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The gateway reflex is a new phenomenon that explains how immune cells bypass the 
blood–brain barrier to infiltrate the central nervous system (CNS) and trigger neuroin-
flammation. To date, four examples of gateway reflexes have been discovered, each 
described by the stimulus that evokes the reflex. Gravity, electricity, pain, and stress have 
all been found to create gateways at specific regions of the CNS. The gateway reflex, 
the most recently discovered of the four, has also been shown to upset the homeostasis 
of organs in the periphery through its action on the CNS. These reflexes provide novel 
therapeutic targets for the control of local neuroinflammation and organ function. Each 
gateway reflex is activated by different neural activations and induces inflmammation at 
different regions in the CNS. Therefore, it is theoretically possible to manipulate each 
independently, providing a novel therapeutic strategy to control local neuroinflammation 
and peripheral organ homeostasis.

Keywords: gateway reflex, inflammation amplifier, central nervous system, chemokines, pathogenic CD4+ T cells, 
blood-brain barrier

iNTRODUCTiON

The nervous system can sense various environmental stimulations such as light, sound, and 
temperature through the activation of specific neurons. In addition, events in social interactions 
that cause psychological alterations such as anxiety, depression, or euphoria can be regarded as 
environmental stimulations. These stimuli can cause chronic stress that is detrimental to health.  
A well-defined mechanism is the release of corticosteroid hormones via the hypothalamus–pitui-
tary–adrenal grand axis, which systemically modulates immune responses (1, 2). In addition to 
systemic regulation, there exist local regulations of the inflammatory status by specific neural activa-
tions. For example, sensory neural stimulation in the soleus muscles by gravity induces chemokine 
expressions in the dorsal vessels of the fifth lumbar (L5) but not at other levels of the spinal cord via 
sympathetic (adrenergic) nerve activation (3). In the case of an animal model of multiple sclerosis 
(MS), experimental autoimmune encephalomyelitis (EAE), chemokine upregulation triggers the 
infiltration of central nervous system (CNS)-autoreactive CD4+ T cells (pathogenic CD4+ T cells) 
from the L5 dorsal vessels into the CNS (3). This unexpected neuro-immune interaction led us to 
hypothesize that other specific neural stimulations may locally affect immune reactions and organ 
functions in different ways. Local neuro-immune communications can have pro-inflammatory 
(3, 4) and anti-inflammatory effects (5–10). In this review, we summarize specific neuro-immune 
interactions that regulate neuroinflammation and organ homeostasis.
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FiGURe 1 | Inflammatory reflex. Afferent (1) and efferent vagus nerve (2) 
stimulation by systemic pro-inflammatory cytokines and/or pathogen-
associated molecular patterns (PAMPs) during septic shock, ischemia–
reperfusion injury, and other inflammatory conditions induces neural activation 
in the celiac ganglion (3), followed by the production of norepinephrine (NE) 
from the splenic nerves (4). NE (5) stimulates the release of acetylcholine from 
a novel CD4+ T cell subset that expresses choline acetyltransferase and β1/2 
adrenergic receptor (AR) (6). Released acetylcholine (6) acts on macrophages 
expressing α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit the 
expression of pro-inflammatory cytokines including TNFα. It is suggested that 
C1 neurons in the medullary reticular formation of the brain mediate the 
anti-inflammatory effect.
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THe iNFLAMMATORY ReFLeX

Because clinical studies indicated that nicotine administration 
or smoking can improve colon inflammation, Dr. Kevin Tracey 
and his colleagues hypothesized that the parasympathetic (cho-
linergic) nervous system may regulate an inflammatory response 
(6, 11–13). Using a murine model of sepsis, they demonstrated 
that activation of the vagus nerves, which mainly consist of 
parasympathetic nerves, inhibits systemic inflammation. They 
termed this neural reflex as the “inflammatory reflex” (14–18). 
In this example of the inflammatory reflex, lipopolysaccharide 
(LPS) injection in mice induced norepinephrine (NE) secre-
tion in the spleen through the activation of splenic and vagus 
nerves. They found a novel subset of CD4+ T cells that produce 
acetylcholine in response to NE. The released acetylcholine 
was found to act on macrophages that express α7 nicotinic 
receptor and suppress the LPS-induced inflammatory response 
(Figure 1) (14). This cascade also promotes anti-inflammatory 
reactions during ischemia–reperfusion injury (5, 7). A more 
recent study revealed that direct stimulation of C1 neurons in  
the medullary reticular formation of the brain conferred the same 
anti-inflammatory effect (5). It is also reported that stimulating 
mice by electroacupuncture at the Zusanli acupoint (ST36) 
located near the common peroneal and tibial branches of the 
sciatic nerve or by direct stimulation of the sciatic nerve inhibits 
septic shock through vagal activation and dopamine produc-
tion (9). Furthermore, local ultrasound also induces the anti-
inflammatory splenic neuro-immune interaction (19). Recently, 
the inflammatory reflex has been tested in a first-in-human trial 

