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Pytheas: a software package for the automated
analysis of RNA sequences and modifications
via tandem mass spectrometry
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Mass spectrometry is an important method for analysis of modified nucleosides ubiquitously
present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles
in MRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of
nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics.
To provide an analytical tool for sequence characterization of modified RNAs, we developed
Pytheas, an open-source software package for automated analysis of tandem MS data for
RNA. The main features of Pytheas are flexible handling of isotope labeling and RNA mod-
ifications, with false discovery rate statistical validation based on sequence decoys. We
demonstrate bottom-up mass spectrometry characterization of diverse RNA sequences, with
broad applications in the biology of stable RNAs, and quality control of RNA therapeutics and
mRNA vaccines.
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ibonucleic acid (RNA) is a biomacromolecule that is

decorated with chemical modifications in almost all

organisms!. More than 170 post-transcriptional modifica-
tions (PTxMs) of various chemical complexity have been
identified? and reported in publicly available repositories such
as MODOMICS! and RNAMDB3. PTxMs are present in
transfer RNA (tRNA), ribosomal RNA (rRNA), messenger RNA
(mRNA), expanding the chemical diversity afforded by the four
canonical nucleotides*. Growing evidence indicates that mod-
ified ribonucleosides affect RNA structure and folding, intra-
molecular interactions®>, and stability. They have been
associated with translation and decoding®, gene expression
control’, bacterial antibiotic resistance8, immunomodulation®,
development* and human diseases!®. Further, nucleoside
modifications are ubiquitous features of many RNA ther-
apeutics from antisense and siRNA to mRNA!L, For example,
an outbreak of coronavirus disease 2019 (COVID-19) has
speeded up the emergence of Pfizer/BioNTech and Moderna
vaccines containing N1-methylpseudouridine modified mRNA
as a key element!?. Given these considerations, it is of para-
mount importance to be able to identify and quantify RNA
modifications in a broad class of RNA molecules.

The two commonly employed approaches to study PTxMs
are next-generation sequencing (NGS) and tandem mass spec-
trometry coupled with liquid chromatography (LC-MS/
MS)13:14, Although NGS-based high-throughput methods are
becoming the de facto technique for RNA modification analysis
due to the high sensitivity and broad coverage, MS remains an
important orthogonal approach that helps to address the
existing limitations (see Table 1 for comparison of the two
methods). Importantly, LC-MS/MS allows the simultaneous
direct detection of many modifications, via the mass shifts
induced by the natural or artificial chemical derivation of
canonical ribonucleosides. In fact, MS is a primary method to
identify modifications in abundant cellular RNAs, that can be
easily isolated or enriched, such as rRNA and tRNA!4, Another
great advantage of MS is the opportunity to couple identifica-
tion with relative and absolute quantification of modifications,
to study their biological functions.

In a typical bottom-up MS experiment, the RNA of interest is
cleaved site-specifically with an endonuclease and the digestion
products are chromatographically separated before entering the
mass spectrometer. The collision-induced dissociation (CID) of
the charged RNA oligonucleotides yields sequence-informative
product ions (or MS2 fragments) that have been characterized by
McLuckey et al. as early as 19921>16, With the exception of a few
pioneer programs!”-18, the first automation of the RNA spectra
analysis emerged only in 2009, when Ariadne, a software tool,
allowed for the first time to match experimental MS/MS spectra
against a database of predicted spectra, to identify modified RNA
sequences!®. However, the recent methodological advances such
as improved instrumentation speed, sensitivity?%2!, new isotope
labeling schemes, and newly identified ribonucleases with distinct
cleavage specificity?2, were not supported by a parallel develop-
ment of data analysis tools?3. In fact, the amount of software for

large-scale LC-MS/MS analysis of RNA including Ariadne,
RNAModMapper?4 and most recently NASE?® is very modest
compared to number of tools available for proteome MS26, and
until now analytical workflows often rely on time-consuming
manual curation of RNA spectra.

Here we introduce Pytheas, a flexible software package that
conveniently encompasses many useful features for automated
analysis of RNA tandem MS data. Pytheas performs in silico
digestion of the given RNA sequences, then matches theoretical
spectra against the acquired MS/MS data, via an empirical scoring
function. Pytheas allows the user to visualize the annotated
spectra and map RNA modifications on the input sequence.
Global statistical analysis of the spectral matches and false dis-
covery rate (FDR) calculation based on a target-decoy approach?’
help to monitor the quality of the database matching process, and
to filter out low-confidence identifications. Finally, Pytheas is
designed to accommodate custom nucleoside chemistry and
isotope labeling and provides a detailed output suitable for
downstream applications such as quantitative analysis of RNA
modifications.

Results
Pytheas search algorithm and scoring function. The Pytheas
data analysis workflow consists of five major steps (Fig. 1a): in
silico digestion, spectra matching/scoring against a target-decoy
library, annotated spectra visualization, statistical analysis, and
sequence mapping (see Methods for complete description).
Shortly, each nucleolytic RNA sequence entry in the theoretical
digest is appended with a calculated monoisotopic precursor mass
(m/z at the MSI level), and a list of product ion masses (m/z at
MS2 level) comprising a theoretical MS/MS spectrum. Predicted
MS/MS spectra are calculated based on rules of RNA
fragmentation!-28, resulting in 9-11 series of sequence-defining
fragment ions (Fig. 2a) plus neutral or charged precursor ion
losses of water, phosphate, or a base. Matching between experi-
mental and in silico spectra is performed in two steps (Fig. 1b).
First, experimentally obtained precursor ion m/z and charge pairs
are compared against values present in the theoretical library,
followed by matching of the fragment jon masses. Sequence-
defining MS2 matches obtained are then used to compute the
Spytheas (Sp) score for each candidate RNA sequence. Based on S,
values, the resulting oligonucleotide-spectrum matches (OSMs)
are sorted and ranked to choose the RNA sequence that fit the
spectrum with the highest confidence (top OSM, Fig. 2b-d).
Pytheas search relies on the empirical scoring function (S,,) that
has been adapted from the SEQUEST algorithm, originally
developed for peptide spectra identification2? (Eq. 1 in Methods),
and then optimized to accommodate for specific features of the
RNA fragmentation (see Training of the Pytheas scoring function
using a curated RNA dataset in Methods). Using a collection of
reference RNA spectra, scoring algorithm has been trained to
efficiently discriminate between correct (target sequences) and
false identifications (decoy sequences) appended to the theoretical
digest library, and to mitigate oligonucleotide length-dependent

modifications.

