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Abstract

As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early
embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose
expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in
mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells,
Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential
function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in
pluripotency or germ cell function we have generated Tex19.12/2 knockout mice and analysed the Tex19.12/2 mutant
phenotype. Adult Tex19.12/2 knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis
revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss
of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during
meiosis in the Tex19.12/2 testes. Increased transposition of endogenous retroviruses in the germline of Tex19.12/2 mutant
mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination
and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of
a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic
stability through successive generations.
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Introduction

The germ cells of sexually reproducing organisms have a unique

role in generating genetic diversity and transmitting genetic

information from one generation to the next. Establishment of the

germline in mammals involves the induction of germ cells from

pluripotent epiblast cells through the action of extra-embryonic

ectoderm-derived bone morphogenetic proteins and occurs

comparatively late in development, commencing around day

6.25 days post coitum (dpc) in mice [1–4]. At around 12.5 dpc -

13.5 dpc the sexually dimorphic germ cells become committed to

develop along either a male or a female pathway and start to

initiate sex-specific differentiation [5]. Although there are

numerous differences in the differentiation of the germline and

in the timing and regulation of meiosis between the sexes, the

fundamental events of meiosis that increase genetic diversity and

reduce ploidy of the gametes are common to both.

The main group of genes that have been shown to be required

for mammalian meiosis are those involved in the recombination

and synapsis of homologous chromosomes. Mice carrying loss-of-

function mutations in these genes, such as Atm, Dmc1, cH2AX,

Mlh1, Msh5, Rec8, Rad51, Smc1b, Spo11, Sycp1, Sycp2, Sycp3, Syce2

and Tex14, typically exhibit defects in chromosome synapsis in

both sexes, although male and female germ cells can exhibit

different responses to these defects [6–8].

A second group of genes that are required for progression

through meiosis are those involved in repression of transposable

genetic elements. Retrotransposons, for example long interspersed

repeats (LINEs), short interspersed repeats (SINEs), and endoge-

nous retroviruses such as intracisternal A-particles (IAPs) are the

major class of transposable genetic elements in mammals and

comprise around 37.5% of the mouse genome [9]. To allow new

transposition events to propagate through subsequent generations,

retrotransposons have evolved to be active in the germline.
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Accordingly, germ cells appear to have evolved mechanisms to

reduce the mutational load of retrotransposon activity. Mutations

in genes involved in mediating DNA methylation-dependent

transcriptional repression of retrotransposons cause increased

expression of retrotransposons and defects in chromosome

synapsis during meiosis in either male or female germ cells

[10,11]. For example Dnmt3L is a catalytically inactive member of

the DNA methyltransferase family that is expressed in foetal germ

cells but is absent by 6 days post partum (dpp) [11]. Male mice

null for this gene do not methylate dispersed repeat DNA during

foetal germ cell development, and express LINEs and a class of

endogenous retroviruses known as intracisternal A-particles (IAPs)

in the germline [11]. Dnmt3L mutant male mice also exhibit

meiotic abnormalities that result in a loss of post-meiotic germ cells

in the testis [11]. The Dnmt3L mutant phenotype suggests that

epigenetic changes that occur in foetal germ cells can cause

meiotic defects later in germ cell development. A second example

is provided by the murine piwi-related genes, which encode

germline-specific proteins that are associated with a class of small

germline-specific piwi-interacting RNAs (piRNAs) and are also

required to repress retrotransposons during spermatogenesis [12–

14]. Mili and Miwi2 both appear to be involved in de novo

methylation of LINE and IAP elements during germ cell

development in male embryos, and both mutants exhibit reduced

DNA methylation and increased expression of LINE and IAP

element in the testis, and defects in chromosome synapsis during

meiosis in male germ cells [12–14]. The mechanism by which

increased expression of retrotransposons results in the defects in

chromosome synapsis seen in these mutant mice is unknown, but

the phenotype of these mutant mice suggests that repression of

transposable genetic elements is required to allow germ cells to

progress through meiosis.

A set of testis expressed (Tex) genes has been identified in a

subtractive hybridisation screen for genes expressed in spermato-

gonia but not somatic tissue [15]. One of these genes, Tex19.1

(AAH53492.1), was found in a screen for potential RNA-targets of

the germline-specific RNA binding protein Dazl by immunopre-

cipitation and microarray analysis [16]. Further unpublished work

in this laboratory and work recently published by Kuntz et al. [17]

confirmed an earlier report that Tex19.1 is a ‘‘pluripotent cell

expressed gene’’ [18]. Humans and primates possess a single Tex19

gene in their genome, but in rodents a recent duplication has

produced a two-gene family arranged as divergently transcribed

genes separated by 29kb of DNA [17]. While expression of murine

Tex19.1 is restricted to pluripotent stem cells and developing germ

cells, Tex19.2 is expressed in the testis somatic tissues and does not

appear to be restricted to germ cells or pluripotent stem cells in

mice [17].

The expression pattern of Tex19.1 suggests that the protein

could have an important role in pluripotency or germ cell

function. Since the sequence of Tex19.1 gives no clue to the

biochemical function of this protein we decided to take a genetic

approach to determining the function of this gene in the germline.

In this paper we report that targeted deletion of Tex19.1 in mice

results in upregulation of endogenous retrovirus expression in

testicular germ cells, perturbed chromosome synapsis during

meiosis, and impaired spermatogenesis.

Materials and Methods

Generation of Tex19.1 Knockout Mice
Tex19.1 knockout mice were generated by replacing the Tex19.1

open reading frame with a neomycin selection cassette by

homologous recombination in E14 embryonic stem cells [19].

Homologous regions were cloned by PCR from E14 embryonic

stem cell genomic DNA using primers listed in Supplementary

Table S1. The Tex19.1 targeting vector was linearised, electropo-

rated into E14 embryonic stem cells, and neomycin-resistant

clones screened for the desired integration event by PCR and

Southern blot. Tex19.1+/2 ES cells were used to generate

Tex19.12/2 knockout mice by blastocyst injection and breeding

as described [19]. Mice were genotyped by multiplex PCR using

primers listed in Supplementary Table S1. Phenotypic analysis was

performed on mice with a 129/Ola x CD1 mixed genetic

background. Generation and analysis of Tex19.12/2 knockout

mice was performed under a UK Home Office project licence with

approval from an institutional ethics committee.

Antibody Production
Anti-Tex19.1 antibodies were raised in rabbits using the

synthetic peptide 78ESEQEPGPEQDAWRG92 (Eurogentec). This

peptide was designed to be specific to Tex19.1 and is not present

in the Tex19.2 protein sequence. Antibodies were affinity purified

from sera using the immunising peptide immobilised on a

Sulfolink column (Pierce) according to manufacturer’s instructions.

Immunohistochemistry
Testes were recovered from mice, fixed at 4uC overnight in 4%

paraformaldehyde in phosphate buffered saline (PBS) and

embedded in paraffin wax. 6 mm-thick sections were dewaxed in

xylene, rehydrated, and antigen retrieval performed by boiling

slides for 15 minutes in 0.01 M sodium citrate, pH 6.0. Sections

were blocked, incubated with rabbit anti-Tex19.1 primary

antibody at 1:50, and bound antibody detected using the

DAKOvision ABC diaminobenzidine (DAB) kit as described by

the manufacturer (DakoCytomation). For peptide competition,

anti-Tex19.1 antibodies were pre-incubated with 5 nM immunis-

ing peptide. For immunostaining of cultured cells, cells were fixed

for 30 minutes at room temperature with 3.7% formaldehyde in

PBS, then blocked with PBS containing 5% serum and 0.01%

Tween-20. Cells were incubated with rabbit anti-Tex19.1 primary

antibody at 1:100, then fluorescently labelled secondary antibodies

Author Summary

The germ cells—eggs in females and sperm in males—are
responsible for passing genetic information from one
generation to the next. As any genetic changes that arise
in the germ cells can be transmitted to the next
generation, germ cells are a prime target for the activity
of mobile genetic elements. Mobile genetic elements
make up around 40% of a mammalian genome, and many
of these elements are derived from retroviruses that have
infected germ cells, or early embryonic precursors to germ
cells, and have integrated into the genome. Here, we
characterise the function of Tex19.1, a gene whose
expression is restricted to germ cells and the pluripotent
cells that are early embryonic precursors to germ cells. We
show that when Tex19.1 is deleted from mice, germ cells
have problems progressing through meiosis, and sperm
production is impaired. Furthermore, we show that, in the
absence of Tex19.1, endogenous retroviruses are activated
in male germ cells attempting to go through meiosis. Our
results suggest that Tex19.1 is part of a specialised
mechanism that guards against mutagenic endogenous
retrovirus activity in germ cells and pluripotent cells and
thus helps to maintain the integrity and stability of the
genome through successive generations.

Phenotype of Tex19.12/2 Knockout Mice
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at 1 mg/mL (Invitrogen). DNA was counterstained with 2 mg/mL

DAPI.

Nuclear/Cytoplasmic Fractionation
E14 embryonic stem cells or 13 dpp postnatal testes were lysed

in cytoplasmic lysis buffer (10 mM Hepes pH 7.6, 3 mM MgCl2,

40 mM KCl, 50 mM b-glycerophosphate, 5% glycerol, 0.5%

Igepal CA-630, 2 mM NaF, 1 mM Na3VO4, 2 mM DTT and

protease inhibitors) for 5 minutes on ice and the whole cell lysate

centrifuged for 5 minutes at 1000g at 4uC. The nuclear pellet was

resuspended in Laemmli buffer, boiled for 5 minutes and

sonicated to disrupt genomic DNA. The cytosolic supernatant

was mixed with Laemmli buffer and boiled for 5 minutes.