with promising results (20). These findings solidify a scientific 
basis for acupuncture and physical therapy.

THe GATewAY ReFLeXeS

Gravity-Gateway Reflex
Since the CNS historically has been considered as an immuno-
logically privileged site due to the blood-brain barrier (BBB) 
(21), we wondered where and how immune cells invade the 
CNS to cause neuroinflammation. Through a series of experi-
ments using EAE, we found that regional neural activation by 
the soleus muscle, which senses gravitational force, determines 
the location of immune cell entry into the CNS by altering the 
properties of blood vessels (3). To the best of our knowledge, 
this was the report that linked gravity and local inflammation 
through neuro-immune interactions.

The BBB is formed by tight cell-cell interactions between peri-
cytes, endothelial cells, and astrocyte end-feet. Tight junctions 
are critical for separating the blood and cerebrospinal fluid (22). 
However, the barrier is not perfect, and it is widely recognized 
that immune cells can invade the CNS to cause autoimmune 
diseases such as MS. Recent studies have demonstrated the pres-
ence of CNS lymphatic vessels that connect to the cervical lymph 
nodes and may serve as an exit for immune cells from the CNS 
(23, 24). It is also known that breaching of the BBB is observed 
in neurodegenerative diseases such as Alzheimer’s disease and 
Parkinson’s disease (25). Inflammation is a key component 
to modulate the integrity of the BBB, and pro-inflammatory 
cytokines including IL-1β, IL-17A, IFNγ, and TNFα are known 
to increase BBB permeability (26, 27).

Multiple sclerosis is a chronic inflammatory disease in the 
CNS that is characterized by impairments in sensory, motor, 
autonomic, and cognitive functions due to demyelination (28). 
Genetic factors strongly contribute to the pathogenesis of MS. 
Genome-wide association studies showed that certain alleles 
of major histocompatibility complex (MHC) class 2 and genes 
involved in CD4+ T  cell activation and survival are genetically 
associated with MS development (29–33). These genetic data 
strongly suggest that autoreactive CD4+ T cells are essential for 
the pathogenesis of MS. Animal models of MS including EAE 
also demonstrated the pivotal role of autoreactive CD4+ T cells  
(3, 4, 34–36). Thus, suppression of the differentiation and acti-
vation of CD4+ T cells to autoreactive pathogenic T cells or block-
ade of their entry into the CNS could be a promising therapeutic 
strategy for MS.

