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Abstract

Background: Accumulating evidence has linked environmental exposure, such as ambient air pollution and
meteorological factors, to the development and severity of cardiovascular diseases (CVDs), resulting in increased
healthcare demand. Effective prediction of demand for healthcare services, particularly those associated with peak
events of CVDs, can be useful in optimizing the allocation of medical resources. However, few studies have attempted
to adopt machine learning approaches with excellent predictive abilities to forecast the healthcare demand for CVDs.
This study aims to develop and compare several machine learning models in predicting the peak demand days of
CVDs admissions using the hospital admissions data, air quality data and meteorological data in Chengdu, China from
2015 to 2017.

Methods: Six machine learning algorithms, including logistic regression (LR), support vector machine (SVM), artificial
neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine
(LightGBM) were applied to build the predictive models with a unique feature set. The area under a receiver operating
characteristic curve (AUC), logarithmic loss function, accuracy, sensitivity, specificity, precision, and F1 score were used
to evaluate the predictive performances of the six models.

Results: The LightGBM model exhibited the highest AUC (0.940, 95% CI: 0.900–0.980), which was significantly higher
than that of LR (0.842, 95% CI: 0.783–0.901), SVM (0.834, 95% CI: 0.774–0.894) and ANN (0.890, 95% CI: 0.836–0.944), but
did not differ significantly from that of RF (0.926, 95% CI: 0.879–0.974) and XGBoost (0.930, 95% CI: 0.878–0.982). In
addition, the LightGBM has the optimal logarithmic loss function (0.218), accuracy (91.3%), specificity (94.1%), precision
(0.695), and F1 score (0.725). Feature importance identification indicated that the contribution rate of meteorological
conditions and air pollutants for the prediction was 32 and 43%, respectively.
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Conclusion: This study suggests that ensemble learning models, especially the LightGBM model, can be used to
effectively predict the peak events of CVDs admissions, and therefore could be a very useful decision-making tool for
medical resource management.

Keywords: Machine learning, Cardiovascular disease, Hospital admission, Prediction, Environmental exposure

Background
Cardiovascular diseases (CVDs) are the leading cause of
death worldwide; about 17.9 million deaths were attrib-
utable to CVDs in 2016, representing approximately 31%
of all global deaths in that year [1]. Even though behav-
ioral factors, including physical inactivity, smoking, un-
healthy diets and obesity, are well-known risk factors for
CVDs, a large body of studies have indicated that envir-
onmental exposure [2–4], such as ambient air pollution
[5–9] and temperature variability [10–12], also makes a
significant contribution to CVDs, resulting in increased
risk of morbidity. For example, using conditional logistic
regression models, Liu et al. [13] conducted a multi-city
study in 26 Chinese cities, and the results showed that
elevated concentrations of sulfur dioxide (SO2), nitrogen
dioxide (NO2), carbon monoxide (CO), and ozone (O3)
were associated with increased risk of hospitalization for
heart failure. Another national time-series study con-
ducted in 184 Chinese cities linked temperature variabil-
ity to the increase of hospital admissions for CVDs and
its subtypes using over-dispersed Poisson regression
models [14]. Although these statistical regression models
can assess the associations of environmental exposure
with CVDs morbidity [15–17], they are often incapable
of providing sufficiently accurate morbidity prediction
for healthcare management. Moreover, we lack informa-
tion on the effect of a complex mixture of environmental
exposure on CVDs morbidity.
With an increasing number of CVDs patients putting

pressure on the limited medical resources, the prediction
of healthcare demands, particularly those associated with
peak events, has gained greater attention. Time series
forecasting approaches, such as the autoregressive inte-
grated moving average (ARIMA) model and the seasonal
ARIMA model, are widely applied in predicting prob-
lems regarding emergency department visits [18, 19],
new admission inpatients [20] and inpatients discharge
[21]. However, these models have difficulties solving the
complex nonlinear relationship among multi-factors,
and their forecasting abilities to extrapolate are limited.
Recently, machine learning algorithms, which can solve