Equivalent proportions of each fraction were separated by SDS-

PAGE then Western blotted.

Western Blot
Testis was homogenised in Laemmli buffer, boiled for 5 min

and sonicated to disrupt genomic DNA. Western blotting was

performed using standard procedures [20]. Tex19.1 was detected

with rabbit anti-Tex19.1 polyclonal antibodies used at a 1:200

dilution, mouse anti-Gapdh antibodies (Abcam) were used at

1:1000, mouse anti-HP1a antibodies (Chemicon) at 1:2500, and

rabbit anti-histone H3 antibodies (Abcam) at 1:20000. Peroxidase-

conjugated secondary antibodies and enhanced chemilumines-

cence were used to detect primary antibodies.

Southern Blotting
Non-radioactive Southern blots were performed using a

digoxigenin-labeled DNA probe generated using primers listed

in Supplementary Table S1, and alkaline phosphatase-conjugated

anti-digoxigenin antibodies, essentially as described by the

manufacturer (Roche).

RT-PCR and Quantitative PCR
Testis RNA was isolated with Trizol (Invitrogen) according to

the manufacturer’s protocol and reverse transcription performed

with Superscript III (Invitrogen) on 1 mg RNA per reaction using

oligo dT primer. Primers for RT-PCR are listed in Supplementary

Table S1.

For quantitative PCR (qPCR), random-primed cDNA was

generated from total RNA using Superscript III (Invitrogen).

qPCR was performed using SYBR Green PCR System (Applied

Biosystems) and a PTC-200 thermal cycler equipped with a

Chromo4 continuous fluorescence detector and Opticon Monitor

software (MJ Research). Primers for qPCR are listed in

Supplementary Table S1. Five technical replicates were performed

for each biological sample, and the relative changes in gene

expression determined using the DD22Ct method as described

[21]. As Tex19.1 is expressed in the germ cells in the testis the

Sertoli cell marker Sdmg1 [22] was used to normalise cDNAs

prepared from different animals to reduce the probability that the

cDNAs were being normalised to a transcript whose level could be

influenced by loss of Tex19.1.

Testis Weight and Sperm Count
Both testes from each adult animal (6–36 weeks old) were

weighed, and the mean testis weight was used for statistical

comparison. For sperm count one epididymis from each animal

was homogenised in 1 mL 1% sodium citrate and incubated for

5 minutes at room temperature to allow the debris to settle. Sperm

in the supernatant was then counted with a hemocytometer.

Histology
Testes were fixed for 4–6 hours in Bouin’s solution (Sigma-

Aldrich) at room temperature, then embedded in wax. For

histological analysis 6 mm sections were dewaxed with xylene,

rehydrated, then stained with hematoxylin and eosin.

Immunostaining of Meiotic Chromosome Spreads
Immunostaining of chromosome spreads from meiotic sper-

matocytes was performed essentially as described [23]. Briefly,

testes were homogenized in PBS and 0.1 mL of cells were

incubated in 0.5 mL 5% sucrose on a microscope slide for 1 hour.

Cells were lysed with 0.1 mL 0.05% Triton-X-100 for 10 minutes,

and fixed with 0.8 mL of fixing solution (2% paraformaldehyde,

0.02% SDS in PBS) for 1 hour. The slides were then washed,

blocked with 5% serum, 0.1% Tween in PBS and incubated with

primary antibodies for 1 hour. Mouse anti-Sycp3 antibodies

(Abcam) were used at a 1:2000 dilution, rabbit anti-Sycp1

antibodies (Abcam) at 1:250, rabbit anti-cH2AX antibodies

(Upstate Biotechnology) at 1:200, and mouse anti-Rad51 antibod-

ies (Upstate Biotechnology) at 1:125. Fluorescently labelled

secondary antibodies were used at 1 mg/mL (Invitrogen), and

DNA was stained with 2 mg/mL DAPI.

Metaphase I Analysis of Spermatocytes
Chromosome spreads for metaphase I analysis were prepared as

described in [24]. Briefly, testes were incubated for 20 minutes in

1% sodium citrate, minced with scissors, and the cells harvested by

centrifugation. Cells were then washed and resuspended in fixing

solution (3:1 methanol:glacial acetic acid), dropped onto slides,

and the resulting chromosome spreads were stained with Giemsa

solution. 100 metaphase I spreads were scored per animal, and

two animals scored for each genotype.

In Situ Hybridisation and Northern Blotting
A 460 bp fragment of the MMERVK10C endogenous retrovirus

was amplified by RT-PCR from Tex19.12/2 mutant testes using

primers listed in Supplementary Table S1 and cloned into pBluescript

II SK+ (Stratagene). Sense and anti-sense digoxigenin-labelled

riboprobes were generated using T3 and T7 RNA polymerase

according to the supplier’s instructions (Roche). In situ hybridisation

on 6 mm wax sections of Bouin’s-fixed testis tissue was performed

essentially as described [25] using 100 ng/mL digoxigenin-labelled

probe and a hybridisation temperature of 50uC. Bound probe was

detected with alkaline phosphatase-conjugated anti-digoxigenin

antibodies (Roche) and BCIP/NBT precipitating stain (Vector Labs),

then sections counterstained with nuclear fast red according to

manufacturer’s instructions. The antisense MMERVK10C digox-

igenin-labelled riboprobe was also used for non-radioactive Northern

blotting of 1 mg testis RNA as described [22].

Results

Expression of Tex19.1 Protein during Spermatogenesis
Spermatogenesis in the adult testis involves the differentiation of

a small pool of spermatogonial stem cells into large numbers of

mature sperm. Within the testis spermatogenesis takes place in the

seminiferous tubules where the mitotic spermatogonia reside at the

outermost edge of the tubule, and progressive stages of

differentiation are found as layers of meiotic spermatocytes then

haploid spermatids located more and more centrally towards the

lumen of the tubule [26]. Published RT-PCR expression data for

Tex19.1 in purified spermatogenic cell populations suggests that

Tex19.1 expression is highest in mitotic spermatogonia, decreases

as the spermatocytes progress through meiosis, and is present at

Phenotype of Tex19.12/2 Knockout Mice
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low levels in round spermatids [27]. To establish the expression

pattern of Tex19.1 protein in male testis during spermatogenesis

we raised anti-peptide antibodies to Tex19.1. Immunohistochem-

istry on mouse testis shows strong cytoplasmic expression of

Tex19.1 in spermatogonia that is downregulated as these cells

differentiate and progress through meiosis (Figure 1A–C). We were

able to detect cytoplasmic Tex19.1 protein in some meiotic

spermatocytes (Figure 1C), but not in others (Figure 1B) suggesting

that Tex19.1 protein expression is switched off as the germ cells

proceed through meiosis. The expression of Tex19.1 protein in

spermatogonia and spermatocytes is consistent with that observed

for Tex19.1 mRNA by in situ hybridisation (Figure S1A–C).

Our finding that Tex19.1 is present in the cytoplasm of

spermatogonia and early spermatocytes in the adult testis is not

consistent with the published nuclear localisation of Tex19.1 protein

in embryonic stem cells [17]. We confirmed that our anti-Tex19.1

antibody detects Tex19.1 and not a cross-reacting antigen by

blocking the anti-Tex19.1 immunohistochemistry signal by compe-

tition with the immunising peptide, and by immunohistochemistry

on Tex19.12/2 knockout testes (Figure S1D–F). We were also able to

detect a predominantly cytoplasmic subcellular localisation of

Tex19.1 by immunostaining germ cells isolated from 14.5 dpc

embryonic testes (Figure S1G). Again the cytoplasmic anti-Tex19.1

immunostaining could be competed with the immunising peptide,

and was absent in germ cells from Tex19.12/2 knockout embryos

(Figure S1H, I). These data suggest that the anti-Tex19.1 antibody

used in this present study specifically recognises endogenous Tex19.1

in germ cells, and that at least some Tex19.1 is present in the

cytoplasm of spermatogonia and early spermatocytes in adult mouse

testes.

Figure 1. Tex19.1 is a cytoplasmic protein expressed in spermatogonia and spermatocytes in the adult testis. (A–C)
Immunohistochemistry for Tex19.1 in adult testis. Anti-Tex19.1 staining (brown precipitate) can be seen in the cytoplasm of spermatogonia
(open arrowheads in B) and early spermatocytes (filled arrowheads in C) in the seminiferous tubules but not in later stage pachytene spermatocytes
(filled arrowheads in B). (D–F) Immunofluorescence for Tex19.1 in embryonic stem cells. Anti-Tex19.1 staining (green) can be seen in the cytoplasm of
embryonic stem cells. DNA is counterstained in red. (G) Western blot for Tex19.1 in whole cell (WC), nuclear (N) and cytoplasmic (C) fractions from 13
dpp prepubertal testis. Subcellular fractionation was monitored using histone H3 and Gapdh as nuclear and cytoplasmic markers respectively.
Tex19.1 is detected predominantly in the cytoplasm. (H) Western blot for Tex19.1 in whole cell, nuclear and cytoplasmic fractions from embryonic
stem cells. Tex19.1 is predominantly cytoplasmic, and the purity of the fractions is shown by the cytoplasmic marker Gapdh and the nuclear marker
HP1a.
doi:10.1371/journal.pgen.1000199.g001

Phenotype of Tex19.12/2 Knockout Mice
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To investigate whether the discrepancy between the cytoplasmic

localisation of Tex19.1 in germ cells presented in this study and

the nuclear localisation of Tex19.1 in embryonic stem cells

described previously [17] is caused by the difference between the

cell types studied we performed immunostaining for Tex19.1 on

embryonic stem cells. In contrast to the previous report [17], we

found that Tex19.1 is predominantly cytoplasmic in embryonic

stem cells (Figure 1D–F).