Clinical symptoms of MS are dependent on the location of 
the demyelination, and MS patients show various damaged CNS 
sites. Given the wide distribution of a target autoantigen myelin 
in the white matter of the CNS (28, 33, 37), the heterogeneity 
of the damaged sites in each patient suggests an unknown 
mechanism. To identify the initial invasion site(s) of pathogenic 
CD4+ T  cells into the CNS, we used an adoptive transfer of 
CNS-autoreactive CD4+ T cells to cause EAE (pathogenic CD4+ 
T cells) and made whole-mount frozen sections of adult mice. 
These sections were made just before the onset of EAE clinical 
symptoms to find the first entry site of the pathogenic CD4+ 
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FiGURe 2 | Gravity-gateway reflex. Gravity stimulation (1) induces the 
activation of sensory nerves in the soleus muscles (2). The cell bodies of 
these neurons are present at the dorsal root ganglion (DRG) of the fifth 
lumbar (L5) spinal cord (3). Neural signals through the L5 DRG neurons are 
transmitted to sympathetic ganglion nearby (4) and activate sympathetic 
nerves (5), leading to NE secretion (6) at the L5 dorsal vessels. NE boosts  
the inflammation amplifier (red circle) there, causing chemokine production 
including CCL20 and recruitment of pathogenic CD4+ T cells that express 
CCL20 receptor, the receptor for CCL20 (7).
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T  cells. This analysis revealed that pathogenic CD4+ T  cells 
mainly accumulated at the dorsal vessels of the L5 spinal cord 
but not in the upper spinal levels or brain at the preclinical time 
point. Compared to the dorsal vessels of the L1 spinal cord, many 
chemokines, including CCL20, which attracts IL-17-secreting 
type-17 CD4+ T (Th17) cells that have a vital pathogenic role in 
EAE (38, 39), are upregulated in the L5 dorsal vessels. Indeed, 
the L5 accumulation of pathogenic CD4+ T cells was inhibited 
by anti-CCL20 antibody treatment or by using CCL20 receptor-
deficient CD4+ T cells. Even without EAE induction, chemokine 
levels were higher in the L5 dorsal vessels than in the L1 cord, 
although the levels were lower than those seen in the pathologi-
cal condition of EAE. These results suggest that L5 dorsal vessels 
have some unique property under both normal and disease 
conditions. It is known that the L5 spinal level has the largest 
dorsal root ganglion (DRG) among spinal levels in both human 
and mice, and it is reported that L5 DRG neurons are connected 
to the soleus muscles, which are the main anti-gravity muscles 
and are activated even in steady state (40, 41). These facts led 
us to hypothesize that gravity stimulation to the soleus muscles 
may activate the L5 dorsal vessels to produce the chemokines 
that form the initial gateway for pathogenic CD4+ T  cells.  
We examined this possibility using a ground test employed by 
the National Aeronautics and Space Administration (42). When 
normal mice were suspended by tail in a handstand position to 
free the hind legs from gravity stimulus, the chemokine expres-
sions of the L5 dorsal vessels decreased and pathogenic CD4+ 
T  cells failed to accumulate at L5. The cells instead invaded  
the cervical cords as if another gateway had been formed in 
response to the greater gravity stimulation on the arm muscles 
due to the tail suspension. Consistently, the tail suspension sig-
nificantly decreased the expression levels of c-Fos, a marker for 
neural activation, in the L5 DRG. In addition, when the soleus 
muscles of the suspended mice were stimulated by weak electric 
pulses, chemokine and c-Fos expression levels and pathogenic 
CD4+ T cell accumulation at the L5 dorsal vessels were restored 
(3). These data suggest that regional sensory neural activation 
by gravity mediates local inflammation at L5 dorsal blood 
vessels, representing a novel neuro-immune interaction—the  
gravity-gateway reflex (14, 16–18, 43–46).

Since the autonomic nervous system mainly controls the 
function of blood vessels, its involvement in the gravity-gateway 
reflex was suggested. Neural activation based on c-Fos levels was 
higher in sympathetic ganglions of the L5 level than in those of 
L1. In addition, after tail suspension, blood flow speed at the 
L5 dorsal vessels became slower whereas in other blood vessels 
including L1 dorsal vessels, portal vein, or femoral artery it was 
not significantly affected. Furthermore, the slowed speed at the 
L5 dorsal vessels was recovered by electronic stimulation to the 
soleus muscles. These results suggest that autonomic nerves, 
particularly sympathetic nerves, could be involved. Function-
ally, pharmacological blockade of β-adrenergic receptors or 
chemical sympathectomy inhibited chemokine expressions and 
pathogenic CD4+ T cell accumulation at the L5 dorsal vessels and 
suppressed the severity of EAE (3). Thus, the gravity-gateway 
reflex involves local sensory-sympathetic communications for 
the gateway formation at the L5 dorsal vessels (Figure 2). These 

results represented the first example of a local neuro–immune 
interactions that regulate the condition of specific blood vessels 
to promote chemokine expression. Moreover, because gravity 
is an inevitable stimulus to land animals, the gravity-gateway 
reflex may have a physiological role that we have acquired during 
evolution. It also bears consideration for the health of astronauts 
and future space exploration.

