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Abstract
Background  Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce sta-
tistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of 
missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. 
from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of 
sample preparation.
Methods  We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the 
German KORA F4 cohort (n = 1750). We then evaluated 31 imputation methods in a simulation framework and biologi-
cally validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each 
method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase 
statistical power while preserving the strength of established metabolic quantitative trait loci.
Results  Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although 
multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challeng-
ing. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across 
all evaluation schemes and is computationally more tractable.
Conclusion  Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we 
recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust 
results in all evaluation schemes.

Keywords  Untargeted metabolomics · Missing values imputation · Limit of detection · Batch effects · MICE · K-nearest 
neighbor · Mass spectrometry

1  Introduction

Metabolomics is an established tool that provides insights 
into disease mechanisms (Fearnley and Inouye 2016), as 
metabolite profiles generate a molecular readout that is 
closely linked to the (patho-) phenotype (Patti et al. 2012; 
Blow 2008). While missing values in targeted MS-based 
data occur rarely, untargeted MS-based techniques typically 
produce 20–30% missing values, affecting more than 80% 
of the measured compounds (Armitage et al. 2015; Hrydzi-
uszko and Viant 2011; Gromski et al. 2014; Xia et al. 2009).

There are various reasons why metabolite concentrations 
can be missing in an untargeted metabolomics dataset. First, 
it is possible that the molecules are truly absent from the 
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sample, a situation that may occur e.g. for drug metabolites 
that only appear in a subset of people taking that medication. 
On the other hand, there are several technical reasons that 
could result in missing values, including: (i) instrument sen-
sitivity thresholds, below which concentrations of a specific 
metabolite might not be detectable in a sample (i.e., below 
the limit of detection, LOD); (ii) matrix effects that impede 
the quantification of a metabolite in a sample through other 
co-eluting compounds and ion suppression; (iii) declin-
ing separation ability of the chromatographic column and 
increasing contamination of the MS instrument; and (iv) 
limitations in computational processing of spectra, such as 
poor selection and alignment of the spectral peaks across 
samples (Redestig et al. 2011).

Patterns of missing data are commonly categorized as 
either missing completely at random (MCAR), missing at 
random (MAR), or missing not at random (MNAR) (Di 
Guida et al. 2016). If a value is MCAR, the probability of 
its missingness does not depend on observed or unobserved 
values (of the affected or other variables). In contrast, if a 
value is MAR, its missingness depends on observed values 
(of the affected or other variables; for instance, it may result 
from technical effects, such as overlapping peaks). MNAR 
describes the occurrence of missing values that depend on 
the (unobserved) value itself, even after conditioning on the 
observed values (for instance, if values of a metabolite are 
missing due to issues with the performance of the machine 
in certain concentration ranges).

Although it is clear that the handling of missing values 
affects all downstream analyses, it is less clear how to appro-
priately handle their occurrence statistically. A simple ad 
hoc approach is known as complete case analysis (CCA​), 
which only considers samples that do not contain any miss-
ing values in the metabolites analyzed in each statistical 
analysis step. However, missing data may occur in some 
systematic way (i.e., they are dependent on external fac-
tors). For example, if all cases in a case-control study have 
more missing data than the controls, removing observations 
that are missing will lead to bias in biological interpretation 
(Chen et al. 2011). Furthermore, CCA​ can cause severe loss 
of information and statistical power by excluding a majority 
of observations if multivariate methods, such as principal 
component analysis or partial correlation networks, are to 
be performed.

A widely used and flexible class of missing data strategies 
is imputation, which involves the replacement of missing 
values by reasonable substitute values. The most commonly 
used imputation approaches for metabolomics data assume 
that missing data occur because they are below the limit of 
detection (left-censoring, a variant of MNAR). Therefore, 
all missing entries of a metabolite are replaced by a low 
constant value, such as the actual LOD (if known), zero, or 
the smallest value found in the dataset for that metabolite 

(Xia et al. 2009). Another LOD-based substitution strategy 
assumes a parametric left-truncated normal distribution 
and performs likelihood-based parameter estimation on 
the observed values to reconstruct the truncated part of the 
distribution. Missing values are then replaced by numbers 
drawn from this estimated part (Chen et al. 2011; Richardson 
and Ciampi 2003). Additional imputation-based substitution 
approaches assume MCAR and replace missing values by 
the mean or median per metabolite (Gromski et al. 2014). 
Advanced approaches use multivariate statistical methods 
for imputation, including multiple imputation by chained 
equations (MICE) (van Buuren 2007) and K-nearest neigh-
bors (KNN) imputation (Troyanskaya et al. 2001; Tutz and 
Ramzan 2015).

Several previous studies have investigated the occur-
rence and effects of different strategies for missing values in 
metabolomics data. Taylor et al. (2016) reported that no sin-
gle imputation method was universally superior, but constant 
substitution methods consistently showed poor performance. 
Gromski et al. (2014) recommended imputation by Random 
Forests (RFs) for GC/MS metabolomics data after evalu-
ating the outputs of supervised and unsupervised learning 
approaches. Di Guida et al. (2016) investigated various com-
binations of different preprocessing steps to determine which 
were the most appropriate for univariate and multivariate 
analyses of UHPLC-MS metabolomics data. The authors 
recommended RF and KNN-based imputation for PCA and 
PLS-DA, respectively (Di Guida et al. 2016). Armitage et al. 
(2015) studied missing values in CE/MS metabolomics data 
and reported KNN imputation to be more effective compared 
with simpler substitution-based imputation methods. Finally, 
in a study by Hrydziuszko and Viant (2011), a KNN-based 
imputation approach also outperformed competing strategies 
in an investigation of direct infusion Fourier transform ion 
cyclotron resonance (DI-FTICR) MS-based metabolomics 
data.

Despite these advances in our understanding of the effects 
of imputation on metabolomics data analysis, several aspects 
have not been addressed by those previous studies. (i) A 
detailed statistical description of the patterns of missing val-
ues in MS-based metabolomics data has not yet been pub-
lished. Most previous studies evaluated imputation strate-
gies assuming only random or LOD-based missing values 
without assessing whether this applies to real metabolomics 
datasets. In particular, the influence of batch effects on the 
occurrence of missing values has not been investigated in 
any study. If a cohort comprises a large number of samples, 
the MS runs usually are spread across multiple days, which 
is known to influence metabolite measurements due to vari-
ation in instrument sensitivity. Here, the LOD itself is also 
expected to vary across run days, an assumption that has not 
been explicitly accounted for in any studies. (ii) In addition, 
a simulation framework that reflects realistic data situations 
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is needed to provide an unbiased evaluation of strategies 
for handling missing values. Evaluation of previous studies 
has been biased in the sense that “complete” measured data 
(created by excluding all variables with missing values) with 
artificially introduced missing values were simulated, which 
most likely does not mirror realistic missing value patterns. 
(iii) Finally, biological validation and biochemical interpre-
tation of the data have not been addressed in the majority 
of papers. Only Hrydziuszko et al. evaluated the ability of 
different imputation strategies to preserve metabolic differ-
ences between biological groups, which were then related to 
KEGG pathways (Hrydziuszko and Viant 2011).