Mass spectrometry

Table 1 Comparison between mass spectrometry and next generation sequencing (NGS) approaches for the analysis of RNA

NGS-based approaches

Advantages
e Relative stoichiometry information
Disadvantages e Low sensitivity

e Need high purity RNA sample

e Simultaneous analysis of many modifications

e Limited to abundant RNA (rRNA, tRNA)

e High sensitivity

e Good coverage (rRNA, mRNA, ncRNA)

e Method reproducibility (numerous biases)
e Limited to one or two modification types
e Measuring stoichiometry may be hard
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Fig. 1 RNA LC-MS/MS and Pytheas data analysis workflows. a Flowchart highlighting the main components of the Pytheas package. b Graphical overview
of the database matching process. In both panels, blue shading refers to the experimental data acquisition, green shading refers to the in silico generated
theoretical library and red shading refers to the matching and scoring steps.
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Fig. 2 RNA fragmentation and MS2 spectra matching, scoring, and visualization in Pytheas. a McLuckey nomenclature of RNA product ions following
CID fragmentation'®. RNA can be cleaved at each of four bonds of the phosphodiester backbone, producing nine major fragment ion series (a/a-B/b/c/d/
w/x/y/z) commonly observed in CID spectra under negative ionization. b Competing OSMs for a given precursor ion scored and ranked by Pytheas. ¢ MS/
MS spectrum of the top scoring OSM highlighted in the panel (b). d Summary table of all the predicted and matched (highlighted in color) fragment ions,
with theoretically calculated m/z values. In (¢) and (d) sequence-defining fragment ions are highlighted using the same color scheme as in panel (a). (¢)
and (d) have been rendered via Pytheas visualization tools.
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biases present in the S, score distribution (Supplementary Figs. 1,
2). The final Pytheas score derived by us is better suited for global
statistical analysis, where uniform score cutoffs are set to filter out
low-confidence (low S, score) spectra identifications. In the
analysis of rRNA, tRNA and mRNA datasets described in the
following sections, the uniform S, cutoffs are applied, indepen-
dent of the sequence length, to achieve the desired FDR levels.

Analysis of 16S rRNA data acquired using different MS
instrumentation and chromatography setups. Following opti-
mization of the scoring function, we tested the software perfor-
mance using the dataset composed of a mixture of 4N- and
I5N-labeled 16S rRNA from E. coli. 16S is a ~1550 nt long RNA
that contains modified nucleosides and can be easily isolated and
labeled with heavy isotopes for the purpose of relative quantifi-
cation of modifications3?-31, Furthermore, to confirm that Pytheas
can be equally well used for data acquired using different LC-MS
platforms and chromatography workflows, the samples were
analyzed on Agilent Q-TOF, Waters Synapt G2-S TOF and
Thermo Scientific Orbitrap Fusion Lumos (Fig. 3a).

The automatic identification of oligonucleotides within T1-
digested 16S RNA was confirmed following a visual inspection of
the annotated spectra. In general, we observed uniformly good
fragment ion coverage across the 11 MS2 jon series and found
systematic matching of the most intense MS2 peaks independent
of the MS instrument (Supplementary Fig. 3). Furthermore, the
statistical assessment of the Pytheas matching and scoring
outputs across three datasets agrees that target sequences
consistently outperform competing decoys with the exceptions
of poorly scored OSMs (Fig. 3b-d), and that Pytheas score shows
consistence in handling precursor ions in 4-12 nt size range
(Supplementary Fig. 4).

Between three experiments compared, factors like differences
in LC columns and mobile phases used, differences in MS
instrument speed and resolution, MS/MS acquisition parameters
that define the quality of the tandem spectra (e.g., precursor
selection criteria, collision energies), and data pre-processing may
directly influence sequence identification coverage. Despite that,
summary provided in Table 2 demonstrates that the overall
number of unique sequence identifications for the 4N- (light)
target sequences are similar between Q-TOF, Synapt and
Orbitrap datasets. For the °N- (heavy) targets, the slightly
reduced rate of identification is considered acceptable since part
of 1°N-labeled entries present in the 16S library were merged
during m/z-based consolidation (SeqX, see Pytheas Database
Search in Methods) step performed to account for sequences that
are hard to resolve via precursor or fragment ions masses.

Out of the six nucleolytic RNA fragments that contain known
E. coli 16S methylations and that can be identified via TI1
digestion, five were successfully detected in the Q-TOF dataset
below 1% FDR (Table 3). Except for 525-CC[m’G]CG-529, these
methylated targets, are characterized by high S, and AS,D scores,
suggesting a high confidence in the assignment. On the other
hand, 527-[m’G] can be detected only above 3% FDR cutoff. In
fact, tandem spectra of N7-methylguanosine containing oligonu-
cleotides are known to display atypical losses of [m’G] base from
parent and sequence-defining ions?® that likely contributes to
inefficient MS2 matching and incomplete fragment ion read-
through observed by us (Supplementary Fig. 5).

In summary, close examination of the three independent 16S
RNA datasets proved that the Pytheas search algorithm: (a) is
applicable for the automated analysis of complex biological
samples, containing over a hundred of nucleolytic oligonucleo-
tides; (b) efficiently discriminates target and decoy sequences
within 4-12 nt size limit, present in the theoretical digest of a

long RNA; (c) can identify isotopically labeled sequences and
sequences containing know methylated nucleosides; (d) performs
well on the data acquired via different LC-MS workflows without
prior optimization of the search parameters.

Pseudouridine identification in yeast 185 rRNA using meta-
bolic 2H-labeling. The analysis of bacterial rRNA presented did
not include pseudouridines, which are isobaric to uridines and
their unambiguous assignment requires either metabolic labeling
or chemical derivatization. Pseudouridine is the second most
common PTxM after methylations and constitute 30-45% of the
modifications in rRNA and 15-20% in tRNA. To confirm that
Pytheas supports the identification of pseudouridines, we per-
formed a database search on a S. cerevisiae 18S rRNA dataset. The
18S rRNA sample was isolated from yeast cells that were meta-
bolically labeled with 5,6-2H-uracil. Consequently, all the uridines
have a 42 Da shift, while the pseudouridines have a +1 Da shift
due to the exchange of the pyrimidine C5-2H to C5-1H during the
pseudouridylation reaction30.

Nine of the thirteen pseudouridines present in S. cerevisiae 18S
have been identified at least once and successfully mapped to the
18S sequence by Pytheas (Supplementary Table 1). Of all nine,
the lowest scoring 97-CUC[Am]JUUAAA[Y]CAG-109 target
sequence (S, = 0.237; AS,D =0.89) is identifiable at 3.6% FDR
level or higher. Based on our findings, Pytheas algorithm is truly
capable of assigning pseudouridines in samples through support
of user-specified schemes for isotope labeling of RNA.

Identification of chemically diverse modifications present in
yeast tRNAs. Using rRNA we validated Pytheas for search of
unmodified RNA and sequences containing methylations and
pseudouridines, and our next goal was to evaluate its performance
for the identification of chemically complex modifications, such
as found in tRNA (Supplementary Fig. 6). In fact, tRNAs repre-
sent a class of abundant and heavily modified RNA molecules
(~15% of the total nucleoside content), with over 25 chemically
diverse nucleoside modifications in eukaryotes32.