To exclude the possibility that our anti-Tex19.1 antibody is

unable to detect a nuclear population of Tex19.1 due to loss or

masking of the epitope during the immunohistochemical proce-

dures we biochemically fractionated 13 dpp prepubertal testes and

embryonic stem cells into nuclear and cytoplasmic fractions. On

Western blots the 42 kDa Tex19.1 band was barely detectable in

the nuclear fraction, but was easily detectable in equivalent

loadings of the whole cell lysate and cytoplasmic fractions

(Figure 1G,H). The observed size of the anti-Tex19.1 band in

the Western blots (42 kDa) correlates well with the predicted

molecular weight of Tex19.1 (40.4 kDa). This 42 kDa band

appears to be endogenous Tex19.1 as it is not present in testes

from Tex19.12/2 knockout animals (Figure 2E). The biochemical

fractionation of embryonic stem cells and testes therefore confirms

the predominantly cytoplasmic subcellular localisation of Tex19.1

that we have observed by immunohistochemistry and immuno-

staining. Taken together the data presented here strongly suggests

that Tex19.1 is a predominantly cytoplasmic protein in embryonic

stem cells and germ cells.

Germ cells in many species possess specialised cytoplasmic

structures termed nuage that are implicated in RNA metabolism.

Although Tex19.1 appears to be a predominantly cytoplasmic germ

cell protein, the subcellular localisation and cell-type distribution of

Tex19.1 appears to be distinct from the nuage component Tdrd1

[28] (Figure S2). Thus Tex19.1 does not appear to be a novel

component of nuage. As the subcellular localisation of Tex19.1 does

not provide any major insight into what the cellular function of this

protein might be, and the Tex19.1 protein sequence does not

contain any functional domains to illuminate the potential

biochemical function of this protein, we decided to take a genetic

approach to analyse the function of Tex19.1 in the germline.

Generation of Tex19.12/2 Knockout Mice
In order to investigate the function of Tex19.1 in germ cell

development we generated Tex19.12/2 knockout mice. The

Tex19.1 open reading frame was replaced with a neomycin-

resistance cassette by homologous recombination in embryonic

stem cells (Figure 2A), and the targeted deletion confirmed by

Southern blotting (Figure 2B). The heterozygous Tex19.1+/2

embryonic stem cells were used to generate chimaeric mice by

blastocyst injection, and the Tex19.12 mutant allele bred to

homozygosity (Figure 2C). Tex19.12/2 homozygous pups were

Figure 2. Generation of Tex19.12/2 knockout mice. (A) Schematic view of the Tex19.1 knockout strategy. The Tex19.1 gene in the wild-type (wt)
allele is replaced by a neomycin box in the knockout (ko) allele; black borders delineate the short and long arms upstream and downstream of the
gene. Location of probe for Southern blot (SP), BamHI sites and lengths of restriction fragments are indicated for both alleles. (B) Southern blot of
wild type E14 embryonic stem cell genomic DNA (+/+) and a successfully targeted clone (+/2). (C) Genotyping of a wild type, a heterozygous and a
homozygous animal from the Tex19.1 knockout line by multiplex PCR. (D) RT-PCR from testes of wild type and knockout animals. Tex19.1 transcript
can be detected in wild type but not in knockout testes. Gapdh transcript can be seen in both. (E) Western blot on protein extracts from the testes of
heterozygous and knockout animals: Tex19.1 is detected in heterozygous but not in knockout testes. Gapdh is shown as a loading control.
doi:10.1371/journal.pgen.1000199.g002

Phenotype of Tex19.12/2 Knockout Mice
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born from heterozygous crosses at a sub-Mendelian frequency (72

wild-type, 131 heterozygous, 40 homozygous pups born from

heterozygous matings, significant deviation from expected Men-

delian 1:2:1 ratio, x2-test p,0.01). The low rate of recovery of

Tex19.12/2 homozygous animals at birth indicates that some

Tex19.12/2 homozygous embryos are lost during embryonic

development.

To confirm that the Tex19.12 mutant allele removes Tex19.1

mRNA and protein we performed RT-PCR on Tex19.12/2 testis

cDNA with Tex19.1-specific primers (Figure 2D) and Western

blotting on Tex19.12/2 testis protein extract with anti-Tex19.1

antibodies (Figure 2E). Both methods show that Tex19.1 is not

expressed in the testes of Tex19.12/2 homozygous mice. We

conclude that the Tex19.12 allele that we have produced is a null

allele and that Tex19.1 function is ablated in the Tex19.12/2

homozygous mice.

The surviving Tex19.12/2 knockout mice are apparently healthy,

with overtly normal morphology and behaviour. However both

male and female Tex19.12/2 knockout mice have reduced fertility.

Tex19.12/2 knockout females have a mean litter size of 5.062.2

SD, n = 9 compared to a litter size of 10.662.9, n = 23 for Tex19.1+/2

heterozygous females (Student’s t-test p,0.01). The reduced fertility

in Tex19.12/2 homozygous females is consistent with expression of

Tex19.1 in embryonic ovaries [17], and a detailed analysis of the

cause of the subfertility in the Tex19.12/2 knockout female mice will

be published elsewhere. Similarly, Tex19.12/2 knockout male mice

are also severely subfertile when test-mated with wild-type female

mice. Although one out of the eleven Tex19.12/2 knockout males

tested for fertility was able to sire offspring, the remaining Tex19.12/2

knockout males were infertile. The sterile Tex19.12/2 knockout male

mice were apparently able to mate with the wild-type females to

produce a copulation plug, but these females did not give birth to any

pups. Tex19.12/2 knockout male mice have smaller testes (Figure 3A,

B), with the median testis weights of adult animals reduced from

111 mg in Tex19.1+/+ wild type and Tex19.1+/2 heterozygous mice to

42.5 mg in Tex19.12/2 knockout littermates (Mann Whitney U-test,

p,0.01). Furthermore, the median epididymal sperm count is

reduced to 1.36105 in Tex19.12/2 knockout mice from 1.36107 in

wild type and heterozygous littermates (Mann Whitney U-test,

p,0.01, Figure 3C) suggesting that spermatogenesis is defective in the

Tex19.12/2 knockout testes. We have not been able to detect any

difference in testis weight or sperm count between Tex19.1+/+ wild-

type and Tex19.1+/2 heterozygous animals.

The extent of the spermatogenesis defect in the Tex19.12/2

knockout males varied between individual animals. When sperm

was counted, a strong reduction was observed for most of the

animals, but for the single fertile animal the sperm count was close

to normal levels (Figure 3C). A similar variation in testis weight

was also evident amongst Tex19.12/2 knockout animals

(Figure 3B). This phenotypic variation was not influenced by the

age of the mice at the time of analysis. Age-matched adult mice

were analysed at 6 weeks, 3 months, 6 months and 9 months

during the course of this study, and there appeared to be no

correlation between the severity of the phenotype and the age at

which the adult mice were examined. Rather phenotypic variation

was observed in adult mice at all ages (R.O. and I.R.A., data not

shown). The outbred component of the genetic background of

these mice may contribute to this variation.

Tex19.12/2 Knockout Spermatocytes Exhibit Defects in
Progression through Meiosis

We investigated the spermatogenesis defect in Tex19.12/2

knockout mice further by examining the testis histology in these

animals. We did not detect any overt differences in testis histology

between Tex19.1+/+ wild-type and Tex19.1+/2 heterozygous

animals. However, Tex19.12/2 knockout testes have considerably

narrower seminiferous tubules than their wild-type or heterozy-

gous littermates due to a reduction in the number of post-meiotic

germ cells (Figure 4A, B). This phenotype was also subject to some

heterogeneity. In animals with a more severe phenotype all

postmeiotic cell-types were missing and the most advanced meiotic

cells were in pachytene stage (Figure 4C, D). In animals with a less

severe phenotype a proportion of cells were able to complete

meiosis and haploid cells could be detected, although often in

comparatively low numbers (Figure 4C, E). Like the testis weight

and sperm count phenotypes described in the previous section,

there appeared to be no correlation between the severity of the

testis histology phenotype and the age at which the adult mice

were analysed (from 6 weeks to 9 months).

To test whether the reduction in the number of post-meiotic

germ cells in Tex19.12/2 knockout testes arises from a decrease in

the spermatogonial mitotic divisions or apoptosis of differentiating

germ cells, we counted the number of B-type spermatogonia, early

meiotic cells and apoptotic cells in testis sections from Tex19.1+/2

heterozygous and Tex19.12/2 knockout animals. B-spermatogonia

and early meiotic cells were identified by their location and

histological appearance in the seminiferous tubules [26], and

apoptotic cells were identified using the TUNEL assay to label

fragmented chromatin. Whereas the number of B-type spermato-

Figure 3. Tex19.12/2 knockout mice have defects in spermato-
genesis. (A) Testes from Tex19.12/2 knockout mice are smaller in size
than testes from Tex19.1+/+ wild-type littermates (comparison of two 36-
week old testes). (B) Box plot showing that median testis weights of
adult animals are reduced in Tex19.12/2 knockout mice (Mann Whitney
U-test, p,0.01). The genotypes and number of animals analysed are
indicated. (C) Box plot showing that median epididymal sperm count is
reduced in Tex19.12/2 knockout mice (Mann Whitney U-test, p,0.01).
doi:10.1371/journal.pgen.1000199.g003
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gonia and early meiotic cells did not differ between Tex19.1+/2

heterozygous and Tex19.12/2 knockout testes (R.O., data not

shown), TUNEL staining showed an increase in the number of

dying cells in adult Tex19.12/2 knockout testis (Figure S3A, B, N).