In the present study, we analyzed patterns of missing 
data and evaluated the performance of various imputation 
strategies for untargeted MS-based metabolomics data from 
serum samples of the German Cooperative Health Research 
in the Region of Augsburg (KORA) F4 cohort. Data were 
measured on a typical, widely used untargeted MS-based 
metabolomics platform (Metabolon, Inc., USA) and should 
be representative of many untargeted population-scale 
metabolomics studies. The study consisted of three steps: 
(i) We described and analyzed patterns of missing values 
and their possible underlying mechanisms in a real untar-
geted metabolomics dataset. In particular, we investigated 
the occurrence of missing values within and across batches 
of measurements. (ii) The insights gained from these analy-
ses were used to introduce realistic patterns of missing data 
into simulated data. We applied 31 imputation methods to 
the datasets and evaluated them with respect to their abil-
ity to achieve correct statistical estimates and hypothesis 
test results in various data scenarios. (iii) Finally, the impu-
tation methods were applied to real metabolomics data 
(KORA F4), followed by two biologically-driven evaluation 
schemes. First, we assessed how accurately real biochemical 
pathways were reconstructed in data-driven correlation net-
works inferred from the imputed data. Second, we verified 
whether imputation led to a gain in statistical power, while 
preserving effects of genetic variants on metabolite levels. 
The study workflow is visualized in Fig. 1.

2 � Results

2.1 � Characterization of missing data patterns 
in KORA F4 untargeted metabolomics data

We used an untargeted metabolomics dataset from the 
KORA F4 study, which was generated from fasting serum 
samples measured on three platforms: LC/MS in both posi-
tive (LC/MS+) and negative modes (LC/MS−), as well as 
a GC/MS platform. After log-transformation and outlier 

handling (see Sect. 4), 1757 samples and 516 metabolites 
were available for analysis.

The dataset contained 19.41% missing values, with 416 
(80.6%) metabolites and all observations showing at least 
one missing value. The majority (301, 72.4%) of these 416 
metabolites had fewer than 10% missing values (Fig. 2a). 
For only 9.9% (51) of the metabolites, more than 70% of the 
measurements were missing. The amount of missing values 
per observation ranged from 11.4 to 32.2%, with an average 
of 19.6% (Fig. 2b).

2.1.1 � LOD‑based missing values

For metabolomics data, a common assumption is that miss-
ing values occur because of low concentrations that are 
below the limit of detection. To explore this assumption, 
we analyzed missing values of a metabolite using a second, 
strongly correlated metabolite, which we term the auxiliary 
metabolite. The auxiliary metabolite is defined as the metab-
olite with the highest correlation (r) to the given metabolite. 
Due to its strong correlation, we assume that insights into the 
pattern of missing values of a metabolite can be gained from 
the corresponding non-missing observations of its auxiliary 
metabolite, for example, if metabolite A has missing values 
in certain observations for which its auxiliary metabolite 
B has measurements. If these measurements in B are low 
then a missing value in A most likely occurred because the 
actual concentrations were below the LOD. We required a 
minimum correlation of r = 0.3 for auxiliary metabolites, 
but other values gave qualitatively similar results (File S1).

Overall, an auxiliary metabolite was available for 56.6% 
of the metabolites. Of those, 62.0% showed a clear tendency 
for missing values to be below the LOD (see Sect. 4 and File 
S1). An example for a clear LOD-tendency is shown for 
7-methylxanthine in Fig. 2c. This compound is a metabolite 
of caffeine metabolism that is correlated with 3-methylx-
anthine. The majority of observations with missing data in 
7-methylxanthine showed low values for 3-methylxanthine, 
indicating that the 7-methylxanthine values were most prob-
ably below the LOD. An example for a metabolite pair that 
does not show an LOD-based missingness pattern is pro-
vided in Fig. 2d for 1-arachidonoylglycerophosphocholine 
(1-AGPC) and its auxiliary metabolite 1-docosahexaenoylg-
lycerophosphocholine (1-DGPC). Unlike the previous exam-
ple, observations with missing data for 1-AGPC showed 
values varying over the whole range of 1-DGPC. Conse-
quently, this suggests that LOD does not adequately explain 
the pattern of missing values for 1-AGPC. Scatterplots of 
investigated metabolites and their corresponding auxiliary 
metabolites, as well as boxplots of concentrations in the aux-
iliary metabolites for missing and non-missing observations 
in the investigated metabolites can be found in File S1.



	 K. T. Do et al.

1 3

128  Page 4 of 18

Although the LOD-tendency was observed for many 
metabolites, there was no clear LOD threshold separating 
missing and observed measurements across all metabolites 
(Fig. 2c), which would have been the case if LOD was the 
only underlying mechanism for missing data. Instead, the 
values of the auxiliary metabolites with missing values in 
the investigated metabolites were spread broadly over a 
range of lower values, indicating a blurred rather than a sin-
gle fixed LOD for all metabolites.

2.1.2 � Run day‑dependent missing values

Batch (run day) effects also can drive systematic patterns of 
missing data due to daily variation in instrument sensitivity. 
To examine whether missing data depended on overall run 
day quality, we examined the amount of missing values per 
run day for each platform (LC/MS+, LC/MS−, or GC/MS). 

Subsequently, we investigated whether metabolites were 
affected differently by runday quality.

The KORA F4 samples were measured on 53 run days 
with 34 samples on average per day. If missing values were 
dependent on run day quality due to variation in instrument 
performance (e.g., caused by LC or GC column decline), 
we would expect there to be some days for which samples 
overall contained more (“bad” run day) or fewer (“good” run 
day) missing values compared with the average. Indeed, we 
observed such “bad” and “good” run days for all three plat-
forms (Fig. 3a). While the run day-specific amount of miss-
ing values tended to be correlated between LC/MS− and 
LC/MS+ (correlation of the run day-specific median of 
missing values between the two platforms was r = 0.36 ), 
there was no correlation between LC/MS+/− and GC/MS. 
This suggests that changes in instrument performance, rather 
than global effects (such as those that could originate from 

Fig. 1   Flow chart of the study design. Pre-processed KORA F4 
metabolomics data were used to analyze patterns of missing values in 
the dataset. Possible underlying mechanisms were inferred and imple-
mented in a simulation framework to generate data resembling the 

observed patterns. Based on these simulated data, imputation meth-
ods with different characteristics were applied and evaluated. Finally, 
the same imputation approaches were evaluated using KORA F4 
metabolomics and genomics data



Characterization of missing values in untargeted MS-based metabolomics data and evaluation…

1 3

Page 5 of 18  128

sample preparation) were responsible for differences in run 
day quality.