We analyzed a sample composed of the T1 digested mixture of
S. cerevisiae tRNAs and successfully found eighteen out of the
nineteen types of yeast tRNA modifications included in the
theoretical digest (Table 4 and Supplementary Table 2). Fifteen
types of tRNA PTxMs passed the 5% FDR threshold filter.
Approximately 55% of all the modified sequence identifications
above the threshold contain base and ribose methylations that are
the most abundant tRNA modifications, followed by dihydrour-
idine that was found within ~30% of the modified sequences.

Markedly, except N6-isopentenyladenosine, few of the chemi-
cally complex or rare tRNA modifications (Table 4) were
identified with high confidence. To improve quality of the
acquired MS2 data, we performed a set of targeted LC-MS/MS
experiments, since low abundance of these modified T1 fragments
is likely to be the reason for poor MS2 sampling and averagely low
Sp scores. A list of targeted sequences (Supplementary Table 3)
included nucleosides like guanine-derivative wybutosine (yW),
found exclusively in tRNAPhe and 5-methoxycarbonylmethyl-2-
thiouridine (mcm5s2U) in the wobble positions of tRNAG and
tRNALYS. A close inspection of the mcm’s?U spectrum showed
good fragment ion coverage and presence of consecutive matches
over multiple ion series (Supplementary Fig. 7a). Similarly,
efficient MS2 peak matching and high scores were obtained for
sequences with N6-isopentenyladenosine (i°A), N4-acetylcytidine
(ac*C), and 5-carbamoylmethyluridine (ncm®U) (Supplementary
Table 3). On the other hand, wybutosine spectrum exhibits
inefficient sequence read-through pass yW position due to almost
complete lack of any observable yW containing fragment ions
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Table 2 E. coli 16S spectral identification coverage and FDR.

141¢D | 111¢h)
1517
141 (1) | M1Ch)

Unique target sequencesd
Highest S, score
Unique target sequences (10% FDR)d

135(D) | 107(h)
2.267
98 () | 106 (h)

Dataset Q-TOF2 Synapt? Orbitrap?
mgf scansP 1720 107 4513

Top targets© 771 410 693

Top decoys® 36 43 95

160(D) | 153¢h)
1.946
M | 110 ¢h)

Unique target sequences (5% FDR)d 121D | 111 (h) 54 () | 96 (h) 105 (1) | 90 (h)
Unique target sequences (1% FDR)d 100 (1) | 94 (h) 30 (D | 56 (h) 69 () | 69 (h)

a(l) and (h) refer to the number of light- and heavy-labeled RNA fragments identified.

bTotal number of acquired MS2 spectra in the input file.

CTop targets and decoys refer to rank T OSMs.

dTotal number of targets with unique sequences. Light- and heavy- identifications are counted separately. FDR threshold (if applied) is specified in the parenthesis.

Table 3 E. coli 16S rRNA methylations identified in the Q-TOF dataset.

Mod Position Target sequence S, (D2 AS,Db (1) S, (h)? AS,Db (h)? Min FDR®
[m’G] 527 525-CC[m’G]CG-529 0.299 0.55 0.231 0.29 3%
[m>C] 967 967-Im>CJAACG-971 0.71 0.86 0.752 0.86 <1%
[m4Cm] 1402 1402-[m#Cm]CCG-1405 0.833 0.82 1.009 0.83 <1%
[m>C] 1407 1406-U[m>CJACACCAUG-1415 0.445 0.91 0.888 0.74 <1%
[m3U] 1498 1498-[m3UJAACAAG-1504 0.993 0.67 1.188 0.94 <1%
[my0A] 1518 1518-[m,8A1[mM,°A1CCUG-1523 1.445 0.75 1.429 0.74 <1%
[m,0A] 1519 1518-[m,8A1[M,°AICCUG-1523 1.445 0.75 1.429 0.74 <1%

aData shown for light- (I) or heavy- (h) labeled RNA species identified.
bAS,D is defined as AS, score of the highest-scoring competing decoy.
“Lowest FDR threshold at which the modification is detected.

Table 4 RNA modifications identified in the mixture of S. cerevisiae tRNAs.

Modification ID tRNA families® Top targets® Top targets® 5% FDR® Best S, AS,D¢
Common RNA modifications

Methyl adenosine (base) [mA] 15 45 31 1.466 0.9
Methyl guanosine (base) [mG] 18 60 25 1.239 0.95
Methyl cytidine (base) [mC] 17 75 33 1.477 0.8
Methy! uridine (base) [mU] 19 26 20 1.077 0.77
Dimethylguanosine [mmG] 12 34 25 1127 0.83
2'-O-methyladenosine [Am] 1 (His) 3 3 0.619 0.8
2'-O-methylguanosine [Gm] 6 (His, Leu, Phe, Ser, Trp, Tyr) 21 16 0.946 0.72
2'-0O-methylcytidine [Cm] 5 (Gly, Leu, Phe, Pro, Trp) 27 n 0.636 0.92
2'-O-methyluridine [Um] 1 (Ser) n 6 1.343 0.98
Dihydrouridine [D] 20 165 90 1.477 0.8
Chemically complex RNA modifications

Inosine [ 6 (Ala, Arg, lle, Ser, Thr, Val) 3 - - -
5-methoxycarbonylmethyluridine [mcmdU] 1 (Arg) 4 - - -
N6-threonylcarbamoyladenosine [t6A] 8 30 3 0.246 0.91
N6-isopentenyladenosine [i6A] 3 (Cys, Ser, Tyr) 37 30 1.551 0.89
5-methoxycarbonylmethyl-2-thiouridine  [mecm®s2U] 2 (Glu, Lys) n 4 0.657 0.83
N4-acetylcytidine [ac4C] 2 (Leu, Ser) 3 2 0.562 -
5-carbamoylmethyluridine [ncm>U] 2 (Ser, Val) 1 - - -
2'-O-ribosyladenosine (phosphate) [Ar(p)] 1 (iMet) - - - -
Wybutosine [yw] 1 (Phe) 6 6 0.476 0.95

bTop targets refer to rank 1 target OSMs.
“Number of top targets identified at 5% FDR threshold.
dAS,D stands for AS, score of the highest scoring competing decoy.

3tRNA isoacceptor families known to contain at least one of the respective modified nucleosides. 21 families are present in total.

(Supplementary Fig. 7b). Like m’G, identified in the 16S dataset,
yW and Né6-threonylcarbamoyladenosine (t°A) are associated
with poorer S, scores due to limited cleavage of the RNA
backbone or a non-canonical fragmentation pathway?>33. To
efficiently accommodate identification of these modifications
alongside with other modified oligonucleotides, more detailed

investigation of their fragmentation behavior and further adjust-
ments to the Pytheas scoring algorithm are required.

