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On 25th September 2015, after near 1-year revision–re-
jection–revision cycles, my first Molecular Microbiology
paper was finally accepted for publication. I was so
proud of this paper, as I thought it was the best paper of
my research career. However, if the impact factor (IF) is
used to estimate the quality of my research, I wondered
why other omics articles written by my group could be
published in journals of much higher IF, even though
they were not the same calibre as my last MM paper.
Worse even, the IF of Molecular Microbiology keeps
declining, for reasons only known to those who invented
this neat and devilish ‘performance indicator’.
Impact factors may reflect the quality of the journal,

but only within a particular professional field. For com-
parison in a broader field, it reflects the hotspot of the
academic activities, which may not only be related to the
science itself, but also to how researchers behave. The
fact that a lot of researchers are following the research
hotspots without real scientific questions is exactly the
same as my own ill-gotten behaviour when perpetually
chasing hot stocks, only to lose my money again and
again.
‘Meta-omics’ undoubtedly represent a major hotspot in

the field of microbial ecology. Since the development of
next-generation sequencing (NGS) at the beginning of
this century (Metzker 2010), the IFs of journals

publishing ‘meta-omics’ works have been increasing.
More and more microbiologists and microbial ecologist
changed their focus to ‘meta-omics’-related fields based
on NGS technologies. One important reason is the
declining cost of sequencing and the mass of data gen-
erated/obtained. Sequencing a metagenome is now
cheaper (about $7/Gb data) than the expression and
purification of a protein, due to its higher labour cost
(Goodwin et al., 2016).
Based on metagenomic technologies, we can describe

in great detail the microbial compositions and their func-
tional genes in any type of environment we are inter-
ested in. The scientists of microbiology and microbial
ecology have investigated the microbiomes in the ocean
(Sunagawa et al., 2015), in the soil (Delgado-Baquerizo
et al., 2018), in lakes (Zorzet al., 2019), in the air
(Adams et al., 2013), inside buildings (Lax et al., 2017)
and we even know about the microbial communities liv-
ing in space stations (Sielaff et al., 2019). Besides, using
sequencing technologies such as DNA/RNA stable-iso-
tope probing and sequencing (Chen and Murrell, 2010),
and meta-transcriptome sequencing (Urich et al., 2008),
we can now bridge the gap between function and taxon-
omy information. The emergent bioinformatic and mathe-
matic tools also promote the study of ‘meta-omics’. The
binning tools enable us to construct the genomes of sin-
gle strains from a stack of chaotic sequence data (Sang-
wan et al., 2016). We can predict the microbial
interactions using network analysis (Layeghifard et al.,
2017) and speculate on the assembly and succession
process of complex microbial communities using induc-
tive reasoning (Zhou and Ning, 2017). Although most of
the studies investigating microbial communities are
descriptive, we can still learn much, for example what
the biogeographic distribution of microorganisms is on
earth (Thompson et al., 2017), or how microorganisms
are related to soil productivity (Fierer 2017), how gut
microbiota affect human health (Shreiner et al., 2015)
and what roles microorganisms in the biogeochemical
cycles of earth play (Falkowski et al., 2008), apart from
discovering more and more unculturable microorganisms
hitherto unknown to humanity (Parks et al., 2017).

Received 27 September, 2020; accepted 30 September, 2020.
*For correspondence. E-mail xiaolei_wu@pku.edu.cn; Tel./Fax+86-
10-62759047
Microbial Biotechnology (2021) 14(1), 22–25
doi:10.1111/1751-7915.13681

ª 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

bs_bs_banner

https://orcid.org/0000-0002-5940-1218
https://orcid.org/0000-0002-5940-1218
https://orcid.org/0000-0002-5940-1218
https://orcid.org/0000-0002-9897-6903
https://orcid.org/0000-0002-9897-6903
https://orcid.org/0000-0002-9897-6903
mailto:
http://creativecommons.org/licenses/by-nc/4.0/