Although there was an overall effect of run day quality on 
the pattern of missing values, we observed considerable dif-
ferences in the standard deviations (SD) of run day-specific 
missing values for metabolites with the same amount of 
missing data (Fig. 3b). This suggests that metabolites were 
affected differently by run day quality. For example, the bile 
acid ursodeoxycholate (46% total missing data) showed 
relatively low variation in run day missing data (SD = 0.12) 
(Fig. 3c). However, for gamma-glutamylisoleucine (Fig. 3d), 
a metabolite with a similar total amount of missing values 
(42%), the observed variation in missing data across run 
days was substantially larger (SD = 0.22).

2.1.3 � Run day‑dependent LOD mechanism

The observed run day-dependent pattern of missing data, 
together with the blurred LOD-based pattern, suggests that 
different run days may exhibit different LODs, which con-
tributed to the blurred global LOD effect. To verify this, 

we calculated the correlation between run day mean and 
run day missingness for all metabolites. A histogram of the 
correlation coefficients is shown in Fig. 4a. The majority of 
metabolites displayed a strong tendency for negative corre-
lations. An example for run day-specific LODs is shown in 
Fig. 4b, c: for 7-methylxanthine, the correlation of run day 
mean and the run day-specific amount of missing values is 
r = − 0.68 (Fig. 4b). Run days with low means tended to 
have a higher amount of missing values (Fig. 4c). Density 
plots for all metabolites before and after run day normaliza-
tion can be found in File S2.

Taken together, we observed that batch (run day) effects 
on the limit of detection can result in a blurred LOD-effect 
after run day normalization, which can explain patterns of 
missing values in most, but not all, metabolites.

2.2 � Evaluation of imputation approaches 
in a simulation framework

As shown in the previous analyses, not all of the missing 
data in MS-based metabolomics studies can be attributed 

a

b

c

d

Fig. 2   Overall amounts of missing data and LOD effects. a, b The 
overall fraction of missing values across metabolites and observa-
tions, respectively. c, d Scatter plots and boxplots of selected metabo-
lite pairs to illustrate missing data due to LOD and non-LOD effects, 
respectively. Blue—observed concentrations. Red—observed values 

of the auxiliary metabolite in observations with missing values of the 
investigated metabolite. Note that red data points are not part of the 
x-axis but were plotted in the same scatterplot for clarity. corr cor-
relation, p p-value of correlation, pWst = p-value of Wilcoxon–Mann–
Whitney test
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to run day-dependent LOD-based missing data. Thus, the 
optimal imputation approach should perform well across 
all possible patterns. We conducted a simulation study to 
compare statistical estimates between imputed and complete 
data. We simulated incomplete data according to the patterns 
of missing values observed in the real metabolomics data 
and imputed these data using various imputation approaches. 
We then evaluated these approaches for recovering correct 

statistical estimates after conducting correlation and regres-
sion analyses.

2.2.1 � Simulation setup and evaluation criteria

We simulated six mechanisms for missing data derived 
from observations in the real data (see Sect. 4, File S3, and 
Fig. 5a–e): (i) Fixed LOD, as an extreme form of systematic 

a

b c d

Fig. 3   Run day-dependent effects on missing data. a Normalized 
amount of missing values per run day in each platform (LC/MS+, 
LC/MS−, GC/MS). For a given metabolite and run day, the normal-
ized amount of missing data per run day was calculated as the num-
ber of missing values for the respective metabolite on the respective 
run day divided by the total number of observations for that run day, 
divided by the median amount of missing data of that metabolite over 
all run days. Thus, a normalized run day-missingness of 1 is the aver-

age run day-missingness for a given metabolite. Pearson correlation 
coefficients were calculated across all pairs of platforms. b Standard 
deviation of missing values across run days, depending on the total 
amount of missing data for each platform. Each dot in the plot shows 
the total proportion of missing values and the run day variation for 
one metabolite. c, d The distribution of the total amount of missing 
values is shown for a metabolite with moderate (ursodeoxycholate) 
and high (gamma-glutamylisoleucine) standard deviation
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a b c

Fig. 4   Run day-dependent LOD. a Histogram of Pearson correlation 
coefficients of the percent of missing values and run day means. b 
Scatterplot of run day mean versus percent missing values, with 

7-methylxanthine as an example of a negative correlation. c Run day 
distributions of 7-methylxanthine before run day normalization

a b

d e

c

f

Fig. 5   Mechanisms of missing data and imputation approaches used 
in the simulation study. a–e Mechanisms of missing values used in 
the simulation study, based on evidence from real metabolomics data. 
f Venn diagram of imputation methods showing different character-

istics. Note that the figure contains complete case analysis (CCA​), 
which is not an imputation method, and is noted in brackets. CCA​ and 
mean were placed outside the Venn diagram, as they do not comprise 
any of the four characteristics. LOD limit of detection
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missing values below a global LOD; (ii) Probabilistic LOD, 
where the probability of a missing value increases at lower 
values, which should resemble the blurred LOD-based pat-
terns observed in the real data; (iii) Run day-specific fixed 
LOD, where LOD is assumed to vary across run days; (iv) 
Run day-specific probabilistic LOD, where a probabilis-
tic form of LOD is assumed to occur across run days; (v) 
Unsystematic (random) missingness, for missing data with 
an unknown reason; and (vi) Mixtures of LOD-based and 
unsystematic missingness. Based on these six mechanisms, 
we created various parameter scenarios resembling realistic 
conditions. For each scenario, we conducted 250 simulations 
to assess whether the imputation methods could reconstruct 
statistical estimates of Pearson correlation, partial correla-
tion, linear regression (results shown in File S3), and logistic 
regression. To this end, we calculated type 1 error as the 
proportion of simulations in which a significant estimate 
was obtained when the true correlation was equal to zero. 
In addition, we calculated power as the proportion of sig-
nificant estimates when the true correlation was unequal to 
zero. We also estimated bias, which is shown in File S3. A 
detailed description of the simulation and evaluation frame-
work is also provided in File S3.

2.2.2 � Missing data handling strategies

We applied 31 imputation approaches (see Fig. 5f; detailed 
descriptions in Sect. 4 and File S4) on the simulated data. 
Some were adapted to account for run day-specific missing 
values. The imputation approaches followed different con-
cepts, which could have one of the following four proper-
ties or combinations thereof: (i) approaches that explicitly 
assume LOD-based missing values, (ii) approaches that 
consider run day-specific missing values, (iii) multivariate 
procedures using correlations among variables, and (iv) mul-
tiple imputation (MI) strategies. The MI approaches usually 
comprise imputation, analysis, and pooling steps. In the first 
step, the incomplete data are imputed m times to produce m 
complete datasets. Subsequently, statistical analysis is per-
formed on each of the m complete datasets and then the m 
analyses are combined to one final result.