the nonlinear relationship among multi-dimensional vari-
ables, have been shown to be effective in prediction, and
are being used successfully in various healthcare applica-
tions, such as medical diagnosis [22, 23] and disease risk
prediction [24, 25]. Nevertheless, only a very limited

number of studies have attempted to adopt machine-
learning based data-driven approaches to forecast the de-
mand for healthcare services associated with environmental
exposure, and these few studies predominately focused on
the application of artificial neural network (ANN) [26–29].
For instance, Kassomenos et al. [30] applied ANN and step-
wise regression models to predict the daily number of hos-
pital admissions for CVDs and respiratory diseases
considering air pollution and meteorological conditions,
and ANN performed better than the regression model.
Moreover, there were relatively fewer machine-learning
based studies on predicting peak event of healthcare de-
mand associated with environmental exposure [31]. To the
best of our knowledge, only one study has used ANN to
forecast peak demand days of emergency department visits
for chronic respiratory diseases based on weather and en-
vironmental pollution. Although part of other machine
learning algorithms performed better than ANN in other
fields [32], it is unclear how effective the other machine
learning approaches are in predicting the healthcare ser-
vices demand associated with environmental exposure,
which leaves open the potential for the development of
more accurate predictive models using other algorithms.
In this study, we contribute to the existing body of

knowledge by developing and comparing various ma-
chine learning models in predicting the peak demand
days of CVDs admissions based on hospital admissions
data, air quality data and meteorological data in
Chengdu, China from 2015 to 2017. Six types of ma-
chine learning models, including logistic regression (LR),
support vector machine (SVM), ANN, random forest
(RF), extreme gradient boosting (XGBoost), and light
gradient boosting machine (LightGBM), were con-
structed, and their predictive performances were also
compared. The study shows the potential of machine
learning approaches for predicting peak events of CVDs
admissions, and identifies the most sui model for deci-
sion making.

Methods
Overview of the research framework
This study attempted to predict the peak demand days
of CVDs admissions using machine learning techniques.
The block diagram of the classified prediction process is
shown in Fig. 1. In brief, the time series dataset, which
was comprised of CVDs admissions, meteorological data
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and air quality data, was pre-processed. Second, the gen-
eralized additive model (GAM) was built to choose the
lag day of meteorological conditions and air pollutants
for CVDs admission. Then, six machine learning algo-
rithms, including LR, SVM, ANN, RF, XGBoost and
LightGBM, were applied to construct the predictive
models, and the models’ parameters were optimized with
10-fold cross validation. After that, the predictive models
were validated, then the performances of these models
were compared. Finally, we predicted the peak demand
days of CVDs admissions based on the optimal machine
learning model.
The details are discussed in the following sub-sections.

Data collection and preprocessing
Hospital admissions data
Data for the daily number of hospital admissions for pa-
tients with CVDs who lived in urban areas of Chengdu
was obtained from the Health Information Center of Si-
chuan Province, China. This data contains aggregate
numbers of CVDs admissions in all the tertiary and sec-
ondary hospitals of Chengdu each day with primary
diagnosis of CVDs (International Classification of Dis-
eases, 10th Revision codes: I00-I99) from 1 January 2015
to 31 December 2017, which is 1096 days of continuous
data.
Additionally, we focused on the peak demand of CVDs

admissions, and the binary variable was generated from
the daily number of CVDs admissions. In the absence of
a known threshold for daily CVDs admissions, the peak
demand was defined on the basis of an 85th percentile
threshold (304 hospital admissions per day) by reference
to the previous studies [31, 33]. Specifically, the days on

which the daily number of CVDs admissions were equal
to or above the 85th percentile threshold were defined
as peak demand days. Thus, the binary variable of CVDs
admissions is highly imbalanced, with 931 samples of
non-peak demand and 165 samples of peak demand.
This binary variable of CVDs admissions was used as the
primary dependent variable in the analysis.