electric-Gateway Reflex
We next examined whether the gateway reflex is a specific 
property of the soleus–L5 axis and whether it can be artificially 
manipulated. We found that weak electric stimulation of neu-
rons in different muscles of mice can create gateways at different 
levels of the spinal cord. For example, electric stimulation of the 
quadriceps, which are controlled by L3 DRG neurons, induced 
chemokine expressions at the L3 dorsal vessels. Moreover, 
stimulation of the forefoot muscles upregulated chemokines 
levels at the dorsal vessels in the cervical to thoracic spinal 
cords (Figure  3) (3). We termed this artificial control of the 
immune cell gateway in the BBB as the electric-gateway reflex. 
These results indicate that the gateway reflex can be artificially 
controlled and suggest a possible therapeutic target for CNS 
inflammatory diseases such as MS.

Pain-Gateway Reflex
We also investigated other sensory inputs on the gateway reflex. 
We focused on pain sensation because it is a tonic sensory 
stimulation (47, 48) and a common undesirable symptom that 
significantly compromises the quality of life in various diseases (49). 
It is reported that disease severity and pain occurrence in MS are 
positively correlated (50–52), and a change in pain sensation is 
described during EAE (53). In the adoptive transfer EAE model, 
we used recipient mice develop paralysis around 10 days after 
the transfer of pathogenic CD4+ T cells and then recover from 
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FiGURe 4 | Pain-gateway reflex. Pain-induced sensory stimulation (1, 2) 
induces the activation of the anterior cingulate cortex (ACC), a pain-
processing region in the brain (3), which leads to the activation of specific 
sympathetic nerves (4), followed by norepinephrine (NE) secretion around the 
ventral blood vessels of the spinal cords (5). Because major histocompatibility 
complex (MHC) class 2HiCD11b+ monocytes are most abundant in the fifth 
lumbar spinal cord (L5), the L5 region is mainly affected after pain induction. 
NE secreted around the ventral blood vessels stimulates the production of 
chemokine CX3CL1 from MHC class 2HiCD11b+ monocytes. Because MHC 
class 2HiCD11b+ monocytes express CX3CL1 receptor CX3CR1, a positive 
loop is formed to recruit more of them (6). MHC class 2HiCD11b+ monocytes 
have an ability to antigen presentation to pathogenic CD4+ T cells, leading to 
their invasion (7) and subsequently cause disease relapse.

FiGURe 3 | Electric-gateway reflex. Neural activation using weak electric 
stimulation can induce the gateway reflex. Electric stimulation to the triceps 
induces chemokine upregulation at the dorsal vessels of the fifth cervical (C5) 
to fifth thoracic (T5) spinal cord via the inflammation amplifier activation (red 
circles). Likewise, electric stimulation of the quadriceps triggers chemokine 
upregulation at the L3 dorsal vessels, whereas the L5 gateway is formed by 
electric stimulation to the soleus muscles.
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EAE symptoms thereafter. To investigate how pain sensation 
affects EAE symptoms, we induced pain sensation in mice by 
surgical ligation of the middle branch of the trigeminal nerves, 
which are exclusively composed of sensory nerves (54). The pain 
induction at the time of pathogenic CD4+ T cell transfer signifi-
cantly deteriorated EAE symptoms. By contrast, treatment with 
pain medicines inhibited EAE development (4). Thus, pain is 
not only an index of the disease status but also plays a patho-
genic role during EAE development. Since many MS patients 
show relapse, and MS patients showing higher disease scores 
more frequently claim pain (50, 51), we examined the impact of 
pain induction during a remission phase of EAE. As expected, 
mice recovered from EAE clearly relapsed into paralysis upon 
trigeminal nerve ligation as well as by injection of pain-causing 
chemicals such as substance P and capsaicin (4). As described 
earlier, the initial gateway is the dorsal vessels of the L5 spinal 
cord during the first episode of EAE (3). To identify the immune 
cell gateway during the pain-induced relapse, we performed 
immunohistological examination of EAE mice in remission 
phase (EAE-recovered mice). Although the appearance and 
motility of EAE-recovered mice were indistinguishable from 
normal healthy mice, high numbers of periphery-derived acti-
vated monocytes expressing high levels of MHC class 2 (MHC 
class 2HiCD11b+ cells) were found around the meningeal region 
of the L5 cord. Interestingly, pain induction directed these cells 
to the ventral but not dorsal vessels of the L5 cord. Furthermore, 
activation of NE signal transduction was evident around the L5 
ventral vessels, and MHC class 2HiCD11b+ monocytes secreted 
CX3CL1 following NE stimulation at least in vitro, suggesting an 
autocrine/paracrine loop for MHC class 2HiCD11b+ monocyte 
accumulation. Following the monocyte accumulation at the 
L5 ventral vessels, pathogenic CD4+ T  cells in the blood flow 
invaded from the vessels to the spinal cord parenchyma. Thus, 
L5 ventral vessels are the gateway during pain-induced relapse 
in the EAE model (Figure  4). The pain-induced EAE relapse 