Altogether, the results highlight the generally good capability of
Pytheas to deal with a wide range of PTxMs, including chemically
complex nucleosides. Some of the limitations in the acquired data
and in the database search analysis are intrinsic to the abundance,
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Fig. 4 Sequence coverage and relative quantification of COVID-19 mRNA vaccine mimic. a mRNA analysis flowchart. b Nucleolytic fragments found by
the Pytheas search in the RNase T1 or A treated mMRNA sample are mapped on to the full-length sequence. Pink bars are used to indicate nucleoside
positions identified and coverage is reported as a percent of the total (3995 nt) present. Combined coverage was determined by merging sequence IDs
from T1 and A datasets. Results for the sample containing a mixture of 14N- and >N-labeled mRNAs are shown. ¢ Histogram plot of N/(1N + 15N)
isotope ratios for a total of 200 nucleolytic fragments identified and quantified in the RNase T1and A datasets (source data are provided as a Source Data
file). The mean = 0.47 and the SD = 0.01 were obtained by fitting the values to a Gaussian distribution.

ionization, and fragmentation of tRNA sequences with certain
modifications, and do not reflect a flaw in the algorithm.

Sequence analysis of a fully N1-methylpseudoruridine sub-
stituted mRNA vaccine mimic. Following the approval of several
mRNA-based COVID-19 vaccines for medical use in large
population, we decided to demonstrate applicability of Pytheas
and shotgun MS for sequence characterization and quantification
of therapeutic mRNAs. For that, the mRNA vaccine mimic that
contains the full-length coding sequence of the SARS-CoV-2
spike protein (SP) has been synthesized via in-vitro transcription,
with complete uridine to N1-methylpseudoruridine (m!¥) sub-
stitution. Incorporation of the unnatural m!¥ modification has
been proven to reduce immunogenic properties of the mRNA
vaccines and noticeably increase antigen production in mam-
malian cells!2. Furthermore, N- and !1°N-labeled versions of SP
mRNA were prepared and then mixed in nearly equimolar
amounts to demonstrate relative quantitation as well as m!¥
mapping (Fig. 4a).

The vaccine mimic was analyzed via parallel digestion with two
commercially available RNases T1 and A, and by mapping
nucleolytic fragments identified by Pytheas on to the 3995 nt long
mRNA sequence. The uniform S, score threshold corresponding
to 1.5% FDR or less was used to filter out low-confidence IDs in
combination with AS,2=0.15 filter, to exclude low-specificity
matches (ie., rank =1 and rank = 2 competing target sequences
that have close S, values). The remaining IDs were then used to

calculate sequence coverage from a single nuclease treatment or
by combining results from two parallel digestions (Fig. 4b).

Direct comparison between the samples containing either 4N-
or I>’N-mRNA (Supplementary Table 4) demonstrated nearly
identical total sequence and m'¥ coverage, highlighting the lack
of biases in either data acquisition or database search for
detecting isotopically labeled modified RNAs. Furthermore,
Pytheas has an excellent ability to match m!¥ containing
sequences. A separate analysis of two shorter (~0.9kb) GFP
mRNA constructs, synthesized in vitro using either all U or all
m!¥ 5'-triphosphates, suggests that m!'¥-RNA sequences can be
matched and scored equally well as the corresponding unmodi-
fied U-containing analogs (Supplementary Fig. 8). Critically, LC-
MS/MS directly confirms modified nucleosides, whereas methods
based on enzymatic sequencing score m!'¥ as U, that would
complicate the analysis of RNAs synthesized using mixtures of
the two nucleosides.

Broad availability of isotopically labeled NTPs and the ease of
the in vitro production of the internal mRNA reference provides
an opportunity for quantitative evaluation of mRNA vaccine
sequences, their integrity and purity. In this study, the ratios of
the 14N- and !°N-peak intensities are normally distributed,
suggesting lack of biases between the two preparations, and
confirming that relative quantitation can be achieved as a
powerful element of the quality control analysis (Fig. 4c).

Despite the usage of the two nuclease treatments, we could not
attain a nearly complete sequence and modification coverage,
either using all nucleolytic fragments identified by Pytheas
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(~80-85%), or fragments with unique positional placement
(30-40%, Supplementary Table 4). Importantly, poor coverage
is not an intrinsic limitation to Pytheas or the algorithm, but
rather the result of limited set of ribonuclease specificities. In fact,
it has been shown that expanding the endonuclease repertoire can
substantially improve the coverage?>34, but difficulties remain
due to limited enzyme availability and their often poorly
characterized cleavage specificities. While this is an ongoing
challenge in the field of bottom-up MS analysis, the capabilities of
Pytheas can be immediately applied to any new advances in RNA
cleavage technology.

Discussion

One of the most relevant improvements for the advancement of
automated RNA tandem MS spectra identification is the devel-
opment of software tools capable of dealing with multiple tech-
nical challenges presented by the analysis of diverse RNAs.
Considering this requirement, Pytheas has been developed to be
highly customizable, giving the user control over many functions
and in return offering a detailed transparent output that facilitates
experimental and data analysis troubleshooting. Supplementary
Table 5 presents a descriptive comparison between Pytheas and
other modern RNA MS engines like Ariadne and NASE!24.25,
One major limitation of Pytheas is the moderate speed of the
search, but on the other side, Pytheas combines many quality
features offered either by NASE or by Ariadne alone. For
instance, Ariadne implements a fixed number of isotope labeling
schemes, but neither NASE nor Ariadne support flexible isotope
labeling with concurrent identification of two RNA species. While
Ariadne is lacking validation of the match output via FDR cal-
culations, a feature present in both Pytheas and NASE, only
Pytheas offers a module generating descriptive statistical plots to
monitor the quality of the database matching process. Altogether,
Pytheas support of custom isotopic labelling and modifications, as
well as its consistent scoring schema have been critical for the
analysis of synthetic and biological RNAs. Multiple datasets
presented in this study emphasize the robustness with which
RNA sequences bearing base/ribose methylations and pseudour-
idines are identified proving that Pytheas is a reliable tool for
analysis of the most abundant PTxMs present in any cell. N1-
methylpseudoruridine mapping in the COVID-19 vaccine-mimic
is directly enabled by Pytheas and presents the concept of
bottom-up MS for direct automated sequence characterization of
RNA-based drugs.

Another important limitation that has emerged is related to the
Pytheas scoring function. Notably, Pytheas is based on a
dimensionless empirical S, score, that is not converted to the
expectation value and analysis relies on re-evaluating score
thresholds by using target-decoy database search and FDR.
Pytheas scoring scheme has been optimized for RNA sequences of
intermediate length and modifications that comply with the
standard scheme of RNA backbone fragmentation. Thus, scoring
biases appear during matching of the short (3-4 nt) or long (12+
nt) sequences, and sequences with labile modifications. In all
these cases, the reduced number of matched sequence-defining
fragment ions has negative impact on the S, scores, often placing
these sequence identifications outside of the desired FDR ranges.
While training Pytheas to recognize spectral features of the labile
modifications would require RNA standards and more high-
quality MS/MS data, length biases can be to a large degree
mitigated by liming the analysis to the narrower size range of
RNA sequences, and furthermore by optimizing parameters of
the S, score.