Meteorological data and air quality data
Meteorological data, including temperature, relative hu-
midity and rainfall, were derived from the Chengdu Me-
teorological Monitoring Database (http://data.cma.cn/).
Hourly data of air pollutants, including PM2.5 (particu-

late matter with aerodynamic diameter ≤ 2.5 μm), PM10

(particulate matter with aerodynamic diameter ≤ 10 μm),
SO2, NO2, CO and O3, were obtained from the China
National Environmental Monitoring Center (http://www.
cnemc.cn/), which provides real-time monitoring of
hourly concentrations of air pollutants to the general
public. We averaged the 24-h mean concentrations for
PM2.5, PM10, SO2, NO2 and CO, and calculated max-
imum 8-h moving average concentrations for O3 from
the air quality monitoring stations interspersed among
the urban areas of Chengdu. Concentrations of particu-
late matter with an aerodynamic diameter between 2.5
and 10 μm (PMC) were calculated by subtracting daily
average concentrations of PM2.5 from PM10 [9, 34].

Data preprocessing
Data for the daily number of hospital admissions for
CVDs, meteorological data and air quality data were col-
lected from different data sources. We merged these
three datasets to form a time series dataset by date (i.e. 1

Fig. 1 Block Diagram of Classified Prediction Process
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January 2015 to 31 December 2017). The time series fea-
tures were extracted from date, including year, month
(month of year), day (day of month), holiday (public hol-
idays) and DOW (day of week).
During the study period, the percentages of missing

values from the monitoring stations were 1.28% (14/
1096) for meteorological conditions, and 3.19% (35/
1096) for air pollutants. The linear interpolation which
has acceptable performance and reliability was used to
fill in the missing values of meteorological conditions
and air pollutants [35, 36].

Feature extraction
As illustrated in the above section, the features for pre-
dicting the peak demand days of CVDs admissions in-
cluded time series features, meteorological condition
features and air pollutant features. Accumulating epi-
demiological studies have suggested that the effect of
meteorological conditions and air pollutants on CVDs
admissions is delayed, and the lag effect is related to the
regional environment [8, 12, 37]. Hence, we employed
an over-dispersed GAM, which allowed the quasi-
Poisson distribution to analyze the lag effects of daily
meteorological conditions and air pollutants on CVDs
admissions, and chose the lag day based on the mini-
mum Generalized Cross-Validation (GCV) values which
measure models fit [5, 34]. The lag effects of single day
lags (from lag0 to lag6) and cumulative day lags (from
lag01 to lag06) were taken into consideration. The pe-
nalized spline approaches were applied to control for po-
tential confounding of long-term trends, seasonality and
meteorological effects [38]. Moreover, dummy variables
of holiday and DOW were controlled.

The results demonstrated that temperature, relative
humidity, rainfall, PM2.5, PM10, PMC, SO2, NO2, CO and
O3 were associated with CVDs admissions, with the
minimum GCV values at lag04, lag06, lag06, lag3, lag3,
lag3, lag0, lag0, lag0 and lag6, respectively.
Finally, the independent variables for forecasting the

peak demand days of CVDs admissions included fifteen
features, which are shown in Table 1.

Machine learning methods
In this study, six well-accepted machine learning algo-
rithms, including LR, SVM, ANN, RF, XGBoost and
LightGBM, were applied to develop predictive models
with the unique feature set. These machine learning
methods were considered according to their following
characteristics.
LR is a common and basic algorithm, which is widely

used in disease risk prediction and epidemiology [39].
SVM is a discriminative classification technique, which
has been widely applied in medical diagnostics and other
fields, especially with small sample sets [40]. ANN, in-
spired by biological neural networks, has a remarkable
ability to determine the meaning and rules of compli-
cated data [41, 42]. RF, an ensemble algorithm, applies a
bootstrap algorithm to extract multiple samples from
the training set randomly, and trains the samples with
the weak classifier (i.e. decision tree) [43]. RF’s final re-
sult is determined by the majority of votes over all deci-
sion trees, thereby improving its predictive accuracy and
preventing the model from over-fitting. XGBoost is a
distributed gradient boosting algorithm and has gained
wide popularity and attention in machine learning com-
petitions [44, 45]. XGBoost chooses a weak classifier to

Table 1 The features for prediction

Feature category Features Description

Time series features year year of the date of hospital admission

month month of year

day day of month

holiday public holidays

DOW day of week

Meteorological condition features Tem_lag04 mean temperature for the moving average of current day and previous four days (lag04)