2.2.3 � Simulation results

In the following, we evaluate the performance of the four 
imputation properties (i)–(iv) introduced above. Simulation 
results from other data scenarios, all variations of the impu-
tation approaches used, and the combination of parameter 
settings are available in File S5.

Property (i) Methods that explicitly assume LOD-based 
missing values and perform imputation globally without 
taking run day information into account [min, Richardson 
& Ciampi (RC), imputation by truncated sampling (ITS)], 
showed inflated type 1 error rates and low power for both 
correlation and regression analysis. This was expected for 
three reasons. First, for a data scenario with run day-depend-
ent probabilistic LOD-based missing values, these methods 
underestimate the LOD for most of the rundays and replace 
missing entries by too low values (Fig. 6a). Second, for a 
data scenario with random missing values, they expectedly 
fail since the underlying assumption of an LOD is not met 
(Fig. 6b). Finally, min and RC impute a metabolite by replac-
ing all of its missing entries by a constant value, which sub-
stantially distorts the metabolite distribution (see File S5).

Property (ii) The LOD-based methods that take run days 
into account (RC-R, ITS-R) were expected to perform well 
in a simulated data scenario with run day effects (Fig. 6a). 
Unexpectedly, we observed an inflated type 1 error rate and 
decreased power for all three statistical analyses (Pearson 
correlation, partial correlation, and logistic regression). 
RC-R and ITS-R assume that the observed values of a 
metabolite follow a truncated normal distribution, which is 
parametrized by maximum likelihood estimation (MLE), in 
order to replace missing values with randomly drawn val-
ues from the truncated part. The instability of MLE due to 
small sample sizes available within run days could explain 
the poor performance of these approaches. The same poor 
performance was observed for scenarios with a mixture of 
run day-dependent LOD-based and random missing values 
(Fig. 6c). For the dataset with only random missing values, 
LOD- or run day-based approaches showed the expected 
strong reduction in power since here the underlying assump-
tion of a truncated normal distribution is false (Fig. 6b).

Property (iii) Multivariate approaches [imputation based 
on chained equations (ICE) and KNN-based imputation] 
take into consideration the correlation between variables 
or observations. ICE approaches had high power, but an 
increased type 1 error rate when missing value proportions 
increased (Fig. 6). KNN-based imputation on observations 
with variable pre-selection and K = 10 [KNN-obs-sel(10)] 
was one of the best performing methods with high power 
and an overall marginal type 1 error rate, even for a high 
amount of missing values. The power for KNN-obs was also 
high, but it showed high type 1 error rate and therefore a 
poor ability to correctly identify truly absent associations. In 

Fig. 6   Simulation results for Pearson, partial correlation, and logistic 
regression analysis. Performance of imputation approaches in data 
scenarios where a both variables followed a run day-specific proba-
bilistic LOD mechanism, b both variables showed non-systematic 
patterns of missing data, and c one variable with run day-specific 
probabilistic LOD-based missing data and the other variable showed 
non-systematic patterns of missing data. Type 1 error and power 
reflect the false positive and true positive rate of hypothesis testing, 
respectively. Note that power = 1 − type 2 error rate. Note further that 
due to readability issues, only KNN-based imputation methods with 
K = 3, 10, and 20 were included, whereas KNN imputation with K = 1 
and 5 can be found in File S5

◂
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contrast, KNN-vars had a low type 1 error rate, but decreased 
power, which became more pronounced at higher amounts 
of missing values.

Property (iv) Single imputation procedures often under-
estimate the variability of statistical estimates, resulting 
in inflated type 1 error rates. This should be avoided by 
approaches performing multiple imputations (MI). MI ver-
sions based on LOD- (MITS) and run day-effects (MITS-R) 
indeed had decreased type 1 error rates, although power was 
low (Fig. 6). MICE with Bayesian linear regression (MICE-
norm) or predictive mean matching (MICE-pmm) as impu-
tation model showed negligible type 1 error rates and high 
power for all scenarios with up to 50% missing values. At 
higher amounts of missing data, the power decreased con-
siderably, but the type 1 error remained marginal (File S5). 
A slight modification of the MICE algorithm applied widely 
in the metabolomics field (here termed MICE-avg) was per-
formed on each imputed data, and comprised the pooling 
of the imputed data with subsequent statistical analyses 
rather than pooling the statistical estimates after analysis. 
This approach showed high power, but increased type 1 error 
rates, in particular for > 30% missing values.

Taken together, when considering all patterns of miss-
ing data and all evaluation criteria, KNN-obs-sel(10) and 
MICE-norm were the most robust approaches. For higher 
amounts of missing data (≥ 50%), MICE showed a strong 
decrease in power with marginal type 1 error, whereas KNN-
obs-sel(10) had only slightly increased type 1 error rates 
with high power.

2.3 � Evaluation of imputation approaches on real 
MS‑based metabolomics data

We conducted a biological evaluation of all approaches 
using the metabolomics data from the KORA F4 population 
study. An objective criterion for evaluation is challenging to 
construct, since the true values underlying the missing ones 
are unknown. We devised two indirect tests that assessed 
imputed values for biological validity. First, we assessed the 
ability of imputation methods to statistically reconstruct bio-
chemical pathways in metabolomics data. Second, we evalu-
ated the gain in statistical power while preserving the true 
effect size of genetic variants (SNPs) on metabolite levels.

2.3.1 � Evaluation based on pathway modularity

GGMs are based on partial correlations and reflect condi-
tional dependencies in multivariate Gaussian distributions 
(Krumsiek et al. 2011; Do et al. 2015). When applied to 
metabolomics data, they reconstruct a precise picture of 
the metabolic network, showing a modular topology with 
respect to known pathways. In other words, metabolites will 
tend to be correlated with other metabolites from the same 

biochemical pathway (Krumsiek et al. 2011; Do et al. 2015; 
Mitra et al. 2013). We used this pathway-based modular-
ity in a metabolic network as a quality criterion to indicate 
whether the imputation methods generally were capable of 
maintaining biochemically valid edges.

Each imputation strategy was applied to the KORA F4 
metabolomics data, and a GGM was estimated for each 
obtained dataset. Subsequently, we used a priori pathway 
annotations from Metabolon Inc., where each metabolite was 
assigned to one pathway (e.g., branched-chain amino acids, 
lysolipids, xanthines) to calculate pathway-based modular-
ity (Q), according to (Newman and Girvan 2004; Krumsiek 
et al. 2011). This measure reflects the ratio of metabolite 
correlations within versus across pathways. A high Q value 
indicates a dense within-pathway correlation compared with 
cross-pathways. Variability was estimated by bootstrap resa-
mpling (see Sect. 4).