Given broad interest in PTxMs and the fast-growing speed in
developing novel RNA therapeutics, we believe that Pytheas has

the potential to become a standard tool for sequence analysis
via LC-MS/MS. Characteristics like open-access, transparent
development approach, the flexibility of the database search
algorithm have been fully explored in Pytheas and substantial
improvements in its capabilities that will increase the search
speed and facilitate the discovery of unknown modifications are
forthcoming.

Methods

Pytheas software. Pytheas is a software package that implements a database
search approach for automated RNA tandem MS spectra identification. It has been
developed in Python 3 and can be executed via a dedicated graphical user interface
(GUI) or in command line (CL) on a personal computer.

Theoretical library generation via in silico digestion. The in-silico digest library
is generated from the input RNA sequences (fasta format) that are cleaved
according to a chosen endonuclease base specificity. Pytheas GUI supports the
commonly used endonucleases (T1, A, Cusativin, MC1, MAZ) along with non-
specific cleavage and no cleavage options. To foresee the upcoming discoveries that
might expand the repertoire of RNA cleavage tools in the near future, an option
allowing the user customize cleavage specificity has been added to the CL version of
Pytheas. Furthermore, in silico digest library can contain RNA sequences with one
or multiple chemistries at the 5 and 3’ termini such as -OH, -cP (2/,3’-cyclic
phosphate) and -P (linear phosphate). In addition, chemical modifications or
chemical derivatizations on either the base or the sugar moiety can be added to the
library, by editing elemental composition of individual residues, specified in a
tabulated input. More than 50 different modifications, identifiable by unique lower-
and upper-case letters as well as numbers, can be included simultaneously in a
single digest file (see Supplementary Table 6 for the full list of parameters).

Predicted MS/MS spectra are calculated based on RNA fragmentation rules
previously described by McLuckey et al.!%28, where multiple bonds are subject to
collision induced dissociation, resulting in nine series of sequence-defining
fragment ions (a/a-B/b/c/d/w/x/y/z), plus neutral or charged precursor ion losses of
water, phosphate, or a base, altogether identified as a set of candidates MS2 ions
(Fig. 2a, d). Furthermore, two additional series (y-P and z-P) were added to
account for frequent losses of the phosphate group from the 3’ end of RNA
oligonucleotides. By default, 11 ion series are included for the 3’-P and nine series
for 3’-OH and 3’-cP RNA oligonucleotides (Supplementary Fig. 9), but the exact
combination of fragmentation series included in the analysis can be user defined. In
fact, we recommend limiting theoretical spectra to the list of the most probable
MS?2 ions to reduce the penalties during the score calculations. The same applies to
the precursor and fragment ions charge states, specified in two separate input files.
By collecting data using different experimental setups, we found that the
combinations of MS2 ions and charge states depend on MS instrumentation,
composition of the LC buffers, ionization mode (Supplementary Fig. 10), and
dissociation method (CID vs HCD, Supplementary Fig. 11). These parameters
should be empirically defined and optimized to increase the data matching
accuracy and achieve the best fragment ion coverage, while minimizing the
complexity of the theoretical digest.

Isotope labeling proved to be important for MS-based identification of
pseudouridines (‘¥) and RNA quantification30:31:3536, and Pytheas allows to add
one type of heavy-labeled RNA species to the theoretical library, by specifying the
exact isotope composition (Supplementary Table 7). Natural isotope abundance
accounts for ~1 Da (0.984 Da) mass difference between cytosine and uridine
residues that can be easily resolved via modern TOF and Orbitrap instrumentation.
15N, 13C, and 2H incorporation frequently results in mass shifts as small as
0.01-0.02 Da between U, ¥, and C. For example, metabolic labeling of cellular
pyrimidines with 5,6-D-uracil, causes 0.022 Da mass shift between ¥ and C, for
sequences that contain a single ¥ < C substitution. To resolve uncertainties related
to the identification of such positional substitutes of pyrimidines, or other
nucleolytic RNAs that are difficult to differentiate using either precursor or MS2
ions masses, Pytheas offers a SeqX option. SeqX is activated during in silico
digestion and is designed to merge sequence entries of the same length that cannot
be uniquely identified due to limited instrument accuracy (Supplementary Table 8).
For example, ACG and AYG are consolidated into AXG: ACG|AYG and AXG:
AYG|ACG, when MS1 measurements error exceeds 22 ppm, and MS2 exceeds 35
ppm. In this work, SeqX functionality has been explored for analysis of two rRNA
datasets, which employ isotope-labeling schemes compatible with quantitative
analysis of RNA modifications.

Lastly, for the purpose of downstream statistical analysis, decoy sequences can
be added to the theoretical digest. Decoys are produced directly from target
sequences by random shuffling the original sequence excluding the 3’ terminal
nucleotide?’. Only decoys with unique sequences are retained in the final target-
decoy library. Following the SeqX consolidation step, decoys that cannot be
distinguished from target sequences due to uncertainty of the m/z measurements
are removed.

Since RNA contains only four basic building units, decoy sampling can become
a problem especially for homopolymeric sequences or short targets that are 3-5
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nucleotides long. The issue was addressed by limiting the standard statistical
analysis to targets with at least one competing decoy sequence as a default option.

Spectra matching and scoring. Pytheas uses mgf (Mascot Generic Format) files as
a standard MS/MS data input. The input file is parsed to retrieve a list of m/z and
charge values for each acquired precursor ion. Subsequently, the matching between
experimental and in silico tandem spectra is performed (Fig. 1b), first by com-
paring the retrieved precursor m/z and charge values against nucleolytic RNA
sequences in the theoretical library. This step limits the search to few candidate
sequences, that are then evaluated based on the goodness of fit between the
acquired and theoretical tandem spectra. For that, m/z values calculated for each
product ion are matched against m/z of the MS2 peaks extracted from the input
file. Both precursor and product ion masses are compared to the predicted values
within user-defined mass tolerance (in ppm). MS2 matches found are then used to
compute the Spyytheas (Sp) score for each oligonucleotide-spectrum match (OSM).

_ ZIma(chﬁ
=t (155 W

In Eq. 1, n is the number of successfully matched sequence-defining MS2 ions
(colored peaks and table cells in Fig. 2c-d) out of L present in the theoretical
library. 2l acn represents the sum of the peak intensities for n matches. 21, refers
to the intensities of all the peaks in the experimental spectrum, excluding the
identified precursor ion peak (M) and precursor ion losses (e.g., M-P, M-H,O in
Fig. 2d, grey colors). All the contributing peak intensities are normalized to the
intensity of the most intense peak present in the spectrum after precursor ion and
precursor ion losses were assigned and the associated mass exclusion windows
applied. The B parameter is a reward factor for consecutively matched sequence-
defining ions within a single ion series s. Further details on the elements of the
scoring function and the extended definition of B can be found in Supplementary
Note 1.