RH_lag06 relative humidity for the moving average of current day and previous six days (lag06)

Rain_lag06 rainfall for the moving average of current day and previous six days (lag06)

Air pollutants features PM2.5_lag3 PM2.5 at the previous three days (lag3)

PM10_lag3 PM10 at the previous three days (lag3)

PMC_lag3 PMC at the previous three days (lag3)

SO2_lag0 SO2 at the current day (lag0)

NO2_lag0 NO2 at the current day (lag0)

CO_lag0 CO at the current day (lag0)

O3_lag6 O3 at the previous six days (lag6)
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facilitate efficient optimization algorithms, adds an L2
regularization term of leaf weights to achieve lower vari-
ance, and uses the second-order Taylor series as the cost
function to retain more information about the target
function, thereby improving its predictive accuracy.
LightGBM is a distributed and high-performance gradi-
ent lifting framework based on a decision tree algorithm
designed for fast computational time, especially with
very large data sets [46]. It utilizes two novel techniques:
gradient-based one-side sampling and exclusive feature
bundling, which respectively are used to deal with the
huge number of data samples and massive amount of
features [47].
All above-mentioned models were trained and tested on

a partitioned 80/20 percentage split of the dataset by
stratified random sampling. Simultaneously, in situations
where there was imbalanced class data combined with un-
equal error costs, these models’ performance metrics were
not representative of reasonable performances. Therefore,
it was necessary to balance the dataset to get true per-
formance values for the classifier; hence, we adjusted
weights inversely proportional to class frequencies in the
input data when training the machine learning models.
The parameters of these six predictive models were

determined by grid search and 10-fold cross-validation
in training the dataset. To be specific, we partitioned the
training dataset into ten equally sized pieces, and we uti-
lized the grid search with nine pieces to tune the param-
eters, while the remaining piece was used as the
validation set. We repeated this process ten times. The
best parameters for predictive models were obtained
with the best score, which itself was obtained by aver-
aging the process of repetition mentioned in the previ-
ous sentence. Table 2 shows the values of the
parameters for each model.

Model assessment
We calculated the AUC from receiver operating charac-
teristic (ROC) analysis to evaluate the predictive utilities
of the models, and the AUC of the six machine learning
models was compared based on the DeLong method (p-
value < 0.05 was deemed to indicate statistical signifi-
cance) [48]. Meanwhile, logarithmic loss function (log-
loss) was applied to quantify the accuracy of the classi-
fier by punishing the wrong classification. Furthermore,
the evaluation indicators of the confusion matrix, includ-
ing accuracy, sensitivity, specificity, precision, and F1
score, were used to analyze the relationship between the
actual values and the predicted values for the peak de-
mand of CVDs admissions.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

Sensitivity ¼ TP
TP þ FN

ð2Þ

Specificity ¼ TN
TN ¼ FP

ð3Þ

Precision ¼ TP
TP þ FP

ð4Þ

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

ð5Þ

where, TP = True Positive, FP = False Positive, TN =
True Negative, FN = False Negative; Recall ¼ TP

TPþFN

Results
Descriptive statistics
The statistical information of daily CVDs hospital admis-
sions, meteorological conditions and air pollutants con-
centrations is summarized in Table 3. During the study
period, the average of daily hospital admissions for
CVDs was 208 inpatients, the minimum value was 33,
and the maximum value was 476. The daily average
levels of temperature, relative humidity and rainfall were
17.0 °C, 80.4% and 2.6 mm, respectively. The daily aver-
age concentrations were 60.3 μg/m3 for PM2.5, 99.3 μg/
m3 for PM10, 39.0 μg/m

3 for PMC, 13.9 μg/m
3 for SO2,

55.0 μg/m3 for NO2, 96.0 μg/m
3 for O3 and 1.1 mg/m3

for CO.