Across all datasets, we obtained modularity values rang-
ing from 0.384 to 0.434 (Fig. 7a). Imputation methods 
that explicitly considered the LOD-based mechanism and 
their run day-specific versions (Fig. 5, property (ii)) did 
not outperform alternative approaches. Multivariate, single 
imputation methods [property (iii)] yielded low Q values, 
except for KNN-obs-sel, which achieved the overall third 
best result ( Q = 0.422 for K = 10) (Fig. 5). The performance 
of KNN-based imputation methods strongly depended on 
the definition of neighbors (variables or observations) and 
on the number of these neighbors (K). The MI procedures 
[property (iv)] MITS, MITS-R, and MICE-avg performed 
poorly, whereas the networks generated on MICE imputed 
data showed the overall highest modularity ( Q = 0.434 and 
Q = 0.424 for MICE-norm and MICE-pmm, respectively) 
(Fig. 5). Overall, the three best performing approaches were 
MICE-norm, MICE-pmm, and KNN-obs-sel(10).

2.3.2 � Evaluation based on metabolite‑SNP associations

Using KORA F4 data (n = 1750), we determined the ability 
of imputation methods to gain statistical power compared 
with complete case analysis (CCA​, deleting samples with 
any missing values) while preserving the effect of genetic 
variants on metabolite levels in human blood. For the evalu-
ation, we selected a set of metabolite-SNP associations from 
a previous genome wide association study (GWAS) in the 
KORA F4 and TwinsUK cohorts, for which a functional 
connection between the gene and the metabolite was bio-
logically evident (Table S8) (Shin et al. 2014). For example, 
GOT2 (rs4784054), which was associated with concentra-
tions of phenyllactate, encodes an enzyme that catalyzes the 
conversion of phenylalanine to phenylpyruvate, which is 
then converted to phenyllactate (Shin et al. 2014; Shrawder 
and Martinez-Carrion 1972).
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a

b

Fig. 7   Evaluation of imputation approaches on real data. a Pathway-
based modularity for each imputation strategy. Modularity Q was cal-
culated based on pathways. Vertical lines represent bootstrap-based 
confidence intervals (1000 times resampling). b The ability to gain 
statistical power and to preserve real metabolite-SNP associations 
after imputation. Circle color represents the ability of imputation 
methods to preserve effect sizes, with red and blue indicating pos-
sible overestimation and underestimation, respectively, and yellow 

corresponding to cases with good preservation of the association. 
Circle size depicts the gain in statistical power after imputation. The 
bigger the circle the higher the statistical power gain after imputation 
compared to CCA​. Squares correspond to cases where no statistical 
power was gained. Note that due to readability issues, only KNN-
based imputation methods with K = 3, 10, and 20 were included, 
whereas KNN imputation with K = 1 and 5 can be found in File S6 
and Table S8
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We investigated the gain in statistical power when using 
imputed datasets compared with the power obtained with 
CCA​ for 18 of such metabolite-SNP pairs, where the metab-
olite had between 10 and 70% missing values. Statistical 
power gain was calculated as the negative log10 of the 
ratio of the p-values estimated for the imputed data to the 
p-values estimated for CCA​ in corresponding linear regres-
sion models (detailed results in File S8 and Table S8). A 
high ratio indicates greater power for imputed data. As a 
second evaluation criterion, we calculated the log2 abso-
lute ratio of the effect sizes obtained from the regression 
models for imputed data and those derived from CCA​ in 
KORA F4 (see Sect. 4). A log2 ratio close to zero indicates 
that the imputation method was able to preserve effect sizes, 
whereas imputations yielding a highly negative or positive 
log2 ratios indicate underestimation or overestimation of the 
effect sizes, respectively.

Imputation with LOD-based methods [property (i)] 
yielded a gain in power for up to seven genetic associations 
of the 14 metabolites (Fig. 7). For two of these associa-
tions (tetradecanedioate and SLCO1B1; and hexadecanedio-
ate and SLCO1B1), effect sizes were underestimated, and 
for the association between 1-methylurate and NAT2, the 
effect size was overestimated across all methods, except 
for MITS-R. Run day-specific imputation methods [prop-
erty (ii)] performed well, with ITS-R yielding the highest 
number of associations (12) with greater statistical power, 
of which seven showed effect sizes similar to effect sizes 
derived from CCA​. The best methods among multivariate 
approaches [property (iii) and (iv)] were MICE-avg-norm, 
KNN-obs-sel(10), and KNN-obs-sel(20), all three of which 
generated a gain in statistical power for 12 associations. 
These methods also showed good performance in preserv-
ing genetic effects and did not show severe overestimation 
or underestimation of effect sizes. MICE-norm/-pmm/-adjR 
showed only moderate performance with a power gain for 
seven associations.

In an additional analysis, we used results from the EPIC-
Norfolk cohort with n = 10 634 subjects (Day et al. 1999), to 
assess the ability of imputation methods to preserve effects 
of genetic variants on metabolites. We hypothesized that 
the effect sizes would be estimated more accurately in this 
much larger dataset, and effect sizes obtained with KORA 
F4 imputed data should approximate effect sizes derived 
from EPIC-Norfolk. Overall, we observed that the majority 
of SNP-metabolite pairs showed either an overestimation 
or an underestimation of effect sizes across all imputation 
methods. This tendency might reflect differences between 
the cohorts KORA F4 and EPIC-Norfolk rather than differ-
ences between imputation strategies (see detailed results in 
File S7 and Table S8).

Overall, for nearly all metabolite-SNP pairs, this analy-
sis showed that statistical power was increased by imputing 

missing values and the effect sizes could be preserved. ITS-
R, MICE-avg-pmm, KNN-obs-sel with K = 10 and K = 20 
were the imputation methods that generated the highest 
number of associations (12) and resulted in a gain in statis-
tical power compared with CCA​.

3 � Discussion

In this study, we investigated patterns of missing data in a 
typical example of untargeted MS-based metabolomics data 
and their possible underlying mechanisms. Insights gained 
from these analyses were used to generate simulated data 
that reflected the real data situation for a comprehensive 
evaluation of 31 imputation methods. Finally, we applied 
the imputation strategies to real MS-based metabolomics 
data from the German KORA F4 study and evaluated them 
using biological validity measures.

For metabolomics data, an intuitive assumption is that 
missing data occur when metabolite concentrations fall 
below the machine’s LOD. Indeed, we found evidence for 
systematic patterns of missing data due to LOD- and batch-
effects for a large proportion of the analyzed metabolites. 
Missing data were found to be influenced by run day quality, 
although metabolites varied in their susceptibility to this 
effect. Finally, we found a negative correlation between run 
day mean and missing data per run day, further confirming 
LOD-based mechanism within run days. The existence of 
multiple run day-dependent LODs possibly accounted for 
the blurred rather than fixed global LOD observed in the 
data. It has been suspected that multiple detection limits 
arise from factors such as batch (run day) effects (Helsel 
2005). However, to the best of our knowledge, this is the 
first time that these effects have been systematically explored 
so far.