In more severe Tex19.12/2 knockout seminiferous tubules,

TUNEL-positive cells were found within or next to layers of

meiotic germ cells (Figure S3C), but even at high magnification the

nuclear morphology of these TUNEL-positive cells was not

distinct enough to allow their developmental stage to be

unambiguously identified (Figure S3H–J). In less severe

Tex19.12/2 knockout seminiferous tubules, TUNEL-positive cells

could also be found between the layers of meiotic germ cells and

post-meiotic round spermatids (Figure S3D). At higher magnifi-

cation, some of these TUNEL-positive cells could be identified as

metaphase I spermatocytes (Figure S3E–G).

In order to further define the point during spermatogenesis

when the Tex19.12/2 knockout cells are dying we examined the

synchronous first wave of spermatogenesis that occurs in

prepubertal mice. The first wave of spermatogenic germ cells

initiates meiosis at around 10 dpp in the prepubertal testis, and

progresses through the pachytene stage of meiosis from around 14

to 20 dpp to produce the first post-meiotic round spermatids

around 21 dpp, and mature sperm at around 31 dpp [29,30].

Analysis of apoptosis (Figure S3N) and testis histology (Figure S4)

at various stages of prepubertal testis development revealed no

overt differences in testis histology and no statistically significant

increase in apoptosis at 16 dpp in Tex19.12/2 knockout testes.

However by 19–22 dpp, a reduction in the number of meiotic and

post-meiotic germ cells and an increase in the frequency of cell

death are both evident in Tex19.12/2 knockout testes (Figures

S3N, S4). In 22 dpp testes, clusters of TUNEL-positive cells can be

seen within the layer of pachytene germ cells that line the lumen of

the seminiferous tubule suggesting that at least some apoptosis is

occurring at the pachytene stage of meiosis (Figure S3K–M). The

high level of apoptosis in the Tex19.12/2 knockout testes increases

by 29–31 dpp to the level seen in adult testes (Figure S3N). This

data suggests that the reduction in the number of post-meiotic

germ cells and increased levels of apoptosis seen in the adult

Tex19.12/2 knockout testes is at least partly due to some

Tex19.12/2 knockout germ cells initiating apoptosis during the

pachytene stage of meiosis, and some Tex19.12/2 knockout germ

cells initiating apoptosis during metaphase I.

Although the vast majority of the Tex19.12/2 null testes

examined contained differentiating germ cells, two of thirty

analysed knockout animals had an extremely severe phenotype

with one testis that completely lacked germ cells. One of these

agametic testes was isolated from a 31 dpp prepubertal mouse

(Figure 4F) suggesting that this extreme phenotype is indicative of

defects occuring during embryonic or early post-natal germ cell

development rather than a progressive loss of spermatogonial stem

cells in an ageing adult testis. However, as only a small number of

testes exhibited this phenotype, we were not able to study this

extreme phenotype further and instead focused on the meiotic

phenotype evident in the vast majority of the Tex19.12/2 mutant

testes.

Chromosome Synapsis during Male Meiosis Is Impaired in
the Absence of Tex19.1

We next attempted to determine the cause of the increased

apoptosis in Tex19.12/2 null testes. Defects in homologous

chromosome synapsis or homologous recombination during

meiotic prophase can cause apoptosis in late pachytene spermato-

Figure 4. Tex19.12/2 null testes contain reduced numbers of post-meiotic germ cells. Testis histology in Tex19.1+/2 heterozygous and
Tex19.12/2 knockout animals. (A, C) In Tex19.1+/2 heterozygotes, the testis histology is normal and the seminiferous tubules contain Sertoli cells
(arrows), spermatogonia (white arrowheads), spermatocytes (broad arrowheads) and spermatids (narrow arrowheads). (B, D) Tex19.12/2 knockout
animals with a severe phenotype feature a reduced tubule diameter with a substantial reduction of cell numbers. Sertoli cells (arrows) spermatogonia
(open arrowheads) and meiotic cells (broad arrowheads) are present, but few spermatids can be found. Additionally, there are cells with pyknotic
appearance (asterisks). (E) In Tex19.12/2 knockout animals with a less severe phenotype, some spermatids (narrow arrowheads) can be detected in
reduced numbers. (F) In two of thirty Tex19.12/2 knockout animals analysed one of the recovered testes was agametic and only contained Sertoli
cells (arrows). A–E are from 3 month old adult animals, F is from a 31 dpp prepubertal animal.
doi:10.1371/journal.pgen.1000199.g004
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cytes [31,32]. Therefore we used immunocytochemistry on

meiotic chromosome spreads to analyse chromosome synapsis

and homologous recombination in Tex19.12/2 knockout testes. In

order to analyse chromosome synapsis, meiotic chromosome

spreads were stained using Sycp3 as a marker for lateral elements

of meiotic chromosomes and Sycp1 as a marker for synapsed

homologous chromosomes [6]. In wild-type pachytene cells the

autosomal chromosome axes stain completely for both markers,

whereas the X and Y sex chromosomes remain largely asynapsed

with only a small area of Sycp1 staining in the pseudo-autosomal

region (Figure 5A). In contrast, about half the pachytene cells in

Tex19.12/2 homozygotes have Sycp3-stained autosomal chromo-

somal axes that lack Sycp1 staining (Figure 5B–D, I). The

asynapsed chromosomes in Tex19.12/2 knockout cells did not

appear to be arranged in homologous pairs (Figure 5D). However

it is not clear whether the asynapsed chromosomes have never

paired in Tex19.12/2 knockout spermatocytes, or have paired but

have subsequently fallen apart. In some of the incompletely

synapsed Tex19.12/2 knockout cells, some chromosomes ap-

peared to form chains linked by regions of apparent non-

Figure 5. Tex19.12/2 null spermatocytes exhibit defects in chromosome synapsis during meiosis. (A–D) Synapsis of homologous
chromosomes in meiotic cells; Sycp3 (red) is present on both synapsed and unsynapsed chromosomes during early meiotic prophase whereas Sycp1
(green) is only present on synapsed chromosomes. (A) In wild type pachytene cells all autosomal chromosomes are synapsed, and only the sex
chromosomes remain unsynapsed (arrowhead). (B–D) Many Tex19.12/2 knockout cells exhibit incomplete synapsis where some chromosomes are
unsynapsed (arrows) in cells that otherwise have pachytene appearance. Some unsynapsed chromosomes in Tex19.12/2 knockout cells, appear to
form chains linked by regions of apparent non-homologous synapsis (asterisk) (E, F) Distribution of the DNA double-strand break marker cH2AX
(green) in meiotic cells. (E) In wild type pachytene cells DNA double strand breaks that were generated during earlier stages of meiosis have been
repaired leaving cH2AX staining restricted to the sex chromosomes (arrowhead). (F) In Tex19.12/2 knockout mice a proportion of pachytene-like cells
exhibit incomplete resolution of cH2AX staining at places where incomplete synapsis is observed (arrows). (G, H) Distribution of Rad51 early
recombination foci (green) in meiotic cells. (G) In normal pachytene cells, the early recombination marker Rad51 has already largely been lost from
the fully synapsed autosomes but remains on the sex chromosomes (arrowhead). (H) In Tex19.12/2 knockout cells, Rad51 foci are abundant on
unsynapsed chromosomes (arrows), but have mostly been lost from synapsed chromosomes (I) Distribution of meiotic stages in Sycp3/Sycp1-stained
spreads. Around 100 chromosome spreads were scored from each of five Tex19.12/2 knockout animals and from each of five Tex19.1+/+ wild-type or
Tex19.1+/2 heterozygous animals. Around half of the pachytene cells (47%) in Tex19.12/2 knockout testes feature incomplete synapsis. (J,K) Analysis
of metaphase I chromosome spreads. (J) In normal metaphase I cells from Tex19.1+/2 heterozygotes all pairs of homologous chromosomes are held
together as bivalents by chiasmata. (K) Around two-thirds of the metaphase I spreads from Tex19.12/2 knockout mice exhibited univalent autosomal
(asterisk) and/or sex (X,Y) chromosomes.
doi:10.1371/journal.pgen.1000199.g005
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homologous synapsis (Figure 5C, asterisk). Incompletely synapsed

pachytene cells comprise less than 1% of spreads from Tex19.1+/+

wild-type or Tex19.1+/2 heterozygotous testes (Figure 5I). Thus

Tex19.12/2 knockout animals exhibit defects in homologous

chromosome synapsis during male meiosis.

During meiotic prophase, homologous recombination starts

prior to homologous chromosome pairing and synapsis [33]. As

progression of homologous recombination and chromosome

synapsis are interdependent on each other [6,7], we investigated

whether the chromosome synapsis defect in Tex19.12/2 knockout

spermatocytes was a consequence of an earlier defect in the

initiation of homologous recombination. The appearance of DNA

double strand breaks and the formation of early recombination

foci during meiotic prophase can be detected by immunostaining

for the phosphorylated histone cH2AX and the recombinase

enzyme Rad51 respectively [33,34]. cH2AX staining is normally

present on chromatin during the leptotene and zygotene stages of

early meiotic prophase. As synapsis proceeds during zygotene, the

DNA double strand breaks are resolved, resulting in cH2AX

staining disappearing from the autosomal chromosomes, but not

the sex chromosomes. In normal Tex19.1+/+ wild-type pachytene

cells, chromosome synapsis is complete and only the sex

chromosomes stain for cH2AX (Figure 5E). However, the

incompletely synapsed pachytene cells in Tex19.12/2 knockout

testes, exhibit strong diffuse cH2AX staining (Figure 5F). This

cH2AX staining is localised to the regions of the chromosome

spreads that contain the unsynapsed chromosomes (Figure 5F).