can be inhibited by genetic or pharmacological suppression 
of the pain sensory pathway or by chemical ablation of the 
sympathetic nerves, suggesting the involvement of a sensory– 
sympathetic communication akin to the gravity-gateway reflex (4).  
We hypothesize that systemic hormonal stress responses do not 
contribute to the pain-gateway reflex because transient stress 
loading by immobilization or by forced swimming did not induce 
EAE relapse despite equivalent levels of serum corticosterone, 
NE, and epinephrine to those induced by the pain model (4).  
These results suggest that various sensory stimuli trigger 
gateway reflexes at different regions of the CNS and implicate 
that pain control may be beneficial for preventing the relapse of 
neuroinflammation.

Stress-Gateway Reflex
It is well known that chronic stresses exacerbate illness. Chronic 
stress conditions often cause gastrointestinal (GI) diseases via 
the brain–gut axis. However, the molecular mechanism remains 
poorly understood. Because stresses are associated with neural 
activation involving brain regions such as the paraventricular 
nucleus (PVN), the dorsomedial nucleus of hypothalamus 
(DMH), the dorsal motor nucleus of the vagus nerve (DMX), 
and the vagal nerve pathway (55), we hypothesized that chronic 
stresses might activate another specific gateway reflex in the 
brain. Under chronic stress conditions such as sleep disturbance, 
we serendipitously found that EAE caused severe GI dysfunction 
with high mortality (56). While donor pathogenic CD4+ T cells 
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FiGURe 5 | Stress-gateway reflex. Under a chronic stress condition, 
experimental autoimmune encephalomyelitis mice showed high mortality  
that was associated with severe gastrointestinal (GI) failure. Chronic stress 
induces activation of the paraventricular nucleus (PVN) (1), which activates 
neurons connecting to the specific blood vessels of the boundary region  
of the third ventricle, dentate gyrus, and thalamus to establish 
microinflammation in the brain (2). The resulting microinflammation activates  
a resting neural pathway to the dorsomedial nucleus of hypothalamus (DMH) 
(3) and dorsal motor nucleus of the vagus nerve (DMX) (4) to cause severe 
upper GI tract failure (5). The upper GI tract failure results in the increase of 
potassium ions in the blood (6), which finally causes heart failure with cardiac 
myocyte necrosis (7).
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accumulated at the L5 dorsal vessels under normal condition 
due to the gravity-gateway reflex (Figure 2), the stress condition 
directed them to invade at specific vessels of the boundary area 
to establish brain microinflammation. Therefore, chronic stresses 
can change the immune cell gateway from L5 to brain. Indeed, 
chemokine expressions in the specific vessels of the boundary 
area of the third ventricle (3V), dentate gyrus, and thalamus 
increased, whereas those in the L5 dorsal vessels decreased in 
EAE mice under chronic stress (56).