We evaluated 31 imputation methods in an evaluation 
framework consisting of three schemes: (i) unbiased esti-
mation of statistical estimates and hypothesis test results 
based on simulated data, (ii) statistical reconstruction of 
biochemical pathways in metabolic networks, and (iii) the 
ability to preserve effects of genetic variants on metabolite 
levels while allowing for a gain in statistical power.

MICE-norm was the best performing imputation method 
for evaluation scheme (i) and (ii), but it showed only mod-
erate performances in the metabolite-SNP analysis. One 
major drawback of this method is that multiple imputations 
have to be performed, making these approaches statisti-
cally and computationally challenging. For m imputations, 
the desired statistical analyses must be performed on each 
of the m imputed datasets, and then the resulting m esti-
mates must be combined to one statistical result. A widely 
applied alternative is to perform m multiple imputations and 
then combine the m complete datasets to one final dataset 
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containing the average of the imputed values (MICE-avg). 
That is, MICE-avg does not require statistical estimates to 
be pooled, and therefore, it is much easier to apply. How-
ever, this simplicity is accompanied by an underestimation 
of metabolites’ variances, resulting in poorer performance of 
statistical estimation (correlation and regression coefficients) 
and reconstruction of biochemical pathways.

A feasible, but better performing method was KNN-obs-
sel(10), which uses KNN-based imputation on observations 
with variable pre-selection and K = 10. This method ranked 
highly in all evaluation schemes. Other KNN-based impu-
tation schemes, including KNN-based imputation on vari-
ables (KNN-vars) and on observations without variable pre-
selection (KNN-obs), consistently showed poor performance 
across all evaluation schemes. Our results are in line with 
observations from previous studies, where KNN-based impu-
tation performed well (Armitage et al. 2015; Hrydziuszko 
and Viant 2011; Di Guida et al. 2016; Shah et al. 2017). 
However, we also observed that variations of KNN impu-
tation lead to substantially different results, as in previous 
studies (Tutz and Ramzan 2015; Shah et al. 2017).

Although we observed LOD- and run day-based effects 
in real metabolomics data, methods that explicitly consider 
this information did not outperform competing approaches 
in the first two evaluation schemes. This is likely due to 
the fact that they perform imputation in a univariate man-
ner without taking the correlation between the variables 
into account. Moreover, all of these LOD-based methods 
include maximum likelihood estimation in their imputation 
process, which was found to perform well only for larger 
sample sizes in previous studies (Helsel 1990, 2005). In our 
study, the number of observations within run days is limited, 
resulting in considerable instability of the MLE. LOD-based 
run day-dependent methods performed well with respect to 
gain in statistical power in the analysis of metabolites–SNP 
associations.

Our study could be extended in several directions: (i) 
KNN-based imputation on observations with variable pre-
selection performed well across all evaluation schemes. 
However, the performance of this imputation method might 
be dependent on the number of neighbors used (K) and the 
number of variables selected to estimate the distances. To 
examine the dependency on K, we evaluated K = 1,3,5,10,20 
across all data scenarios for all evaluation frameworks and 
observed that K ≥ 10 consistently performed well. As for 
the number of variables used for distance estimation, we 
implemented an ad hoc strategy selecting the 5–10 strong-
est correlated variables (at correlation cutoff |r| ≥ 0.2) based 
on the properties of our data and its correlation structure. 
For a different dataset, this parameter should be reasonably 
chosen based on the underlying data properties, i.e., in very 
highly correlated datasets, the correlation cutoff should be 
increased accordingly. (ii) In this study, we applied different 

groups of established approaches as well as developed vari-
ants thereof that explicitly consider runday effects. Further 
imputation methods could be included in future studies. For 
instance, imputation based on Random Forests is a non-
parametric variant, which has already been recommended 
for metabolomics data by previous studies (Gromski et al. 
2014; Stekhoven and Bühlmann 2012). As another exam-
ple, multivariate imputation based on Bayesian networks 
has been suggested previously (Schneider 2001), and certain 
implementations of this strategy were found to even outper-
form MICE for small sample sizes and high missingness 
percentages in terms of preservation of joint relationship 
between the variables of interest. (iii) The winner methods 
in our study are multivariate approaches, that is, they rely 
on correlated variables providing quantitative information 
for imputation. For specific data situations, e.g., in the pres-
ence of drug metabolites that have no correlated metabolites, 
imputation may be rather challenging or even impossible. In 
these cases, one might consider to follow two separate impu-
tation strategies: minimum imputation for the drug metabo-
lites (under consideration of the distorted distribution issue), 
and multivariate imputation for the remaining metabolites. 
For an appropriate imputation strategy, we recommend to 
investigate the missingness patterns of the underlying data 
prior to imputation, for instance, by assessing whether cer-
tain phenotypes are significantly related to the presence of 
missing values.

In summary, we have presented a detailed description of 
patterns of missing data in untargeted MS-based metabo-
lomics data. In particular, we considered, for the first time, 
the effects of run days on systematic patterns of missing 
data. Our work showed that missing data occur in most cases 
due to LOD effects, which are moreover run day-dependent. 
Nevertheless, MICE and KNN-based imputation, methods 
that do not explicitly consider LOD-based effects, performed 
best when tested in both statistical and biological evalua-
tion schemes. This is most likely because these methods 
take into account multivariate dependencies within the data. 
For future studies, we recommend KNN-based imputation 
on observations with K = 10 since it consistently performed 
well across all data scenarios and all evaluation schemes. 
Although MICE-norm showed similar robust performances, 
its application can be statistically challenging due to the step 
of pooling results obtained from the imputed data sets, in the 
case of advanced statistical methods. This issue is bypassed 
by MICE-avg, but with concomitant loss of imputation 
performance. In contrast, KNN-obs-sel(10) is both robust 
and computationally non-demanding for most data analysis 
scenarios.
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4 � Materials and methods

4.1 � Study cohort, metabolomics and genotype 
measurements

Data from 1768 fasting serum samples of the German 
Cooperative Health Research in the Region of Augs-
burg (KORA F4) population cohort (Holle et al. 2005) 
was used, comprising 910 females and 858 males. Age 
distribution was 60.53 ± 8.79  years for females and 
61.20 ± 8.78 years for males. Body mass index (BMI) 
distribution was 27.88 ± 5.24  kg/m2 for females and 
28.46 ± 4.29 kg/m2 for males.

Serum metabolomics measurements were performed 
on three platforms, LC/MS− (negative mode), LC/MS+ 
(positive mode), and GC/MS by Metabolon, Inc. (Dur-
ham, NC, USA). The 1768 serum samples were measured 
on 53 different run days, with 34 samples on average per 
run day. A total of 516 metabolites were quantified, of 
which 303 had an identified chemical structure. A more 
detailed description of sample acquisition, experimental 
procedures, and metabolite identification can be found in 
File S10.