Evaluation and comparison of the predictive models
Based on the above-mentioned features in Table 1, we
constructed six machine learning models to predict the
peak demand days for CVDs admissions. Using the opti-
mal parameters for each model, the predictive models
were corroborated via a validation set which was derived
from the training dataset by 10-fold cross-validation.
The box plot of AUC for each model with 10-fold cross-
validation in training dataset is shown in Fig. 2. The
AUC for LR, SVM, ANN, RF, XGBoost and LightGBM
was 0.817 (95% confidence interval (CI): 0.795–0.839),
0.814 (95% CI: 0.792–0.836), 0.844 (95% CI: 0.814–
0.875), 0.929 (95% CI: 0.906–0.951), 0.945 (95% CI:
0.922–0.967) and 0.9454 (95% CI: 0.921–0.967), respect-
ively. The XGBoost model achieved the best AUC, and
its performance was significantly better than LR (p-value
< 0.001), SVM (p-value < 0.001) and ANN (p-value <
0.001), but did not differ significantly from RF (p-value =
0.264) and LightGBM (p-value = 0.933).
Based on the validation result for the training dataset,

we predicted the peak demand days for CVDs admis-
sions in an independent testing dataset. The ROC curve
for the predictive models in that testing dataset is shown
in Fig. 3. The AUC of LR, SVM, ANN, RF, XGBoost and
LightGBM was 0.842 (95% CI: 0.783–0.901), 0.834 (95%
CI: 0.774–0.894), 0.890 (95% CI: 0.836–0.944), 0.926
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(95% CI: 0.879–0.974), 0.930 (95% CI: 0.878–0.982) and
0.940 (95% CI: 0.900–0.980), respectively. The LightGBM
model had the highest AUC value among all these predict-
ive models, and the performance was significantly better
than LR (p-value < 0.001), SVM (p-value < 0.001), ANN
(p-value = 0.03), but did not differ significantly from RF
(p-value = 0.222) and XGBoost (p-value = 0.489).
Furthermore, we used log-loss, accuracy, sensitivity,

specificity, precision, and F1 score to compare the per-
formances of these six machine learning models in the
independent testing dataset (Table 4). The LightGBM
model exhibited the best AUC (0.940), log-loss (0.218),
accuracy (0.913), specificity (0.941), precision (0.695),
and F1 score (0.725) in this testing dataset, and the RF
model had the best sensitivity (0.909). Thus, the
LightGBM model achieved the best performance among
the six machine learning models.

The identification of feature importance
As illustrated in the above section, the LightGBM model
achieved the best performance; it offers the most powerful
predictors for predicting the peak demand days of CVDs
admissions. The identification of feature importance based
on LightGBM is shown in Fig. 4. The contribution rate of
time series features, meteorological conditions and air pol-
lutants for predicting the peak demand days of CVDs ad-
missions was 25, 32 and 43%, respectively. Among the
meteorological condition features, the top-ranked features
were Tem_lag04 and RH_lag06, respectively. Similarly, the
top-ranked features among the air pollutants were NO2_
lag0 and SO2_lag0, respectively.

Discussion
The six machine learning models were developed to pre-
dict the peak demand days for CVDs admissions, and as

Table 2 Summary of parameter values in each model

Models Parameters Values Parameters Mean

LR penalty L1 penalty function

SVM kernel linear kernel function

C 5 penalty parameter of the error term

ANN kernel initializer uniform kernel initializer function

activation1 relu activation of hidden layer

activation2 sigmoid activation of output layer

optimizer Adam training optimization algorithm

epochs 300 number of times shown to the network

batch size 20 batch size

dropout 0.0 dropout rate

RF n estimators 695 number of iterations

max depth 4 maximum depth of variable interactions

max features 7 number of features for the best split

XGBoost learning rate 0.1 learning rate

n estimators 100 number of iterations

eta 0.01 control of learning rate

max depth 3 maximum depth of variable interactions

gamma 0.6 minimum loss reduction required to make a further partition on the tree’ leaf node