The resulting microinflammation in the brain specifically 
enhanced a novel neural pathway that includes the PVN, DMH, 
and vagal neurons. Neural tracing revealed neural connections, 
particularly TH+ noradrenergic connections, from the PVN to 
the specific vessels and from the specific vessels to the DMH, 
which does not consist of TH+ connections. Since the PVN is 
a principal integrator of stress signals, activation of the PVN is 
expected to influence specific blood vessels via the new identi-
fied neural circuit. Chemokine expressions including CCL5 at 
the specific vessels were upregulated in mice with stress only. 
In the presence of pathogenic CD4+ T  cells in stressed mice, 
these cells detect the chemokine upregulation, causing brain 
microinflammation at the specific vessels of the boundary 
region of the 3V, dentate gyrus, and thalamus, followed by the 
accumulation of various immune cells including periphery-
derived MHC class 2HiCD11b+ cells (56). It is well known that 
an inflammatory response involves the production of various 
substances such as ATP that can serve as both inflammatory 
mediator and neurotransmitter (57, 58). We therefore tested an 
ATP receptor antagonist injected at the specific blood vessels 
of the boundary area of the 3V, dentate gyrus, and thalamus 
and found that neural activation in the DMH region was clearly 
inhibited, with a significant improvement in the mortality rate 
of EAE mice with stress. Furthermore, inhibition of the brain 
microinflammation by cytokine neutralization or blockage of 
the neural pathway also suppressed the GI dysfunction and 
improved mortality (56). We examined whether microinflam-
mation at the specific blood vessels is sufficient for stress–EAE 
phenotypes. Importantly, direct injection of cytokines or ATP 
at the specific vessels established severe GI failure in mice 
with stress. These results suggest that microinflammation at 
the specific vessels turns a resting neural pathway on via ATP 
production, and the ATP-induced neural activation to the DMH 
region strongly enhances the stress response to cause severe GI 
damages via the DMX (Figure 5). These results reveal a direct 
association between brain microinflammation and GI homeo-
stasis through a newly established specific neural pathway under 
chronic stress conditions (56). We defined this phenomenon as 
the stress-gateway reflex. Several studies suggest a cooccurrence 
of MS and inflammatory bowel diseases (59–63). Moreover, 
microinflammations in the brain can be observed in patients 
with neurodegenerative diseases such as Parkinson’s disease, 
Alzheimer’s disease, non-Alzheimer type dementia (64, 65), 
epilepsy (66), and psychological disorders (67). In addition, 
cerebral microbleeding is known to be a risk factor for dementia 
(68). We therefore suggest that brain microinflammations could 
act as a switch to turn on new neural pathways to control organ 
homeostasis including the brain itself, that several comorbidities 

might be influenced by the presence of brain microinflammation 
observed in many diseases, and that circulating CD4+ T cells can 
be a biomarker and therapeutic target for stress-induced organ 
dysfunction.

In the gateway reflexes, neural activations induce chemokine 
production from vascular endothelial cells using the inflamma-
tion amplifier, a mechanism in which the concomitant activation 
of NF-κB and STATs in non-immune cells, such as fibroblasts 
and endothelial cells, leads to the hyperactivation of NF-κB 
(Figure 6). The inflammation amplifier is involved in the patho-
genesis of several disease models in mice, and evidence of its 
activation has been demonstrated in human clinical specimens 
(69–74). Since neurotransmitters such as NE can promote NF-κB 
activity (75), they enhance the amplifier to further induce NF-κB 
target genes including chemokines (Figure 6) (3). Further details 
about the inflammation amplifier can be found in other review 
articles (69, 76).