Similarly, immunostaining for the early recombination foci marker

Rad51, which largely disappears from autosomal chromosomes as

synapsis proceeds, suggests that Rad51 foci are formed in

Tex19.12/2 knockout spermatocytes, but are not resolved or

matured on the unsynapsed chromosomes (Figure 5G, H). Thus

the formation of DNA double strand breaks and the assembly of

early recombination foci both appear to be occurring in Tex19.12/2

knockout spermatocytes. This suggests that the defect in meiotic

chromosome synapsis that we have observed in Tex19.12/2

spermatocytes does not appear to be a secondary consequence of

impaired initiation of homologous recombination. Rather, the

presence of DNA double strand breaks and early recombination foci

in the unsynapsed regions of the incompletely synapsed Tex19.12/2

pachytene spermatocytes is consistent with impaired chromosome

synapsis. Furthermore, the presence of DNA double strand breaks

and early recombination foci in unsynapsed regions of incompletely

synapsed Tex19.12/2 pachytene spermatocytes indicates that the

unsynapsed chromosomes arise from a failure to initiate synapsis

rather than premature desynapsis. The unsynapsed chromosomes

in the incompletely synapsed pachytene Tex19.12/2 knockout cells

are presumably sufficient to trigger apoptosis at the pachytene

checkpoint [31,32], and would account for the increased levels of

cell death seen in pachytene stage meiotic germ cells in Tex19.12/2

knockout testes (Figure S3).

Although incompletely synapsed pachytene cells could explain

the increased levels of cell death in the pachytene meiotic germ

cells in Tex19.12/2 knockout testes, the presence of apoptotic

metaphase I spermatocytes in these animals suggests that there

may be an additional defect later in spermatogenesis to account for

cell death at the metaphase I stage. Around half of the Tex19.12/2

knockout pachytene cells did not appear to have any overt defects

in chromosome synapsis (Figure 5I), and would therefore

presumably be able to progress to metaphase I and continue

through spermatogenesis. To investigate whether there might be

additional defects in chromosome behaviour at later stages of

meiosis in Tex19.12/2 knockout spermatocytes, we prepared and

analysed meiotic metaphase I chromosome spreads. During

metaphase I of meiosis, homologous chromosomes are held

together as bivalents by chiasmata (Figure 5J). 94% of the

metaphase I spreads from Tex19.1+/2 heterozygous testes

contained only bivalent metaphase I chromosomes, 5% contained

univalent sex chromosomes, and 1% contained univalent

autosomes. However, only 34% of the metaphase I spreads from

Tex19.12/2 knockout testes contained only bivalent metaphase I

chromosomes, while 56% of the spreads contained univalent sex

chromosomes, and 33% contained univalent autosomes

(Figure 5K). 23% of the Tex19.12/2 knockout metaphase I

spreads feature univalent autosomes and univalent sex chromo-

somes. Thus Tex19.12/2 knockout testes contain increased

numbers of univalent chromosomes at meiotic metaphase I that

could potentially trigger apoptosis at the metaphase I checkpoint

[35,36] and account for the apoptotic metaphase I cells seen in

Tex19.12/2 knockout testes. Furthermore, the presence of

univalent chromosomes in metaphase I spreads from Tex19.12/2

knockout testes is indicative of a defect in the formation or

maintenance of chiasmata in post-pachytene spermatocytes.

Overexpression of Retrotransposable Elements in
Tex19.12/2 Homozygous Testes

Meiotic defects similar to those present in the Tex19.12/2

knockout testes have been observed in various different mouse

mutants that carry defects in genes encoding components of

meiotic chromosomes, the meiotic recombination machinery, or

the synaptonemal complex [6,7]. However, we have been unable

to detect any Tex19.1 protein physically associated with meiotic

chromosomes by immunostaining (R.O., data not shown), and our

finding that Tex19.1 is predominantly localised to the cytoplasm

rather than the nucleus suggests that Tex19.1 is unlikely to be a

component of meiotic chromosomes or the synaptonemal

complex. We therefore reasoned that the meiotic defects present

in the Tex19.12/2 knockout testes are unlikely to be a direct effect

of Tex19.1 on meiotic chromosome structure or function but

rather may be an indirect consequence of changes in meiotic gene

expression.

In order to detect changes in gene expression in the testis of

Tex19.12/2 knockout mice, we performed microarray analysis

using an Illumina MouseWG-6 v1.1 Whole Genome Gene

Expression Beadchip containing 48,318 different probes. To

exclude potential differences in transcript levels due to the loss

of post-meiotic germ cells in the Tex19.12/2 testes we performed

this analysis on testes from 16 dpp prepubertal mice during the

first synchronous wave of spermatogenesis. At this stage of testis

development, some germ cells are already in the pachytene stage

of meiosis, but no obvious changes in cell composition were

apparent between Tex19.1+/+ wild type and Tex19.12/2 knockout

testes (Figure S4). RNAs from two different 16 dpp Tex19.12/2

knockout testes were compared with Tex19.1+/+ wild type or

Tex19.1+/2 heterozygous littermates, and transcripts that had

consistent and greater than three fold changes in relative gene

expression between the two groups of animals were identified. The

Mouse Genome Database (http://www.informatics.jax.org) cur-

rently lists 97 mutations that are known to give rise to meiotic

arrest during spermatogenesis [8]. These male meiotic arrest genes

include genes that encode components of meiotic chromosomes,

the meiotic recombination machinery and the synaptonemal

complex such as Atm, Dmc1, cH2AX, Mlh1, Msh5, Rec8, Rad51,

Smc1b, Spo11, Sycp1, Sycp2, Sycp3, Syce2 and Tex14. None of the

male meiotic arrest genes listed in the Mouse Genome Database

showed a consistent change in expression level in Tex19.12/2

knockout testes compared to littermate controls (I.R.A., data not

shown). However, analysis of the microarray data suggested that

Phenotype of Tex19.12/2 Knockout Mice
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the class II LTR-retrotransposon MMERVK10C [37] is upregu-

lated by around four-fold in the testis RNA from each of the 16

dpp Tex19.12/2 knockout animals relative to their littermate

controls (I.R.A., data not shown). The mouse genome contains

around 16 approximately full-length copies of the MMERVK10C

sequence in the genome, and a further 1200 fragments of the

MMERVK10C endogenous retrovirus. Increased retrotransposon

expression has been proposed to be responsible for impaired

chromosome synapsis and meiotic defects during spermatogenesis

in Dnmt3L, Miwi2 and Mili mutant mice [11–14]. As overexpres-

sion of the MMERVK10C retrotransposons could similarly be

responsible for the meiotic defects seen in Tex19.12/2 mutant

mice we sought to determine whether MMERVK10C expression

is indeed upregulated in the testis in the absence of Tex19.1.

The levels of MMERVK10C expression in testis cDNA from

two Tex19.12/2 knockout animals relative to their Tex19.1+/+

wild-type littermates were each tested by quantitative PCR

(Figure 6A). The Sertoli cell marker Sdmg1 [22] was used to

normalise cDNAs from different animals. Although there was no

significant change in the expression of the ubiquitously expressed

b-actin gene, or the germ cell marker Dazl [38], expression of the

MMERVK10C endogenous retrovirus was increased by a factor

of approximately four-fold in both Tex19.12/2 knockout animals

(Student’s t-test, p,0.01) (Figure 6A). Expression of LINE, SINE

or IAP retrotransposons showed no significant change in the

absence of Tex19.1 (Figure 6A).

To further validate the potential upregulation of

MMERVK10C transcripts in the Tex19.12/2 knockout mice we

performed Northern blots on testis RNA from the same two 16

dpp Tex19.12/2 knockout animals and their Tex19.1+/+ wild type

littermates. Using a probe derived from the env gene of the

MMERVK10C endogenous retrovirus we were able to detect a

predominant 3.2 kb MMERVK10C env transcript in mouse testes,

and some weaker MMERVK10C env transcripts at around 4.5 kb

and 7.5 kb (Figure 6B). The Northern blot profile for

MMERVK10C env transcripts is comparable to that of env-

containing transcripts from HERV-K endogenous retroviruses in

human teratocarcinoma cell lines [39]. Northern blotting

confirmed that the predominant 3.2 kb MMERVK10C env

transcript is consistently more abundant in testes from Tex19.12/2

knockout animals than in testes from their wild-type littermates at 16

dpp (Figure 6B).

In order to determine which cell types are accumulating

MMERVK10C transcripts in the Tex19.12/2 knockout testes we

performed in situ hybridisation on testis sections using a

MMERVK10C env probe (Figure 6C–N). In Tex19.1+/+ wild-type

and Tex19.1+/2 heterozygous testes at 16 dpp, low levels of

MMERVK10C env transcripts were present in some meiotic

spermatocytes (Figure 6C,G). However, MMERVK10C tran-

scripts were generally more abundant in Tex19.12/2 knockout

testes than in testes from Tex19.1+/+ wild-type or Tex19.1+/2

heterozygous littermates at 16 dpp (Figure 6D, H). The increased

levels of MMERVK10C env transcript in 16 dpp Tex19.12/2 testes

appeared to be largely due to the presence of strongly expressing

cells located towards the centre of the tubules where meiotic

spermatocytes are present (Figure 6K, L). Similarly in adult

animals MMERVK10C env transcripts were upregulated in

meiotic germ cells in the testes from adult Tex19.12/2 knockout

animals relative to their heterozygous littermates (Figure 6E, F, I,

J). A total of nine different Tex19.12/2 knockout animals at

various ages were assayed for MMERVK10C expression in the

testes by in situ hybridisation, and MMERVK10C expression in

Tex19.12/2 knockout testes was consistently higher that in

Tex19.1+/+ or Tex19.1+/2 littermate controls. No in situ hybrid-

isation signals were detected on testis sections using a sense

MMERVK10C control probe (Figure 6M, N).

