 (NUPR1) IL27, NUPR1
16q23.1 rs7202877 CTRB1 CTRB2; CTRB1
17p13.1 rs16956936 DNAH2 DNAH2
17q12 rs2290400 ORMDL3 (GSDMB) ORMDL3, GSDMB
17q21.2 rs7221109 SMARCE1 SMARCE1
18p11.21 rs1893217 PTPN2 PTPN2
18q22.2 rs763361 CD226 CD226
19q13.32 rs425105 PRKD2 PRKD2
20p13 rs2281808 SIRPG SIRPG
21q22.3 rs11203203 UBASH3A Not tested
22q12.2 rs5753037 HORMAD2 HORMAD2
22q13.1 rs229541 C1QTNF6 C1QTNF6
Xq28 rs2664170 GAB3 GAB3
The genes that were transcriptionally regulated by cytokines in human islets are highlighted in bold, as are the corresponding risk SNPs included in the genetic
risk score analysis.
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Figure 2: Correlation between HbA1c and IDAA1c levels and risk allele numbers. HbA1c (a) and IDAA1c (b) in carriers with <25% (𝑛 = 65),
25–75% (𝑛 = 96), or >75% (𝑛 = 21) risk alleles at 1, 3, 6, 9, and 12 months following disease onset. Data are means ± SEM, ∗𝑝 < 0.05,
∗∗∗𝑝 < 0.001.

Table 2: Impact on HbA1c and IDAA1c by increasing genetic risk score.

Time after onset Increase in HbA1c (%) per
additional risk allele (SE) 𝑝 value Increase in IDAA1c per

additional risk allele (SE) 𝑝 value

1 month 0.09 0.06 — NS
3 months 0.11 (0.04) 0.009 — NS
6 months 0.17 (0.05) 0.0006 0.16 (0.08) 0.04
9 months 0.14 (0.05) 0.01 0.19 (0.07) 0.01
12 months 0.15 (0.06) 0.008 0.19 (0.08) 0.02
The influence of increasing risk allele number on HbA1c and IDAA1c analyzed by genetic risk score generated from 11 qualified T1D genes in linear regression
analysis adjusted for age, sex, and HLA risk groups. Data are presented as increase in HbA1c (%) and IDAA1c per additional risk allele during the first year
after diagnosis in 182 children with new onset T1D.

cumulative score because disease risk and disease progression
are different outcomes, which will likely not have identical
effect sizes. This is underlined by our previous observation
that there is no statistically significant association between
HLA risk and T1D progression [19]. This is also the reason
why we did not include HLA risk genes in the risk score
model.

The observed poorer glycemic control associated with
higher genetic load might prove to be a valuable tool for
prediction of disease progression. This should, however, be
validated in independent cohorts. An advantage of our study
is that the inclusion of variants in the genetic risk score was
based on prior “biological” knowledge, as we strictly focused
on islet-expressed and cytokine-regulated candidate genes.
Because regulated gene expression is often highly dynamic
due to positive and negative feedback mechanisms, that is,
the expression of a specific gene might be increased at one
time point but decreased in another and vice versa, we
did not take into account in the risk score model whether

genes were up- or downregulated by cytokines but simply
focused on the fact that their expression level changed as we
considered this most important. We may have missed genes
that changed expression at different time points compared to
those examined at the 48 hrs, and amore detailed time-course
study in human islets would likely have allowed a greater
number of SNPs to be included in the risk score and thus
provide even more accurate predictions.

Interestingly, we found that 7 of the 11 investigated genes
interact in a protein network and several of the genes also
shared GO terms suggesting that they affect the same bio-
logical mechanisms within the 𝛽-cells. We hypothesize that
the genes are modulating 𝛽-cell function in terms of insulin
secretion and/or the regenerative capacity and/or regulate the
vulnerability of the 𝛽-cell to immune-mediated destruction.
Indeed for some of the candidate genes, functional studies
in 𝛽-cells have been performed. Hence, we recently demon-
strated that CTSH regulates insulin gene transcription and
secretion and also has antiapoptotic properties in 𝛽-cells
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Table 3: The gene ontology terms of the 11 T1D candidate genes.

GO biological process Reference Count Genes Expected 𝑝 value

Regulation of immune response 930 7 IFIH1, INS, TNFAIP3, IL7R, SKAP2,
CTSH, IL10 0.49 0.0008

Negative regulation of immune response 116 4 INS, TNFAIP3, IL7R, IL10 0.06 0.002
Positive regulation of multicellular
organismal process 1357 7 IFIH1, INS, TNFAIP3, COBL, IL7R,

CTSH, IL10 0.72 0.01

Negative regulation of type I interferon
production 43 3 IFIH1, TNFAIP3, IL10 0.02 0.01

Immune system process 2163 8 IFIH1, SH2B3, INS, TNFAIP3, IL7R,
SKAP2, CTSH, IL10 1.14 0.01

Regulation of immune system process 1473 7 IFIH1, INS, TNFAIP3, IL7R, SKAP2,
CTSH, IL10 0.78 0.02

Negative regulation of chronic
inflammatory response 5 2 TNFAIP3, IL10 0 0.02

The enriched gene ontology (GO) terms in the biological process category are listed for the 11 candidate genes. The GO terms are followed by number of genes
having the enriched term in the reference list (Reference), number of genes in the input list having the enriched term (Count), gene names for the genes listed
in Count, and Bonferroni-corrected 𝑝 values.
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IFIH1
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TNIP1
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Figure 3: Protein interaction network of the 11 genes. The network
was constructed using the STRING tool (http://string-db.org) and
the 11 candidate genes as input. The width of the interactions
depends on the confidence score to each association in STRING.

[16]. Similarly, A20, the protein name of the gene product
encoded byTNFAIP3, is an antiapoptotic protein that inhibits

apoptosis induced by cytokines by blocking activation of the
transcription factor NF𝜅B [24]. In conclusion, a cumulative
genetic risk score comprising variants from 11 islet-expressed
candidate genes predicted significantly poorer glycemic con-
trol and 𝛽-cell function during disease progression in new-
onset T1D children.This knowledge might be useful to better
predict disease progression after diagnosis with T1D.
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