In addition to the S, score, Pytheas computes a AS, score (Eq. 2) that defines a
relative distance in fit between the top and a candidate OSM.

SP =S

p = 8117701313 (2)

In Eq. 2, S,%P is the score of the top-ranking OSM, and §,, is the score of any
given OSM (Fig. 2b). Two particularly relevant parameters derived from AS, and
attributed to the top raking OSM are AS,2, the AS,, value of the second-best target
OSM, and AS,D, the AS,, value of the highest-scoring competing decoy. While the
Pytheas S, score is a measure of the quality of the match, AS,2 and AS,D are
measures of match specificity.

AS

Training of the Pytheas scoring function using a curated RNA dataset. Pytheas
scoring function has been trained and the database search algorithm validated
using a collection of reference RNA spectra, that included 95 MS/MS spectra of 3'-
P oligonucleotides that are 3-14 nucleotides long, and 8 out of 95 contain chemical
modifications (Supplementary Table 9). Individual spectra were manually curated
to ensure data quality and confidence of sequence identification.

The training process started with a scoring function which was a direct
transposition of the SEQUEST preliminary score?’, adapted to RNA spectra
identification in the following way (Supplementary Note 2):

1. the contribution of immonium and other peptide fragment ions was
removed.

2. RNA sequence-defining ion series were added.

3. B, reward for consecutive matches was expanded to include contributions of
the RNA ion series.

Importantly, the usage of this initial SEQUEST-like function led to the correct
assignment of all 95 input sequences to their spectra, including sequences with
modifications. When both, correct and incorrect identifications (targets and
decoys) were added to the theoretical library, targets scores were well separated
from the respective decoy scores (Supplementary Fig. la-b). Despite this highly
preferrable feature, wide distribution of the S, scores and significant length biases
towards longer RNA sequences necessitated further modifications to the scoring
function:

4. added the XI,; normalization term.
5. introduced « parameter for increased rewarding of consecutive matches
(Supplementary Note 1).

The final form of the Pytheas score (Eq. 1) has less issues related to sequence
length bias (Supplementary Figs. 1c—d, 2) and presents a significantly narrower
score distribution for the oligos in the 3-14 nt size range, that is a typical length of
RNAs obtained after nucleolytic cleavage in bottom-up MS analysis.

Spectrum-match filtering, visualization, and sequence mapping. The Pytheas
matching and scoring routine outputs a file that contains a list of all matched
precursor ions and scored OSMs (Supplementary Fig. 12). This file can be pro-
cessed via user-defined combinations of filters to remove decoy sequences and low-
confidence identifications via S, and AS,2 score thresholds. In addition, unique

sequence matches or matches only containing RNA modifications can be included
to produce a final report file. The final report contains identifications that can be
further mapped on to the original RNA sequence via the Pytheas mapping tool to
assist in finding RNA modification and to estimate sequence coverage (Supple-
mentary Fig. 13).

To further assist in MS/MS data analysis and provide a means to curate each
identification individually, annotated OSMs can be plotted and visualized through
a convenient graphical interface (Fig. 2c-d). The output of the Pytheas
visualization tool is an html format file that can be opened with all commonly used
internet browsers. Based on the visual observables, the user can choose to edit the
final output file to keep or discard a particular OSM.

Statistical analysis of oligonucleotide-spectrum matches. Following the
matching and scoring, Pytheas offers a set of statistical tools for: (1) evaluation of
the overall quality of the database matching; (2) calculation of the accuracy and
precision of the mass measurements; (3) control of FDR.

The S, (and AS,/AS;2) score distribution and scatter plots for target and decoy
sequences reflect how well RNAs present in the digest library can describe the data,
based on the Pytheas scoring algorithm. These automatically generated plots help
to highlight adjustments to be made on either the data acquisition process, RNA
input, and CID fragmentation, or the parameters of the search. Furthermore, a
histogram plot of the m/z matching offsets (in ppm) allows the rapid assessment of
the systematic biases in mass measurement for a given dataset, and the instrument
drifts can be corrected for via MS1 and MS2 global offset options. FDR is calculated
following the concatenated target-decoy search using “simple FDR” defined and
broadly used in the protein MS analysis?”3% and the obtained S,, score cutoffs are
extrapolated to maintain the desired FDR value. This enables control of the
number of false-positive identifications associated with random matching.

RNA samples for LC-MS/MS analysis

Reference RNA for training Pytheas scoring function. To build a collection of high-
quality MS/MS spectra that could be unambiguously assigned to their RNA
sequences, mixtures of synthetic RNA oligonucleotides (IDT, Sigma, Dharmacon)
and in vitro transcribed 16S RNA constructs p1 (202 nt), p2 (250 nt) and p4 (173
nt) were used (Source Data file contains a list of RNAs used). 40-300 pmol of each
RNA was digested with either T1 or A nuclease for 1h at 55°C in 25 mM
ammonium acetate (pH = 6). LC-MS/MS data were collected using an Agilent
Q-TOF 6520 LC-MS platform and precursor MS2 scans were averaged across the
chromatographic peak to reduce noise. Finally, 95 individual spectra representing
95 distinct sequences (Supplementary Table 9) were extracted from multiple LC-
MS/MS runs, visually inspected, and included in a training set for Pytheas search
validation. For simplicity, data were reduced to include a single charge state for
each precursor.

E. coli 16S rRNA sample. 14N- and 1°N-labeled 16S RNA was isolated from E. coli
MRE-600 cells grown at 37 °C in the M9 glucose minimal medium, supplemented
with 1 g/L of either (4NH,),SO, or (°NH,),SO, as a sole source of nitrogen. 16S
RNA was purified using sucrose gradient ultracentrifugation at dissociating
conditions®’. 14N-RNA and !°N-RNA were mixed in approximately 1:1 molar
ratio, heat-denatured, and RNase T1 digested for 1h at 55°C in 25 mM ammo-
nium acetate (pH = 6). To test the performance of Pytheas on data collected via
different MS platforms, 16S RNA samples were analyzed using Agilent Q-TOF,
Waters Synapt G2-S, and Thermo Scientific Orbitrap Fusion Lumos. All systems
were equipped with ESI sources and data acquired via negative ionization.
Depending on the instrument used, 5-25 pmol of each !4N- and 1°N-labeled rRNA
were injected and analyzed.