‘Meta-omics’-related research undoubtedly improves
our understanding of the microbial world. However,
because most of the ‘meta-omics’ studies use descrip-
tive methods and inductive reasoning, what exactly do
these studies achieve? Whether these hypotheses or
so-called theories can be tested and applied in other
environments remains unknown. Also, whether the sci-
entific questions in the present ‘meta-omics’ studies are
real scientific questions or merely technical problems,
and whether they are meaningful, remains in doubt and
thus needs to be discussed. Generally, the answer to a
real scientific question can explain a phenomenon, and
the scientific hypothesis is a proposed explanation for
the phenomenon, an explanation that is testable using
scientific methods.
What else can we learn from ‘meta-omics’ and NGS?

Imagine a time when the cost of sequencing becomes
negligibly small, when automatic tools for bioinformatic
and mathematical analysis are developed (online auto-
matic platforms are now emerging, allowing users with-
out prior experience to upload their sequencing raw data
and perform popular bioinformatic and embedded mathe-
matical analysis), ‘meta-omics’ analysis based on NGS
would become common technologies like PCR used in
every biological laboratory today. Critically, once artificial
intelligence is mature enough, will it be able to assist, or
even replace us in the analysis of patterns emerging
from ‘meta-omics’ data? Or even develop hypotheses
that explain those patterns?
To find the answer to these questions, we need to

return to the scientific questions and hypotheses them-
selves. In my opinion, future scientists should focus less
on using new technologies to simply generate vast
amounts of data and instead return to first developing
scientific hypotheses aimed at real scientific questions
based on these data and pay more attention to test the
hypotheses in a deductive approach. Although the induc-
tive and deductive approaches are different, they are
also complementary. For a complete cycle of scientific
research, investigators/researchers begin with a set of
phenomena, then look for patterns, before exploring dif-
ferent theories to explain these patterns and developing
a working hypothesis. Next, they design experiments
that allow the testing of their hypothesis, before either
verifying or amending their theories. Recently, using a
similar approach, several studies on ‘synthetic microbial
community’ or ‘synthetic microbiome’ have emerged (see
Lawson et al., 2019 for references?). These studies are
characterized by a ‘design–build–test–learn’ (DBTL)
cycle. The cycle begins with a hypothesis from a micro-
bial ecological theory, before a model is designed that
embodies the hypothesis. Subsequently, microbiomes
are built on the basis of the design and then tested for
their performances, including how function changes over

time, to determine whether the results are in line with the
hypothesis, and to ultimately obtain a deeper under-
standing from the results. This approach has also been
used for industrial applications, such as biosynthesis of
valuable products or degradation of refractory pollutants,
based on rational design and construction of micro-
biomes (Gilmore et al., 2019; Sgobba and Wendisch,
2020).
The basis of design is the hypothesis and assump-

tions supporting the hypothesis. Hypotheses are con-
structed not to simply fit the data, but to explain
phenomena observed. For example, the statement ‘the
community changed with temperature’ is not really a
hypothesis, as it only describes a phenomenon of the
community. It fails to regard the mechanisms and cannot
explain how the community forms in a given environ-
ment. By contrast, ‘higher temperatures should favour
the slower-growing species in a bacterial community with
microbial interactions’ is a much better hypothesis (Lax
et al., 2020), which considers the mechanistic assump-
tion (i.e. the difference in growth rates between the two
species decreases when the temperature is not optimal
for both species), and can be tested by experiments.
On the basis of such a hypothesis, a quantitative