Taken together, the quantitative PCR, Northern blotting and in

situ hybridisation data all suggest that transcripts from the

MMERVK10C endogenous retrovirus are upregulated in the

meiotic spermatocytes of Tex19.12/2 knockout testes.

The upregulation of retrotransposons in Dnmt3L, Mili and Miwi2

mutant mice is associated with defects in de novo DNA methylation

of IAP and LINE elements in the male germline, which presumably

allows increased transcription of these elements during spermato-

genesis [11–14]. In order to investigate whether the upregulation of

MMERVK10C retrotransposons in Tex19.12/2 knockout testis

was caused by a similar mechanism, we investigated the DNA

methylation status of CpG dinucleotides in MMERVK10C

elements by bisulphite sequencing MMERVK10C elements from

16 dpp prepubertal Tex19.12/2 knockout testes. The

MMERVK10C element includes a weak CpG island overlapping

the LTR and 59untranslated region (Figure S5). As promoters with

weak CpG islands are good candidates for regulation by DNA

methylation [40], we examined DNA methylation at CpG

dinucleotides within this region. Sequence analysis of 30 indepen-

dent clones from each of Tex19.1+/+ wild-type, Tex19.1+/2

heterozygous and Tex19.12/2 homozygous 16 dpp testes showed

that CpG dinucleotides in this region of the MMERVK10C

element are predominantly methylated in the testis at this age

(Figure S5). The MMERVK10C element was also methylated to a

similarly high level in liver taken from the same animals as a somatic

tissue control (Figure S5). The prepubertal testis is composed of

approximately equal numbers of germ cells and somatic cells at 16

dpp [29,30], therefore around half the clones analysed by bisulphite

sequencing are likely to be derived from testicular germ cells and

around half from testicular somatic cells. As all of the 16 dpp testis

clones represented highly methylated DNA sequences (Figure S5),

the MMERVK10C element appears to be highly methylated in

both the germ cell and somatic cell compartments of Tex19.1+/+

wild-type, Tex19.1+/2 heterozygous and Tex19.12/2 homozygous

16 dpp testes.

Although we have been unable to find any evidence that the

methylation status of MMERVK10C elements in the testis

changes in the absence of Tex19.1 (Figure S5), we cannot exclude

the possibility that the absence of Tex19.1 causes reduced DNA

methylation in a subset of MMERVK10C elements in the

genome, or in a subset of germ cells in 16 dpp testes. If only a

subset of germ cells have altered DNA methylation at

MMERVK10C elements in Tex19.12/2 mutant testes then we

estimate that this subset would need to represent less than 25% of

the germ cell population to be below our detection limit in this

assay (x2-test, p,0.05). Nevertheless, our observations that loss of

Tex19.1 causes the upregulation of MMERVK10C retrotranspo-

son elements in the testis, but not IAP or LINE elements,

combined with the absence of a detectable change in DNA

methylation levels in MMERVK10C elements in Tex19.12/2

knockout testes, suggests that Tex19.1-mediated repression of

retrotransposons may involve a mechanism that is distinct from

Dnmt3L/Miwi2/Mili-mediated repression of retrotransposons.

Thus we conclude that Tex19.1 is part of a novel genetic pathway

that represses retrotransposons in the male germline.

Discussion

The Tex19.12/2 Knockout Phenotype
This study describes the functional consequences of deleting the

pluripotency-associated Tex19.1 gene in mice. Our data shows that

loss of Tex19.1 causes impaired spermatogenesis and defects in

Phenotype of Tex19.12/2 Knockout Mice

PLoS Genetics | www.plosgenetics.org 10 September 2008 | Volume 4 | Issue 9 | e1000199



Figure 6. Expression of the endogenous retrovirus MMERVK10C is upregulated in Tex19.12/2 null testes. (A) Quantitative PCR showing
relative expression of retrotransposons and marker genes in testes from 16 dpp Tex19.12/2 knockout animals relative to their Tex19.1+/+ wild-type
littermates. Expression levels in cDNAs prepared from different animals were normalised to Sdmg1, animals represented in the first and third columns
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chromosome synapsis during meiosis. Mutations in genes that are

involved in various aspects of meiotic chromosome behaviour such

as the initiation of recombination between homologous chromo-

somes, or the assembly of the synaptonemal complex, all typically

cause defective chromosome synapsis during meiosis, and

apoptosis in the male germline [6,7]. However, although there is

some similarity between these phenotypes and the Tex19.1 mutant

phenotype, we have been unable to detect any localisation of

Tex19.1 to meiotic chromosomes by immunostaining testis

sections or testis chromosome spreads (R.O., data not shown).

Indeed our data suggest that Tex19.1 is a predominantly

cytoplasmic protein and is therefore unlikely to play a direct role

in meiotic chromosome behaviour. Thus, although Tex19.1

mutant mice exhibit defects in chromosome pairing during

meiosis, we do not believe that Tex19.1 is a component of

meiotic chromosomes and favour the interpretation Tex19.1 is

influencing meiotic chromosome behaviour indirectly.

Our finding that Tex19.1 is a predominantly cytoplasmic

protein in germ cells and embryonic stem cells contradicts a

previous study suggesting that Tex19.1 is a nuclear protein in

embryonic stem cells [17]. The reason for the discrepancy between

these studies is not yet clear. Kuntz et al. [17] raised monoclonal

antibodies to Tex19.1 and observed nuclear staining with those

antibodies in embryonic stem cells and pre-implantation embryos.

The Tex19.1 peptide used by Kuntz et al. [17] to raise the

monoclonal anti-Tex19.1 antibody is located C-terminally to the

peptide that we have used to raise the anti-Tex19.1 antibodies in

this study. Both peptides, and indeed the entire Tex19.1 open

reading frame, lie within a single exon. In our study we have

shown that Tex19.1 is predominantly cytoplasmic in embryonic

stem cells by immunostaining and by Western blotting of

subcellular fractions. We have also shown that Tex19.1 has a

predominantly cytoplasmic localisation in germ cells by immuno-

staining germ cells isolated from embryonic testes, by immuno-

histochemistry on wax sections of adult testis and by Western

blotting of subcellular fractions from prepubertal testes. Further-

more we have demonstrated the specificity of our antibody in the

assays that we use by immunostaining and Western blotting on

material from Tex19.12/2 knockout animals. As the cytoplasmic

anti-Tex19.1 staining patterns that we present in this paper are lost

in Tex19.12/2 knockout animals, at least some of the Tex19.1

protein that is present in germ cells and embryonic stem cells is

cytoplasmic. However we cannot exclude the possibility that the

two different antibodies raised in these two studies recognise

mutually exclusive isoforms of Tex19.1 that have different

subcellular localisations. Alternatively, the discrepancy between

our study and the study by Kuntz et al. [17] could be caused by

procedural differences, or by cross-reaction of anti-Tex19.1

antibodies with an unrelated antigen.

Tex19.12/2 null male mice showed some phenotypic variation

between individuals ranging from completely agametic testes to

fertility. This phenotypic variability may be partly due to the

genetic heterogeneity in the outbred component of the genetic

background used for this study. However, as some germ cells are

more severely affected by the loss of Tex19.1 than other germ cells

in the same animal, there is also some phenotypic variability in the

absence of genetic variation. Furthermore, our finding that loss of

Tex19.1 can impair spermatogenesis even in this heterogeneous

genetic background suggests that mutations in the single human

homologue, TEX19, could contribute to fertility problems in

human populations. The human TEX19 gene contains two

premature stop codons in the open reading frame that truncates

the Tex19 protein from 351 residues in mouse to 164 residues in

human [17]. The first premature stop codon in the human TEX19

gene is conserved in other primates suggesting that the C-terminal

region of Tex19 is dispensable for function in primates [17]. The

significance of this major difference in structure between human

and mouse is at present unclear given our current level of

understanding of the mechanisms underlying the phenotype in

mouse.

The Tex19 genomic locus has undergone a duplication event in

rodents to generate two closely related divergently transcribed

genes [17]. The mutation that we have engineered removes the

entire Tex19.1 open reading frame, but leaves Tex19.2 intact.

Therefore Tex19.2 could potentially provide some functional

redundancy with Tex19.1. Although Tex19.1 and Tex19.2 are

reported to be expressed in testicular germ cells and testicular

somatic cells respectively [17], there appears to be a moderate

upregulation of Tex19.2 in Tex19.12/2 knockout testes as judged

by quantitative RT-PCR (I.R.A., data not shown). It is not clear at

present whether this upregulation of Tex19.2 occurs in the germ

cells or somatic cells of the testis, but any upregulation of Tex19.2

that is occurring does not seem to be able to fully compensate for

loss of Tex19.1. Nevertheless, deletion of the entire Tex19 locus

may be required to rule out the possibility of some functional

redundancy between these genes and may reveal additional

functions for Tex19.1 in the germline.