A MYeLOiD SUBSeT THAT MeDiATeS 
THe GATewAY ReFLeX

The gateway reflex suggests artificial stimulation of the appropri-
ate neurons can have a potential clinical application. Analogously, 
vagal nerve stimulation has been tested to modulate the inflam-
matory reflex in rheumatoid arthritis patients with positive 
results (20). Another possibility would be to target specific cell 
type(s) involved in the gateway reflex. During the study of the 
pain-gateway reflex, we found that periphery-derived MHC class 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 6 | Inflammation amplifier. In the inflammation amplifier, a concurrent 
activation of the transcription factors NF-κB and STATs in non-immune cells 
including vascular endothelial cells and fibroblasts induces a multiplier effect 
on the production of growth factors (GF), chemokines, and cytokines such  
as IL-6. Various factors activating NF-κB and STATs can operate the amplifier. 
IL-6 can act on non-immune cells to form an amplifying loop. Excessive 
production of chemokines and GF through activation of the inflammation 
amplifier play a key role in the pathogenesis of many chronic inflammatory 
diseases. DC, dendritic cells; NK, natural killer cells; NE, norepinephrine;  
Th, helper T cells.
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2HiCD11b+ monocytic myeloid lineage cells play an essential 
role in pain-induced EAE relapse (Figure  4), suggesting that 
these are a possible cellular target to control the gateway reflex. 
Local depletion of MHC class 2HiCD11b+ monocytes in the CNS 
significantly suppressed EAE relapse by pain sensation. Systemic 
depletion of pathogenic CD4+ T  cells in EAE-recovered mice 
also inhibited relapse of EAE, but MHC class 2HiCD11b+ mono-
cytes still accumulated around the ventral vessels of the L5 cord. 
These data indicate that the migration of MHC class 2HiCD11b+ 
monocytes to the L5 ventral vessels by the pain-gateway reflex 
precedes pathogenic CD4+ T cell invasion and is a critical step 
for the relapse of EAE (4). Experiments using parabiosis showed 
that MHC class 2HiCD11b+ monocytes are derived from the 
periphery, infiltrate the CNS during the first symptom of EAE, 
and have long life span in the CNS. Interestingly, the pharma-
cological blockade of N-methyl-d-aspartic acid (NMDA) recep-
tor at the anterior cingulate cortex, where the pain-mediated 
sensory signal transits to a sympathetic signal, inhibited the 
pain-induced accumulation of MHC class 2HiCD11b+ monocytes 
in EAE-recovered mice, while activating this neural pathway by 
the injection of a NMDA receptor agonist induced the accu-
mulation of the cells even without pain induction (4). Similar 
periphery-derived MHC class 2HiCD11b+ monocytic cells were 
also detected in the specific vessels of EAE mice under stress 
conditions (56). These results suggest that periphery-derived 
MHC class 2HiCD11b+ monocytic cells are a unique myeloid 
subset that serves as an interface for neuro-immune interactions 
during the gateway reflex and is a potential cellular target for the 
treatment of inflammatory diseases in the CNS.

PeRSPeCTive

Growing evidence has demonstrated significant functions of 
specific regional neuro-immune interactions during inflamma-
tion and disease. As described in this review, vagus and splenic 
nerve-mediated control of specific subsets of CD4+ T  cells 
and macrophages that produce and respond to acetylcholine 
is a main axis of the inflammatory reflex (14–18, 77). For the 
gateway reflexes, different players including CNS-reactive 
pathogenic CD4+ T  cells and periphery-derived MHC class 
2HiCD11b+ monocytic cells drive the response (3, 4, 44, 45, 56).  
Recently, a pilot study was performed that stimulated the vagus 
nerve of seven Crohn’s disease patients, and five patients showed 
deep remission at 6  months of follow-up without major side 
effects (78). In addition, Koopman et  al. showed that vagus 
nerve stimulation in rheumatoid arthritis patients significantly 
improved disease severity with reduced TNF production (20). 
To activate specific neurons from the body surface to induce 
desired effects, elucidation of the precise neural networks 
for both reflexes is anticipated. Although identification of the 
detailed neural pathways is challenging, recently developed 
imaging techniques that use a tissue decoloring reagent, CUBIC 
(79–81), in conjunction with various neural tracers and trans-
genic mice will help. Further investigation of the gateway reflexes 
in response to various stimuli will also help identify novel 
functional neural connections that govern organ homeostasis or 
pathogenesis associated with local inflammation. Mapping of the 
neural connections and identifying more examples of gateway 
reflexes could lead to the elucidation of physiological functions 
of the gateway reflexes, which are currently not clear. In addi-
tion, whether the MHC class 2HiCD11b+ monocytic lineage and 
brain microinflammation-inducing CD4+ T cells are present in 
humans is an unanswered question. To do so, specific markers 
for these cell types are needed.

Because neuronal circuits run throughout the whole body 
and because immune cells (10, 82–84) and non-immune cells 
(3, 4, 56) can secrete and respond to neurotransmitters, specific 
local neuro-immune interactions such as the gateway reflex and 
inflammatory reflex have tremendous therapeutic potential for 
the treatment of various diseases without any major systemic 
side effects.
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