Each known metabolite was annotated with one of 68 
pathways by Metabolon, Inc. A full list of all measured 
metabolites, including pathway annotations, can be found 
in Table S9. For correlation analysis, data were normalized 
for run day-effects by dividing each metabolite by run day 
median. Since metabolite measurements were assumed to 
follow a log-normal distribution, the data were log-trans-
formed for all statistical analyses. The run day-corrected 
and log-transformed data were used to determine outlier 
samples. Eleven individuals with a Mahalanobis distance 
(calculated across the complete dataset) greater than four 
SD from the mean were considered outliers and excluded 
from the dataset. For the biological evaluation schemes, 
age, sex, and BMI were used as standard covariates. Seven 
samples were excluded due to incomplete information in 
these phenotypes, resulting in 1750 individuals in total.

The KORA F4 cohort was genotyped using the Affym-
etrix Axiom platform. After quality control, genotype data 
(measured or imputed according to data from the 1000 
genomes project, phase 1 version 3) were available for 
1685 of the 1750 individuals.

4.2 � Missing data in KORA F4

To explore the mechanism for the missing data of a given 
metabolite m , a second (auxiliary) metabolite maux was 
used. maux was defined as the metabolite with the strongest 
Pearson correlation to m (at least 0.3). An LOD-tendency 

was assumed if the average value of maux in samples with 
missing values in m was significantly lower than the aver-
age of maux in samples with measured values in m . Signifi-
cance was assessed using Wilcoxon–Mann–Whitney tests 
with � = 0.05 after Bonferroni correction for multiple 
testing.

For all correlation analyses, only metabolites with more 
than 10% and less than 70% overall missing values were 
considered.

In order to explore whether missing values varied among 
run days, the normalized proportions of missing values 
among the 53 run days were compared within each plat-
form. For a metabolite m and a run day d , the normalized 
amount of run day-specific missing values was calculated as 
the number of missing values for m in d divided by the total 
number of samples measured in d , divided by the median 
value of missing data of m over all run days.

4.3 � Simulation study

Insights gained from the analyses of missing values in real 
MS-based metabolomics data were used to create artificial 
data that best mirror reflected patterns of missing data. A 
brief overview of the simulation framework is provided 
below, and a detailed description can be found in File S3. 
For each set of parameters corresponding to a certain data 
situation, 250 random datasets were generated. For each 
dataset, two variables were simulated by drawing from a 
multivariate normal distribution, with sample sizes ranging 
from 100 to 1000, and with means equal to zero and covari-
ance chosen such that variances were equal to one (repre-
senting scaled variables). The Pearson correlation between 
the two variables was ranged from 0 to 0.4. In addition, for 
the multivariate analyses and to evaluate imputation methods 
that apply to a multivariate strategy, auxiliary variables cor-
related with the two main variables were introduced. Their 
number and correlation strength were chosen to match the 
real data (for details, see File S3).

Simulated observations were randomly assigned to “run 
days” with the number of run days chosen such that each 
run day comprised 34 observations, according to the average 
number found for the real KORA F4 measurements.

A proportion of missing values (10%, 30%, 50%, and 
70%) was introduced into the main variable pair according 
to different mechanisms derived from our observations in 
the KORA F4 Metabolon data (Fig. 5, File S3).

We used the following parameter settings for the results 
in the main manuscript: moderate variability of missing data 
across run days (see File S3), uncorrelated run day-specific 
missing patterns of the metabolite pair, and varying associa-
tion of the inverse relation between metabolite concentra-
tion and missing values, at n = 250 and in the presence of 
informative auxiliary metabolites. For Pearson and partial 
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correlation analysis, both main variables had the same 
degree of missing data. For logistic regression analysis, the 
predictor variable had a mixture of 50% run day-dependent 
probabilistic LOD-based missing data and 50% non-system-
atic missing data. Results for more parameter settings can 
be found in File S5.

4.4 � Imputation approaches

A variety of imputation methods (Fig. 5) were selected 
because they were reported in the context of metabolomics 
data or were developed and adopted to address characteris-
tics in the current dataset.

Mean imputation (mean) All missing values of each 
incomplete variable are replaced by the average of the 
observed values of that metabolite. Minimum imputation 
(min) All missing values of each incomplete variable are 
replaced by the smallest observed value of that metabolite 
(Chen et al. 2011; Xia et al. 2009; Do et al. 2015). Richard-
son & Ciampi (RC) Assuming that missing values occur 
due to LOD and the observed metabolite values follow a 
left-truncated normal distribution, maximum likelihood is 
used to estimate this distribution. A missing value x is then 
replaced by the expected value of x conditional on x being 
below the LOD, E(x|x ⩽ LOD) (Richardson and Ciampi 
2003). Imputation by truncated sampling (ITS) This is an 
extension of the RC method, where the missing values are 
replaced by randomly drawn values from the censored part 
of the estimated truncated normal distribution. Multiple 
imputation by truncated sampling (MITS) ITS is applied 
as described above, but multiple imputation is performed 
according to Rubin’s rules (Rubin 1987) using the R pack-
age mice, version 2.25. These rules include: (i) the datasets 
are imputed m times, (ii) each of the m completed datasets 
is analyzed separately, and (iii) the m resulting estimates 
are combined using established procedures (Rubin 1987; 
Marshall et al. 2009; D’Angelo et al. 2012). The number 
of imputations was set to m = 20 for all methods. Runday-
specific LOD-based methods (RC-R/ITS-R/MITS-R) The pre-
viously described methods RC, ITS, and MITS are applied 
within run days where at least 17 observations are available. 
In RC-R, the remaining missing values are set to the mean 
of all available expected values. For ITS-R and MITS-R, 
the remaining missing values are replaced using ICE-norm 
(see below). Imputation by chained equations (ICE-norm/-
pmm/-adjR) was performed using the R package mice, ver-
sion 2.25. It uses a repeated chain of equations through the 
incomplete variables, where in each imputation model, the 
respective incomplete variable is modeled as a function of 
the remaining variables (van Buuren et al. 1999; Van Hoe-
wyk et al. 2001; van Buuren and Groothuis-Oudshoorn 
2011). In ICE-norm, a Bayesian linear regression is used 
as the imputation model, whereas in ICE-pmm (predictive 