This study demonstrates that Tex19.1 has a function in

progression through meiosis in the male germline. Characterisa-

tion of the meiotic defect in Tex19.12/2 knockout spermatocytes

indicates that homologous recombination is being initiated in the

Tex19.12/2 knockout spermatocytes but that, for some chromo-

somes, synapsis does not occur. As homologous recombination and

chromosome synapsis progress interdependently during meiosis, it

is possible that the chromosome synapsis defect that we describe in

Tex19.12/2 knockout spermatocytes is a secondary consequence

of a defect in the progression of homologous recombination, or a

secondary consequence of defects in the pairing between

homologous chromosomes that normally precedes chromosome

synapsis [7]. Further work is needed to dissect the molecular basis

of the Tex19.1 chromosome synapsis defect in more detail, and to

understand if and how the upregulation of MMERVK10C

retrotransposons that we detect in Tex19.12/2 spermatocytes

causes these defects in meiotic chromosome synapsis.

were littermates, and those in the second and fourth columns were littermates. Error bars indicate standard error. (B) Northern blot probed for
MMERVK10C env transcripts in Tex19.1+/+ wild-type and Tex19.12/2 knockout testes at 16 dpp. A schematic diagram showing the organisation of the
8.5 kb full-length MMERVK10C element and the predicted size and organisation of the env-containing transcripts (,8.5 kb and ,3.3 kb, [39]) is shown
above the Northern blot. Littermates are indicated with a black bar. 28S rRNA is shown as a loading control. (C–L) In situ hybridisation with an
antisense MMERVK10C probe (purple precipitate) in Tex19.1+/+, Tex19.1+/2 and Tex19.12/2 testes. Nuclei are counterstained with nuclear fast red. (C,
D, G, H) Low-level expression of MMERVK10C can be seen in some seminiferous tubules in Tex19.1+/+ and Tex19.1+/2 testes. However, MMERVK10C
transcripts are more abundant in testes from 16 dpp Tex19.12/2 animals than those from heterozygous or wild-type littermates. (K, L) MMERVK10C
transcripts are upregulated in meiotic spermatocytes in 16 dpp Tex19.12/2 mutant testes. (E, F, I, J) MMERVK10C transcripts are upregulated in
meiotic spermatocytes in testes from adult Tex19.12/2 knockout animals relative to their Tex19.1+/2 heterozygous littermates. (M, N) Control in situ
hybridisation with a sense MMERVK10C probe shows no staining in adult Tex19.1+/2 or Tex19.12/2 testes.
doi:10.1371/journal.pgen.1000199.g006
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Tex19.1 and Repression of Retrotransposons in the
Germline

The Tex19.1 mutant phenotype bears some resemblance to the

Dnmt3L, Miwi2 and Mili mutant phenotypes in that they all exhibit

defects in meiotic chromosome synapsis and increased expression

of retrotransposons in the germline [11–14]. However it is not yet

clear whether there is a direct causal relationship between these

two events. The increase in retrotransposon expression does not

appear to be caused by defects in meiotic chromosome synapsis

[11,13], but it is not clear whether or how the increase in

retrotransposon expression causes the defects in meiotic chromo-

some synapsis in any of these mutant mice. Increased transposition

of mobile genetic elements could introduce quantitative, qualita-

tive, or temporal changes in the DNA double strand breaks

normally present during early meiotic prophase that could

interfere with the homologous recombination events that normally

precede and initiate chromosome pairing. Support for this model

comes from the observation that mutating genes involved in

piRNA function in flies activates the DNA damage signalling

pathway [41,42]. Alternatively, it is possible that repression of

retrotransposons is important for the fidelity of homolog pairing

and synapsis during meiosis, and that increased expression of these

repetitive elements either interferes with homolog recognition and

synapsis, or promotes pairing between non-homologous chromo-

somes. A third possibility is that proteins encoded by the

MMERVK10C endogenous retrovirus mediate the defects in

meiotic chromosome synapsis by interfering with host cell proteins

involved in meiotic chromosome behaviour or regulation of the

meiotic cell cycle. In this regard it is important to note that

transgenic mice expressing the rec protein derived from the

HERVK human endogenous retrovirus exhibit defects in

spermatogenesis [43]. Lastly, there may not be a direct causal

relationship between retrotransposon de-repression and chromo-

some asynapsis. Rather the Tex19.1, Dnmt3L, Miwi2 and Mili

mutants may all cause defects in meiotic chromosome structure

that lead to both retrotransposon de-repression and defective

chromosome synapsis. Clearly further work is needed to clarify the

molecular mechanism underlying the chromosome synapsis defect

in the Tex19.1 mutant mice presented here, and in the Dnmt3L,

Miwi2 and Mili mutant mice [11–13]. However, this study

provides further evidence demonstrating a correlation between

de-repression of retrotransposons and impaired chromosome

synapsis during mouse meiosis.

Although there are gross similarities between the Tex19.1

mutant phenotype and the Dnmt3L, Miwi2 or Mili mutant

phenotypes, there are also important differences. Dnmt3L, Miwi2

and Mili are all required to repress LINE and IAP retro-

transposons in the germline, and these three genes appear to

converge on DNA methylation and transcriptional repression of

these sequences in the genome [11–14]. However, repression of

LINE and IAP retrotransposons is not perturbed in Tex19.12/2

knockout testes suggesting that Tex19.1 is not involved in the

transcriptional repression of LINE or IAP elements. Rather our

data shows that transcripts from the MMERVK10C class of

endogenous retroviruses accumulate in the germ cells in the

absence of Tex19.1. These differences between the Tex19.1 mutant

phenotype and the Dnmt3L, Miwi2 and Mili mutant phenotypes

may reflect the existence of multiple mechanisms with different

specificities to repress retrotransposons in the germline.

The Tex19.1 mutant phenotype is characterised by the

accumulation of MMERVK10C retrotransposon transcripts, but

the molecular basis for this phenotype is not yet clear. The

upregulation of MMERVK10C transcripts could be caused by

changes acting at any level of gene expression from the initiation of

transcription to mRNA turnover. We have not been able to find

any difference in the level of DNA methylation at MMERVK10C

elements in Tex19.1 mutant testes. This provides further evidence

that Tex19.1 belongs to a different genetic pathway than Miwi2,

Mili and Dnmt3L for repression of retrotransposons in the

germline. However, we cannot exclude the possibility that DNA

methylation may be altered in a subset of MMERVK10C

elements in a subset of germ cells in the Tex19.1 mutant testes,

and that this subset of elements is responsible for the upregulation

of MMERVK10C transcripts that we describe in the Tex19.1

mutant testes. An alternative model to explain the upregulation of

MMERVK10C elements in Tex19.1 mutant testes is that Tex19.1

could be a transcriptional repressor of MMERVK10C elements.

The nuclear localisation of Tex19.1 reported by Kuntz et al. [17]

would be consistent with this type of mechanism operating.

However, although we cannot exclude the possibility that some

Tex19.1 acts in the nucleus in the germ cells in the adult testes, our

finding that Tex19.1 is predominantly cytoplasmic in these cells

would be more consistent with Tex19.1 acting to regulate gene

expression at a post-transcriptional level. We are able to detect

MMERVK10C transcripts in wild-type testes (Figure 6B,G)

suggesting that some MMERVK10C transcripts must escape

DNA methylation or transcriptional repression, and that post-

transcriptional regulation of MMERVK10C mRNA may play a

role in repressing the activity of this retrotransposon. The

upregulation of MMERVK10C transcripts in Tex19.1 mutant

testes does not appear to be the result of changes in RNA splicing

as the MMERVK10C isoforms present in Tex19.1 mutant testes

do not appear to be qualitatively different from those present in

wild-type testes. However, the accumulation of MMERVK10C

transcripts in Tex19.1 knockout testes would be consistent with

Tex19.1 promoting degradation of MMERVK10C mRNA.

Investigation into the biochemical function of Tex19.1 should

provide a ready test of these models and generate some insight into

the molecular mechanism of Tex19.1-dependent repression of

MMERVK10C endogenous retroviruses.

Repression of retrotranposons in the mammalian germline

requires mechanisms to distinguish retrotransposons from endog-

enous genes to allow repression to be targeted to the correct loci.

piRNAs, a group of small RNAs that are physically associated with

the piwi class of proteins, are abundant in male germ cells and

some piRNAs have sequence homology to various classes of

retrotransposon [14,44–46]. The sequence homology between

some piRNA molecules and retrotransposons is presumably used

to target DNA methylation to retrotransposons rather than

endogenous genes. Although there is good genetic evidence that

the piwi class of proteins is involved in transcriptional repression of

retrotransposons [12–14], there is also good biochemical evidence

that piwi proteins and piRNAs are physically associated with the

translational machinery in male germ cells [46,47], suggesting a

role in translation or mRNA turnover. Thus piRNA-mediated

repression of retrotransposons may be working at multiple levels of

gene expression in male germ cells. It will be informative to

investigate whether the Tex19.1 pathway for repression of

retrotransposons that we describe here also utilises piRNAs to

target repression to MMERVK10C elements.

One of the interesting aspects of the Tex19.1 phenotype is that

although the MMERVK10C subclass of retrotransposons is

upregulated in Tex19.1 mutant testes, LINE, SINE and IAP

retrotransposons are not. It is not clear how Tex19.1 determines

specificity for the MMERVK10C element. Notably, IAP elements

belong to the same subclass of endogenous retroviruses as

MMERVK10C elements (class II LTR retrotransposons) but are

not upregulated in Tex19.1 mutant testes. Sequences within the

Phenotype of Tex19.12/2 Knockout Mice
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MMERVK10C promoter or transcript could be involved in

targeting Tex19.1 activity to this element. Alternatively Tex19.1

may have the potential to regulate a wider range of retro-

transposons than we have been able to identify here, but

alternative mechanisms to repress retrotransposon expression

during spermatogenesis, such as DNA methylation, may limit

the phenotypic effects of losing Tex19.1 to a subset of its potential

targets. Furthermore, as Tex19.1 expression is not restricted to

spermatogenesis but also occurs in primordial germ cells, oocytes

and pluripotent stem cells, it will be of interest to determine if

Tex19.1 is involved in repressing MMERVK10C elements and

other classes of retrotransposons in these cell types.