subsample 0.7 subsample ratio

co-sample by tree 0.6 subsample ratio of columns when constructing each tree

min child weight 2 sum of the minimum weights that leaf nodes need to observe

LightGBM learning rate 0.1 learning rate

n estimators 100 number of iterations

max depth 8 maximum depth of variable interactions

num leaves 10 number of leaves in each tree

bagging fraction 0.7 percentage of sampling used in each iteration

feature fraction 0.9 ratio of features to build the tree in each iteration

min data in leaf 5 minimum number of records in a leaf

min split gain 0.0 smallest gain of the split
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a result of our study, the optimal model has been identi-
fied. To the best of our knowledge, no studies have ap-
plied machine learning models other than ANN in the
prediction of peak event of healthcare demand. This is
the first study to construct and compare various ma-
chine learning models in terms of predicting the peak
events of CVDs admissions using meteorological data,
air quality data and hospital admissions data.
Our study found that the ensemble learning models, in-

cluding LightGBM, RF and XGBoost, outperformed ANN,
SVM and LR, achieved overall accuracies of > 0.86 and
AUCs of > 0.92. This suggests that the ensemble learning

models have better generalization capabilities compared
to other models for predicting the peak demand days of
CVDs admissions. The LightGBM exhibited the best per-
formance among the ensemble learning models. Com-
pared with ANN, SVM and LR, the AUC of LightGBM
significantly improved by 5.65, 12.66 and 11.61%, respect-
ively. Even though most predictive models have higher re-
call and lower precision, this could be acceptable as
insufficient allocation of medical resources in peak days
can lead to costly outcomes. The results of our study indi-
cate that ensemble learning models are well suited for the
prediction of peak demand for healthcare services.

Table 3 Summary statistics of daily CVDs admissions, meteorological conditions and air pollutants concentrations in Chengdu,
2015–2017

Mean Standard Deviation Minimum Median Maximum

CVDs hospital admissions (n) 208 90 33 206 476

Meteorological Conditions

Temperature (°C) 17.0 7.2 −1.1 17.8 30.2

Relative Humidity (%) 80.4 8.8 43.0 80.8 98.3

Rainfall (mm) 2.6 8.7 0.0 0.0 122.0

Air Pollutants Concentrations

PM2.5 (μg/m3) 60.3 42.4 6.1 48.4 324.5

PM10 (μg/m3) 99.3 64.7 14.3 79.8 492.5

PMC (μg/m3) 39.0 25.8 4.8 31.6 238.2

SO2 (μg/m3) 13.9 5.8 3.9 12.7 37.9

NO2 (μg/m3) 55.0 17.3 15.7 53.0 130.4

O3 (μg/m3) 96.0 54.6 5.6 85.3 290.4

CO (mg/m3) 1.1 0.4 0.4 1.0 2.8

CVDs Cardiovascular diseases

Fig. 2 Box plot of AUC for machine learning models with 10-fold cross-validation in training dataset. °: the outliers of box plot; *: the model is
significantly different from the XGBoost model. LR: logistic regression; SVM: support vector machine; ANN: artificial neural network; RF: random forest;
XGBoost: extreme gradient boosting; LightGBM: light gradient boosting machine
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The lag patterns of meteorological conditions and air
pollutants have been well-documented in epidemio-
logical studies [8, 12, 16], and suggest that the lag effects
of environmental exposure have regional differences.
However, to date, very few machine-learning based stud-
ies have analyzed the lag effect of environmental expos-
ure when predicting the peak demand for healthcare
services. Krishan et al. [31] applied representative lags to
predictors based on the results from other studies to
forecast the peak demand days of emergency department
visits, but did not incorporate the actual situation of the
study area. In our study, we utilized GAM to analyze the
lag effect of meteorological conditions and air pollutants
on CVDs admissions in our study areas. GAM is useful
in the detection of early warning signals for future peak
demand.
Environmental exposure, such as ambient air pollution

and extreme temperatures, is an important but underap-
preciated risk factor contributing to the development
and severity of CVDs [4]. Accumulating evidence from
epidemiological studies has linked environmental

exposure to increased risk of CVDs morbidity [5–12].
However, evidence of the effect of a complex mixture of
environmental exposure on CVDs morbidity is still lim-
ited. Machine learning techniques provide an opportun-
ity for developing algorithms that classify individuals
with complex interaction factors. In our study, the con-
tribution of the special ambient air pollutants and cli-
matic characteristics of the area to the peak demand
days of CVDs admissions was successfully modeled. The
identification of feature importance based on the opti-
mal model showed that among the environmental ex-
posure features, the 4 top-ranked features were Tem_
lag04, RH_lag06, NO2_lag0 and SO2_lag0, respectively,
and the contribution rate of meteorological conditions
and air pollutants to the prediction was 32 and 43%, re-
spectively. These results suggest that environmental ex-
posure is an important predictor.
Our study has several strengths. First, considering the

lag effects of the complex mixture of environmental ex-
posure and their regional differences, we utilized an
over-dispersed GAM to analyze the lag effects of