model can actually be proposed, and experiments can
be designed. For synthetic microbial ecology research, a
quantitative mathematical model is needed to simulate
the dynamics of microbiomes (Zomorrodi and Segre,
2016). The Lotka–Volterra model is one of the most
commonly used population dynamic models that
describes pairwise microbial interactions. Another useful
model is the individual-based model (IBM), which treats
each individual cell as a discrete independent entity for
exploring microbial interactions in space. In addition, the
genome-scale stoichiometric model based on flux bal-
ance analysis (FBA) quantitatively predicts the cellular
metabolic fluxes to build a bridge between systems biol-
ogy and microbial ecology. These models greatly sim-
plify the complexity of microbiomes and identify the
critical parameters suitable for experimental interroga-
tion. Experiments can now be designed to test the pre-
diction of the hypothesis and the quantitative models.
Synthetic microbiomes can be constructed using either

a top-down or bottom-up approach to meet the assump-
tions of a hypothesis of synthetic microbiomes.
In contrast to the top-down approach, the bottom-up

assembly begins with defined axenic strains or engi-
neered strains. To test the fitness, the axenic strains are
usually co-cultured to test the fitness to each other and
used to explore the effects of microbial interactions and
random processes on the stability of microbial communi-
ties (Friedman et al., 2017; Gokhale et al., 2018; Abreu
et al., 2019). They are also used to study the trade-offs
of different parameters such as temperature and growth
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rate (Lax et al., 2020). Compared with the axenic strains,
the engineered strains have a clearer genetic back-
ground, and the interactions between X and Y are under
better control. Using genetic circuits, more and more
types of microbial interactions have recently been con-
structed artificially by engineering strains. Using quorum-
sensing regulatory modules, investigators/scientists/re-
searchers can now construct consortia: is mutualism a
consortium? how can ‘competition’ be ‘constructed?’
including mutualism, competition and predation interac-
tion modes, and explore the critical factors on these
interactions (Song et al., 2014). Moreover, interactions
based on metabolite exchange such as cross-feeding
can also be constructed between inter- or intraspecies:
inter already means ‘between/across’, intra already
means ‘within’ -> for both within and across species
(Shou et al., 2007). However, the consortia constructed
with engineered strains usually contain fewer members
than those from axenic strains. They are mainly used to
explore microbial interactions. Ultimately, no matter what
approach is being used, each is driven by a scientific
question or hypothesis.
One of the bottlenecks for efficiently studying synthetic

microbiomes is the lack of high-throughput tests of the
co-cultures. Although mathematical models point out the
critical parameters for the construction of microbiomes
and simplify the design of experiments, the number of
possible co-cultures is extremely high, especially for syn-
thetic microbiomes designed to contain multiple species.
Moreover, for those from axenic strains, mass replicates
are needed to ensure the stability of the results. A small
number of high-throughput methods have recently been
developed for constructing and testing the synthetic
microbiomes, containing up to several thousands of co-
cultures per day (Kehe et al., 2019). Another challenge
to X is presented by Y the high-throughput investigation
of microbial compositions of mass co-cultures. For co-
cultures from a few species, the morphology of colonies
can be used to discriminate different species (Celiker
and Gore, 2014). Therefore, to match the need for syn-
thetic microbiome research, it is critical to develop low-
cost methods based on NGS and techniques of intelli-
gent image recognition. The inductive methods are also
important for the iterative process between model predic-
tion and the testing of the hypothesis.
In summary, the development of low-cost/high-yield

technologies greatly affects the way we do science. If
publishing work solely based on new technologies, with-
out actually asking a good scientific question becomes
the norm, then our progress in understanding how nature
works will slow considerably. New technologies might be
the focus for tech-focused researchers, but it should
never be the focus of an entire research discipline.
‘Omics’ studies have by now deposited massive

amounts of data into the databases, and it is now time to
return to the question as to what can we actually learn
from them. Without testing, the hypotheses and theories
from ‘omics’ data based on inductive reasoning are only in
the air. It is now time to return to ask hypothesis-driven
scientific questions in the field of microbial ecology and
find approaches suitable to finding answers. Increased
application of the deductive approach in synthetic micro-
bial ecology and synthetic microbiome research will
undoubtedly provide exciting new opportunities for
advancing our understanding of microbial ecology.
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