In addition to its role in the germline, Tex19.1 is also expressed

in pluripotent cells. Like germ cells, pluripotent cells are viable

targets for retrotransposon activity as any new transposition events

could be propagated through successive generations. Therefore

pluripotent cells presumably also need to modulate retrotranspo-

son activity to ensure that the mutational load on the genome is

not too high. Our finding that Tex19.12/2 homozygotes are born

at a sub-Mendelian frequency is consistent with a role for Tex19.1

in pluripotent cells in early embryonic development. Further work

is required to determine whether the loss of Tex19.12/2

homozygotes during embryogenesis is caused by defects in

pluripotent cells, and whether pluripotent cells upregulate retro-

transposon expression in Tex19.12/2 knockout embryos.

The ongoing battle between retrotransposons and the host

genome has important consequences for evolution, and for genetic

disease. Retrotransposons that can successfully evade genome

defences in germ cells and pluripotent cells will be selected for

during evolution, whereas germ cells and pluripotent cells are

under selective pressure to keep the mutational load on the

genome at sustainable levels. The striking differences in the

relative abundance of different classes of retrotransposable

elements between the mouse and human genomes suggest that

this conflict is ongoing during mammalian evolution [9]. Although

low levels of mutation and retrotransposition in the germline are

required to generate the genetic variation essential for evolution,

high levels of mutation or retrotransposition are deleterious to the

survival of a species. In humans, endogenous retroviruses with

intact coding sequences comprise a very small proportion of the

genome [48], yet intact endogenous retroviral particles are found

in human pluripotent stem cells, and in testicular germ cell

tumours where the expression of endogenous retroviral proteins

has been suggested to contribute to tumourigenesis [39,43,49].

Furthermore, a number of human genetic diseases are associated

with de novo mutagenic retrotransposition events that disrupt the

function of endogenous human genes [50,51]. Our data suggests

that Tex19.1 is part of a mechanism that protects the genome from

the deleterious effects of retrotransposon activity in the germline,

and thereby helps to maintain genomic stability through successive

generations.

Supporting Information

Figure S1 Validation of anti-Tex19.1 antibody specificity. (A–C)

In situ hybridisation for Tex19.1 (purple precipitate) on adult testis

sections. (A, C) In situ hybridisation with antisense Tex19.1 probe

gives signal in the outer region of seminiferous tubules where

spermatogonia and early spermatocytes are localized. (B) Hybrid-

isation with a sense probe does not lead to a signal. (D–F)

Immunohistochemistry with anti-Tex19.1 antibody (brown precip-

itate) on adult testis sections. (D) Anti-Tex19.1 antibodies stain

spermatogonia and early spermatocytes in the outer region of the

seminiferous tubules. (E) When the antibody is blocked with

immunising peptide (+pep) the signal is not present. (F)

Immunohistochemistry with anti-Tex19.1 antibodies on

Tex19.12/2 knockout testes gives no signal. (G–I) Immunofluo-

rescence on single cell suspensions from 14.5 dpc male embryonic

gonads. Isolated gonads were trypsinised to single cell suspensions,

then attached to poly lysine-coated slides, fixed with 4%

paraformaldehyde in PBS and immunofluorescence was per-

formed as described for cell spreads. Anti-Tex19.1 primary

antibody is shown in green, nuclei counterstained with DAPI are

shown in red. (G) Anti-Tex19.1 staining on a suspension of 14.5

dpc embryonic male gonadal cells gives strong signal in the germ

cells. This signal is predominantly localized to the cytoplasm (inset

in G). (H) This signal is not present when the antibody is blocked

with immunising peptide (+pep). (I) Anti-Tex19.1 antibodies give

no signal on gonadal cell suspensions from a 14.5 dpc male

Tex19.12/2 knockout embryo.

Found at: doi:10.1371/journal.pgen.1000199.s001 (4.2 MB TIF)

Figure S2 Tex19.1 does not co-localise with the nuage marker

Tdrd1 in the adult testis. Immunofluorescence staining of 6 mm

thick wax sections of paraformaldehyde-fixed adult testis. (A–C)

Anti-Tex19.1 antibodies (green) predominantly label the cyto-

plasm of spermatogonia (open arrowheads) and early spermato-

cytes (broad arrowheads). The anti-Tex19.1 antibodies are

distributed throughout the cytoplasm of these cells. DNA is

counterstained with DAPI (red). (D–F) Anti-Tdrd1 antibodies

(green) label elaborate punctate cytoplasmic structures in sper-

matocytes (broad arrowheads) and a single cytoplasmic spot in

round spermatids (narrow arrowheads). DNA is counterstained

with DAPI (red).

Found at: doi:10.1371/journal.pgen.1000199.s002 (1.4 MB TIF)

Figure S3 Tex19.12/2 knockout animals exhibit increased levels

of cell death in the testis. 6 mm thick wax sections of Bouin’s-fixed

testes were prepared, and the TUNEL assay for cell death

performed using the DeadEnd Fluorometric TUNEL System

(Promega) following the manufacturer’s instructions. (A–M)

TUNEL positive cells (green) in testes from Tex19.12/2 knockout

animals and Tex19.1+/2 heterozygous littermates. Nuclei are

counterstained with DAPI (red). Panels G, J and M are merged

images of panels E and F, and H and I, and K and L respectively.

TUNEL-positive metaphase I cells (arrows) can be seen in some

adult seminiferous tubules (E–G). Groups of TUNEL-positive cells

(asterisks) can also be seen within the pachytene spermatocyte

layer (arrowheads) of seminiferous tubules in adult (H–J) and

prepubertal (K–M) testes. (N) Tex19.12/2 knockout testes have

increased numbers of TUNEL-positive cells. For statistical analysis

TUNEL-positive cells were counted in 25 seminiferous tubule

cross-sections for each animal. At least three knockout and three

wild-type or heterozygous animals were analysed at each age.

Mean number of TUNEL-positive cells per 25 tubules and

standard error are indicated. Mann Whitney U-test was used as a

statistical test as the TUNEL positive cells are not normally

distributed. Tex19.12/2 animals exhibit a statistically significant

increase in the number of TUNEL-positive cells in the

seminiferous tubules of the testis in 19–22 days post partum

(dpp), 29–31 dpp, and in adult animals (Mann Whitney U-test,

p,0.01) as indicated by asterisks.

Found at: doi:10.1371/journal.pgen.1000199.s003 (3.7 MB TIF)

Figure S4 Histology of Tex19.12/2 mutant testes during

prepubertal development. Testis histology of Tex19.12/2 knockout

pups during the first wave of spermatogenesis. (A, E) At 14 days

post partum (dpp) some pachytene spermatocytes are present in

both knockout and wild-type testes and no obvious difference can

be seen between genotypes. (B, F) At 16 dpp more pachytene

Phenotype of Tex19.12/2 Knockout Mice
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spermatocytes are present and there is no obvious difference

between the cell types present in the testes of knockout and wild-

type littermates. (C, G) By 20 dpp, the germ cells appear to be

greatly reduced in number in Tex19.12/2 knockout testes (D, H)

At 29 dpp, round spermatids and some elongating spermatids are

present in heterozygous testes, but these cell types are reduced in

number in testes from Tex19.12/2 knockout littermates.

Found at: doi:10.1371/journal.pgen.1000199.s004 (6.2 MB TIF)

Figure S5 MMERVK10C retrotransposons show no detectable

change in DNA methylation status in Tex19.12/2 knockout testes.

A schematic diagram showing the genomic organisation of the 5-

end of the MMERVK10C retrotransposon is shown at the top of

the figure. The long terminal repeat (LTR), 59untranslated region

(59utr) and the start of the gag open reading frame are indicated,

and the region analysed by bisulphite sequencing shown below

with CpG dinucleotides indicated by grey circles. The DNA

methylation status of CpG dinucleotides in 30 independent clones

isolated from the liver or testes from 16 dpp Tex19.1+/+ wild-type,

Tex19.1+/2 heterozygous and Tex19.12/2 homozygous animals is

also shown. Black circles indicate methylated CpGs protected from

bisulphite conversion, white circles indictate unmethylated CpGs.

500 ng genomic DNA from these tissues was bisulphite treated

using the EZ DNA Methylation Gold kit (Zymo Research) then

used as a template for nested PCR using the primers 59-

AGGTTTATAAAAGTAGTATTAG-39 and 59- ATAACAAT-

TAAAACAATAACATA-39, then 59-TAAAAGTAGTAT-

TAGTTTTGGG-39 and 59-AAACAAACAACACAATCCCA-

39. The resulting 480 bp PCR product was then blunt-end cloned

into pBluescript II SK+ (Stratagene) and independent plasmid

clones were isolated and sequenced. Around 95% of the non-CpG

cytosine residues were converted to thymine in the analysed

sequences indicating succesful bisulphite conversion.

Found at: doi:10.1371/journal.pgen.1000199.s005 (8.2 MB TIF)

Table S1 Primer sequences.

Found at: doi:10.1371/journal.pgen.1000199.s006 (0.02 MB

DOC)
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