S. cerevisiae 185 rRNA sample. The parental S. cerevisiae BY4741 (his3A met15A
ura3A leu2A) strain has been transformed with two stable centromeric plasmids,
PpRS413 which carries the HIS3 marker, and with pRS415 which carries the LEU2
marker and into which MET15 has been inserted (Wittenberg Lab at Scripps
Research Institute). The resulting BY4741 pRS413, pRS415-MET15 cells were
grown at 30 °C in the YNB 2% glucose (w/v) media, in the presence of 20 mg/L of
5,6-2H-uracil (Cambridge Isotope Laboratories) and 5 g/L of either (4NH,),SO, or
(1°NH,),S0,. Cells were harvested at ~0.8 ODsg by adding the culture to ice,
followed by centrifugation at 3000 x g for 10 min. Pellets formed were re-suspended
in ~1 mL of the lysis buffer (20 mM Tris-HCl at pH 7.5, 100 mM NH,CI, 6 mM 2-
mercaptoethanol, 1 pL of RNaseOUT, Invitrogen) and cells disrupted via BioSpec
mini-beadbeater. 2 U/ml DNase I (NEB) and 0.5 mM CaCl, was added, and the
lysate was cleared from cell debris by two rounds (5 min and 45 min) of cen-
trifugation at 14000 g. Then, layered on top of the dissociating 10-40% (w/v)
sucrose gradient, that contained 50 mM Tris-HCI at pH 7.5, 50 mM NH,CI, and
6 mM 2-mercaptoethanol. Each gradient was centrifuged at 98200 g for 16 h using
Beckman SW-32 Ti rotor. Gradient fractionation with A,s, trace detection was
then used to collect and pull together small and large ribosomal subunit fractions.
Combined fractions were TRIzol (Invitrogen) extracted, and isopropanol pre-
cipitated to obtain the 18S pellet free of proteins. Pellets were redissolved in
Nuclease-Free water (Ambion) and additionally purified via three rounds of spin
filtration using Amicon Ultra-0.5 mL with 30 K cutoff. 14N-RNA and °N-RNA

| (2022)13:2424 | https://doi.org/10.1038/s41467-022-30057-5 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

were mixed in approximately 1:1 molar ratio, heat-denatured, and RNase T1
digested. LC-MS/MS data were collected using Agilent Q-TOF.

S. cerevisiae tRNA samples. Mixture of baker’s yeast (S. cerevisize, Roche part
#10109495001) tRNA were purchased from Roche and used without further pur-
ification. 75 pug were digested with ~100 units of RNase T1 for 1 h at 55 °C. LC-MS/
MS data were collected using Agilent Q-TOF.

SARS-CoV-2 spike protein mRNA sample. SARS-CoV-2_FL_TM + CT_pcDNA3.4
plasmid (Ward Lab at Scripps Research Institute) encoding the SARS-CoV-2 spike
protein (SP) was procured by cloning the full-length protein sequence (GenScript)
into the parental cloning vector pcDNA3.4 (NovoPro). A synthetic mRNA that
mimics COVID-19 mRNA vaccine was prepared using in vitro transcription, after
the linear DNA template containing the entire SP coding region was amplified
from the plasmid. 20 uL volume T7 polymerase (Lucigen, AmpliScribe™ T7-Flash™)
in vitro transcription reaction contained 1.8 g of the linear DNA template, 9 mM
of each NTP, and the UTP was replaced with an equal amount of N1-methylp-
seudouridine-5'-triphosphate (TriLink BioTechnologies). Isotopically labeled
SARS-CoV-2 mRNA used as a reference for quantitative analysis was obtained by
substituting GTP with 1>’N-GTP (Cassia, LLC). The transcription reaction was
incubated at 37 °C for 90 min, followed by a 30-min DNase I treatment to remove
the template. RNA was precipitated with an equal volume of 5 M NH,OAc on ice,
and the obtained pellet was washed twice with 70% ethanol, dried and resuspended
in water. The product was characterized via agarose gel electrophoresis demon-
strating a single RNA band of high intensity (Supplementary Fig. 14). The mRNA
vaccine mimic produced in this work lacked modified 5’-cap, 3’ poly(A)-tail
structures, and untranslated regions that are characteristic of the therapeutic
mRNA vaccine?’, and solely contained the ~4kb SP coding region that is fully
substituted with N1-methylpseudouridine (Supplementary Fig. 15). Three mRNA
samples composed of 14N-, 15N-labeled, and a ~1:1 molar mixture of the two were
treated with either RNase T1 or A as described above, and LC-MS/MS data
acquired on Agilent Q-TOF. Relative quantitation was conducted using Isodist
software by extracting 14N and 1°N MS1 peak pair intensities over 0.2 min window,
and by fitting the entire isotopic envelopes to the theoretical distributions*.

Data acquisition and processing

Agilent Q-TOF. Following nuclease digestion (when applicable), RNA MS data were
acquired on an Agilent Q-TOF 6520 ESI instrument coupled to the Agilent 1200 LC
system. Mixtures of nucleolytic RNA fragments were resolved on XBridge C18
column (3.5 uM, 1 x 150 mm, Waters) via a 40 min 1-15% of mobile phase B linear
gradient elution with 15 mM ammonium acetate (pH = 8.8) as mobile phase A and
15 mM ammonium acetate (pH = 8.8) in 50% acetonitrile as mobile phase B. Data
were collected using MassHunter LC/MS Acquisition B.06.01 software in the data-
dependent acquisition mode using negative ionization. A typical duty cycle con-
sisted of a single 0.33 s MS1 scan (400-1700 m/z) followed by 4-6 successive 1s
MS?2 scans (100-1700 m/z). Most intense precursor ions were used for isolation
(4 m/z isolation window) and CID fragmentation. Fragmentation collision energies
were optimized by direct infusion of 23 RNA oligonucleotide standards (Supple-
mentary Fig. 16). For the MS2 data acquisition, precursor ion selection rules were as
follows: absolute intensity threshold was 2000 counts; ions with assigned charge =1
were excluded; and 0.35 min dynamic exclusion window was applied. Modified
sequences from T1 digested tRNAs were analyzed using targeted acquisition and
MS?2 scans were averaged across chromatographic peak. MS2 data were converted to
Mascot generic format (mgf) files using MassHunter Qualitative Analysis B.07.00 by
limiting number of peaks to 250-350 most intense. Furthermore, an absolute
intensity threshold of 20 counts was applied, unless scan averaging was chosen.

Synapt G2-S. The Waters Synapt G2-S system was coupled to a Dionex Ultimate
3000 RSLNano UHPLC (Thermo Scientific) using an Acquity UPLC BEH C18
column (1.7 pm, 0.3 x 150 mm, Waters), operated at 5 pl/min flow rate and column
temperature maintained at 60 °C. Mobile phase A (8 mM TEA and 200 mM HFIP,
pH =7.8 in water), and mobile phase B (8 mM TEA and 200 mM HFIP in 50%
methanol) were used to elute RNA via a linear gradient (3-55% of B over 70 min).
Synapt G2-S data were collected by MassLynx V4.1 software in the sensitivity mode
(V-mode), and MS1 (m/z: 545-2000) scans were recorded over 0.5s, and MS2 (m/
z: 250-2000) over 1s period. The top three MSI events were selected for MS2,
based on abundance. Precursor m/z dependent collision energy ramp (20-23 V at
m/z 545; 51-57 V at m/z 2000) was applied, and the accumulated TIC threshold
was set to 3.5 10° counts. Dynamic exclusion was switched on to exclude pre-
cursors for the 60 s period. Raw data were processed via ProteinLynx Global Server
V2.5.2 using operator-specific settings for lock-spray correction, noise reduction,
peak picking and centroiding. The resulting mzML file was converted to mgf
format using MSConvert from ProteoWizard 3.0.11537.