mean matching as imputation model), missing values are 
replaced by a random draw of measured values from other 
observations with the closest predicted values. In ICE-adjR, 
a model is specified with random intercept per run day, 
which aims to better utilize run day information. This model 
assumes that variable values (i.e., metabolite concentrations) 
have a run day-specific component, which varies randomly 
following a normal distribution. For the high-dimensional 
KORA F4 data, the function quickpred of the mice package 
was used to reduce the number of covariates for each model 
prior to modeling. For each target variable, only variables 
with a minimum correlation of 0.1 (default setting) were 
included as covariates. For the simulated data, we refrained 
from using quickpred due to the low dimensionality of the 
artificial datasets. Multiple imputation by chained equa-
tions (MICE-norm/-pmm/-adjR) was performed using the 
R package mice, version 2.25: MICE-norm, MICE-pmm, 
and MICE-adjR consisted of m = 20 parallel imputation 
runs of ICE-norm, ICE-pmm, and ICE-adjR, respectively. 
Subsequently, the estimates are combined using Rubin’s 
rules as described above for MITS. MICE average version 
(MICE-avg-norm/-pmm) ICE-norm or ICE-pmm is applied 
multiple (m = 20) times in parallel, followed by combin-
ing the m imputed datasets to one final dataset as the aver-
age of the imputed values. K-nearest neighbor imputation 
[KNN-var(K)/KNN-obs(K)/KNN-obs-sel(K)] In KNN-var 
and KNN-obs, missing values of each variable are replaced 
by the weighted average of pre-specified K nearest variables 
and observations, respectively. Distances to neighbors were 
defined as Euclidean distance and weights were chosen as 
e−d , where d defines the distances between two variables 
or observations. In KNN-obs-sel, KNN-obs is performed by 
selecting the strongest correlated variables with |�| ⩾ 0.2, 
but it was constrained to a minimum of 5 and a maximum 
of 10 variables. The number of neighbors for K was set to 
3, 5, 10, and 20.

More detailed descriptions of RC, RC-R, ITS, MITS, ICE, 
MICE, MICE-avg, and KNN-based methods can be found 
in File S4.

R scripts and an R markdown file with example calls for 
the simulation of incomplete data with realistic missing-
ness patterns and imputation methods are available at https​
://githu​b.com/krums​iekla​b/Missi​ngVal​ues.

4.5 � Statistical evaluation of missing data handling 
strategies in the simulation study

Pearson correlation, partial correlation, linear regression, 
and logistic regression analysis were performed, and the 
ability of imputation methods to reconstruct true asso-
ciations and unbiased hypothesis test results was evalu-
ated. For logistic regression, a dichotomized variable was 
simulated by discretizing one of the simulated continuous 

https://github.com/krumsieklab/MissingValues
https://github.com/krumsieklab/MissingValues
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variables: all values above the median were set to 1 and 
all values below the median were set to 0. This dichoto-
mized variable was used as response and the remaining 
continuous variable as predictor. For MI strategies, the 
resulting (correlation or regression coefficient) estimates 
and their variances were combined using Rubin’s rules. 
The obtained point estimates were then compared with 
the true underlying values by assessing the validity of 
hypothesis tests. To this end, type 1 error was calculated 
as the proportion of significant estimates (at α = 0.05) 
after imputation when there was no true effect. Power was 
calculated as the proportion of significant estimates (at 
α = 0.05) after imputation in the presence of a true effect. 
Detailed results can be found in File S5.

4.6 � Evaluation based on pathway modularity

This analysis was based on pathway annotations from 
Metabolon Inc. (see Supporting Information S9). Each 
imputation strategy was applied to the KORA F4 metabo-
lomics data, resulting in different imputed datasets. All 
unknown metabolites were excluded since these com-
pounds were not assigned to a pathway. For each imputed 
dataset, a Gaussian graphical model (GGM) was esti-
mated to infer a network using the R package GeneNet, 
version 1.2.12. In previous studies, we have demonstrated 
that these models correctly reconstruct biochemical path-
ways from the data (Krumsiek et al. 2011; Shin et al. 
2014; Aichler et al. 2017). In the case of MIs, a GGM was 
estimated for each imputed dataset, followed by combin-
ing partial correlations using Rubin’s rules after a Fisher 
Z-transformation. The network was constructed using 
partial correlations that are significantly different from 
zero after Bonferroni correction for n × (n − 1)∕2, where 
n is the number of metabolites.

The pathway-based network modularity measure Q 
(Newman and Girvan 2004; Krumsiek et al. 2011) was 
calculated for each network as

where |S| is the total number of pathways, V  is the set of 
all metabolites, and Vi describes the subset of metabolites 
annotated with pathway i. A(Vi, Vj) is the number of edges 
between any two node sets Vi and Vj . The variance of Q was 
estimated non-parametrically using bootstrapping of the 
original dataset (R package boot, version 1.3-15) with 1000 
runs.
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4.7 � Evaluation based on metabolite‑SNP 
associations

Linear regression was performed to determine genetic 
associations with metabolites using KORA F4 CCA​ and 
imputed data and the results were compared with each 
other. For this analysis, we selected metabolite-SNP pairs 
for which (i) a genome-wide significant association could 
be identified in the meta-analysis of KORA F4 and Twin-
sUK cohorts in a previous GWAS (Shin et al. 2014) (sum-
mary statistics retrieved from http://www.gwas.eu); (ii) the 
proportion of each metabolite’s missing values in KORA 
F4 was between 10 and 70%; (iii) the metabolite was meas-
ured in the EPIC-Norfolk cohort, which we used to further 
benchmark the preservation of effect sizes; and (iv) a func-
tional connection between the genetic locus of the SNP 
and the metabolite (e.g., metabolite is a known substrate of 
the enzyme/transporter) was evident according to manual 
curation of the GWAS results (Table S8). For each imputed 
dataset, 18 metabolite-SNP pairs were tested for genetic 
association using age- and sex-corrected linear regression 
models under the assumption of an additive genetic model 
(metabolite ∼ �0 + �1 × SNP + �2 × age + �3 × sex) .  To 
avoid spurious associations, metabolic data points greater 
than four SDs from the mean were removed prior to com-
puting linear models. For MI approaches, the regression 
coefficients were pooled using Rubin’s rules as provided 
by the R package mice, version 2.25. For each metabolite-
SNP pair, the variance of the regression coefficients and 
p-values were estimated using bootstrapping.

To explore which imputation approaches increased statisti-
cal power, p-values obtained for the effect sizes based on 
imputed data were compared with p-values obtained from CCA​ 

by calculating their ratio as rp =
−log10

(
pimp

pCCA

)

−log10(pCCA)
, where pimp was 

the p-value obtained for imputed data and pCCA was the p-value 
derived from CCA​. A ratio less than or equal to zero indicated 
either no power gain or a power loss, whereas a ratio greater 
than zero indicated a drop in p-value, which suggested that 
statistical power increased when imputation was performed.

In addition to statistical power gain, the imputation 
approaches should be able to preserve effect sizes compared 
to CCA​. Standardized effect sizes obtained from the imputed 
data (�imp) were compared with standardized effect sizes 
estimated for CCA​ (�CCA) based on the KORA F4 data 
(n = 1750) and the EPIC-Norfolk data (n = 10,634), assum-
ing estimates from the EPIC-Norfolk data to be close to true 
effects. We calculated the ratio r� = log2

(
| �imp
�CCA

|
)
 , with a low 

ratio indicating a similar effect size between the imputed 
data and CCA​. A highly negative or positive r� indicates an 
underestimation or overestimation of the effect sizes in 

http://www.gwas.eu
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imputed data, respectively. A well performing imputation 
method is assumed to obtain high rp and low absolute r�.
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