Fig. 3 ROC curve of machine learning models in testing dataset. LR: logistic regression; SVM: support vector machine; ANN: artificial neural network;
RF: random forest; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting machine

Table 4 The evaluation indicators of machine learning models in testing dataset

Models AUC log-loss Accuracy Sensitivity Specificity Precision F1 score

LR 0.842 (95% CI: 0.783–0.901) 0.513 0.766 0.848 0.751 0.378 0.523

SVM 0.834 (95% CI: 0.774–0.894) 0.344 0.748 0.879 0.724 0.362 0.513

ANN 0.890 (95% CI: 0.836–0.944) 0.296 0.858 0.333 0.951 0.551 0.415

RF 0.926 (95% CI: 0.879–0.974) 0.358 0.862 0.909 0.854 0.527 0.667

XGBoost 0.930 (95% CI: 0.878–0.982) 0.277 0.876 0.818 0.886 0.563 0.667

LightGBMa 0.940 (95% CI: 0.900–0.980) 0.218 0.913 0.758 0.941 0.695 0.725

font bold: the optimal values; athe optimal model. LR logistic regression, SVM support vector machine, ANN artificial neural network, RF random forest, XGBoost
extreme gradient boosting, LightGBM light gradient boosting machine
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meteorological conditions and air pollutants on CVDs
admissions, and chose the lag day with the minimum
GCV value as the optimal predictor, rather than using
the current day or relying on previous research, which
makes our predictive models more practical. In addition,
we applied six well-accepted machine learning algo-
rithms to construct predictive models, which indicate
our commitment to present a wide variety of ap-
proaches. Specially, LR represents the basic machine
learning model, SVM and ANN are widely used in pre-
diction, and RF, XGBoost and LightGBM are ensemble
learning models. As discussed earlier, we found that en-
semble learning models, especially the LightGBM model,
have higher prediction capabilities than LR or ANN,
which can benefit decision makers in finding more suit-
able models for the prediction of healthcare demand, es-
pecially during peak events. To the best of our
knowledge, this study is the first to develop and compare
various well-accepted machine learning models to pre-
dict the peak events of CVDs admissions that consider
environmental exposure. Our results contribute to the
limited research in this filed, as they provide useful and
comprehensive information to those who seek to identify
the most suitable model for decision making.
Our study also has some limitations that need to be

addressed. First, we considered only two well-studied en-
vironmental exposures: meteorological conditions and
ambient air pollutants, but some other environmental
factors, such as exposure to the metals arsenic, cadmium
and lead, also play important roles in the development
and severity of CVDs [4]. Second, we just constructed
the classification models to predict the peak demand

days of CVDs admissions. Further study is required to
forecast the number of admissions for CVDs accurately
based on regression models. Third, the current model is
designed for non-communicable diseases, such as CVDs,
which are associated with environmental exposure, and
the model might not be suitable for forecasting the peak
events of infectious diseases.

Conclusions
This study used machine learning approaches to forecast
the peak demand days for CVDs admissions based on
hospital admissions data, air quality data and meteoro-
logical data. The results revealed that ensemble learning
models, especially the LightGBM model, can accurately
predict the peak events of CVDs admissions. Meanwhile,
the identification of feature importance based on
LightGBM indicated that meteorological conditions and
air pollutants made significant contributions to the ac-
curacy of prediction. These findings show that machine
learning approaches have potential in the prediction of
the peak events of CVDs, and the predictive capacity of
ensemble learning models makes them valid tools sup-
porting decisions regarding medical resource
management.
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