Orbitrap fusion lumos. The Thermo Scientific Orbitrap Fusion Lumos instrument
was coupled to a Vanquish Flex quaternary UHPLC and the HILICpak VN-50
column (5 pm, 2.0 x 150 mm, Shodex) operated at 220 ul/min flow rate. Mobile
phase A contained 12.5 mM ammonium acetate in 75% of acetonitrile in water, and
mobile phase B contained 35 mM ammonium acetate in 30% of acetonitrile in

water. Nucleolytic RNA fragments were eluted off the column kept at 50 °C using a
linear gradient: 30-56% of B over 30 min. The following MS1 scan settings were
used: 220-2000 m/z range; 30,000 resolution; S-Lens RF 30%; automated gain
control (AGC) was 2 x 105 counts, with a maximum injection time of 100 ms. For
MS?2 scans, precursor ion intensity threshold was set to 1 x 10° counts, and a 1.6 m/
z isolation window was used. The top 12 precursor targets were selected for CID
fragmentation at 35% of the normalized collision energies, using precursor
dynamic exclusion over a 20 s period. The MS2 resolution was 30,000; AGC set to
1.0 x 10° counts with the maximum injection time of 300 ms. Xcalibur V4.3.73.11
acquisition software was used to record the data, afterwards converted to mgf via
MSConvert from ProteoWizard 3.0.11537.

Pytheas database search

Reference RNA for training Pytheas scoring function. The theoretical digest library
was obtained by using known RNA sequences and nucleoside modification posi-
tions (Supplementary Table 9), and by appending competing decoys. A set of MS1
and MS2 ions charge states included in the digest were empirically obtained for the
Agilent Q-TOF analytical workflow. RNA termini were set to 3’-P and 5-OH, and
11 CID ion series were used. The analytical form of the scoring function and
parameter values were varied during the optimization process.

E. coli 16S rRNA. The 16S rRNA in silico target-decoy library was generated from the
K12 rrsA gene sequence with T1 digestion and allowing up to two missed cleavages.
All known E. coli 16S modifications have been included, except for the pseudouridine.
To account for possible variations in precursor and fragment ions charge states
present in the Synapt and Orbitrap datasets, the charge tables initially derived for the
Q-TOF have been expanded. Files specifying nucleotides elemental composition have
been updated to include both ¥N- and !°N-labeled RNA species in a single theo-
retical digest. As a result of uniform uptake of 1°N isotope, the mass between
15N-labeled cytidine and uridine residues differs by only Apag = 0.013 Da, that in
some instances can be hard to resolve given larger molecular weight of the product or
fragment ions. Thus, 1°N-labeled targets (and '°N-labeled decoys) that are C/U
positional substitutes were consolidated via SeqX using 16 ppm (MS1) and 40 ppm
(MS2) thresholds, corresponding to ~20 of m/z matching offset distribution for
Agilent Q-TOF (largest o observed between three datasets, Supplementary Fig. 17).
For simplicity, a single 16S theoretical digest was generated and used for spectral
identification, despite differences in the instruments’ accuracy. The matching and
scoring were performed with standard parameters, except for the MS1 and MS2
matching tolerance windows which were set to 16 ppm and 40 ppm respectively.

S. cerevisiae 18S rRNA. 18S yeast target-decoy theoretical digest library was gen-
erated from the SGD: RDN18-1 sequence, with T1 digestion and up to two missed
cleavages. All the modifications previously mapped by Taoka et al.#! were added,
including 13 pseudouridines. Nucleotide elemental composition files were modified
to account for the 1°N and 2H isotopic labeling. As described in detail for E. coli
16S, SeqX was conducted to consolidate target-decoy sequences that have C/¥
(light, Apaes =0.022 Da) and C/U (heavy, A, = 0.013 Da) positional substitutes
using 15 ppm (MS1) and 33 ppm (MS2) mass accuracy thresholds. The search
against the 18S theoretical digest was performed by setting the parameters of the
scoring function §=0.025 and & =2, and by enabling precursor ion matching to
the m/z of M+ 1 and M — 1 isotopologues.

S. cerevisiae tRNAs. The yeast target-decoy library was prepared from the 275
tRNA sequences of S. cerevisiae S288c that have been retrieved from the
GtRNAdb*?, identical entries were filtered out and the remaining 55 sequences
aligned. T1 digestion, allowing for up to two missed cleavages was used. Except for
pseudouridine, 19 different types of tRNA modifications (Supplementary Fig. 6)
were included using the MODOMICS database as reference for sequence location!.
Since tRNAGI" is missing from MODOMICS entries, tRNAGIN sequences was left
unmodified. Matching and scoring have been performed using the default para-
meters, except for f=0.025 and a = 2.

SARS-CoV-2 spike protein mRNA. mRNA data were analyzed using the target-decoy
theoretical digest library prepared from the 3995 nt long sequence (Supplementary
Fig. 15), where uridine nucleosides were uniformly substituted with m!\¥. The in
silico digestion was performed with RNase T1 or RNase A allowing no missed
cleavages, assuming complete cleavage 3’ to either C or m!¥ by RNase A. Database-
spectra matching was executed by setting parameters of the scoring function

B =0.025 and & = 2, and by enabling precursor ion matching to the m/z of M + 1 and
M-—1 isotopologues. Global MS1 and MS2 m/z offset corrections (in 5-25 ppm range)
were applied due to unexpected drifts in Q-TOF mass measurements.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry data and Pytheas output files generated in this study have been
deposited in the ProteomeXchange Consortium database via the PRIDE* repository.
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The RNA training set is available under accession code PXD030435. The E. coli 16S RNA
dataset is available under accession code PXD030538. The S. cerevisiae 185 RNA dataset
is available under accession code PXD030563. The S. cerevisiae tRNA dataset is available
under accession code PXD030844. The SARS-CoV-2 mRNA dataset is available under
accession code PXD030845. The previously published dataset of the LC-MS/MS analysis
of human long ribosomal RNA is available under accession code PXD016323.
Additionally, the following databases were used: MODOMICS [http://genesilico.pl/
modomics], SGD [https://www.yeastgenome.org], GtRNAdb [http://gtrnadb.ucsc.edu].
Source data are provided with this paper.

Code availability
Pytheas source code is freely available on GitHub at https:/github.com/ldascenzo/
pytheas*4,
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