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Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder with the
underlying etiology yet incompletely understood and no cure treatment. Patients of fragile X
syndrome (FXS) also manifest symptoms, e.g. deficits in social behaviors, that are core
traits with ASD. Several studies demonstrated that a mutual defect in retinoic acid (RA)
signaling was observed in FXS and ASD. However, it is still unknown whether RA
replenishment could pose a positive effect on autistic-like behaviors in FXS. Herein, we
found that RA signaling was indeed down-regulated when the expression of FMR1 was
impaired in SH-SY5Y cells. Furthermore, RA supplementation rescued the atypical social
novelty behavior, but failed to alleviate the defects in sociability behavior or hyperactivity, in
Fmr1 knock-out (KO) mouse model. The repetitive behavior and motor coordination
appeared to be normal. The RNA sequencing results of the prefrontal cortex in Fmr1 KO
mice indicated that deregulated expression of Foxp2, Tnfsf10, Lepr and other neuronal
genes was restored to normal after RA treatment. Gene ontology terms of metabolic
processes, extracellular matrix organization and behavioral pathways were enriched. Our
findings provided a potential therapeutic intervention for social novelty defects in FXS.

Keywords: fragile X syndrome, autism spectrum disorder, retinoic acid, social behavior, FMR1

INTRODUCTION

Individuals with autism spectrum disorder (ASD) show early-onset social dysfunction and abnormally
restricted, repetitive behaviors (Lord et al., 2018). ASD affects approximately one in 44 children, and the
incidence is 4-fold higher inmales than females (Maenner et al., 2021). The causes of autism are complex,
including environmental, genetic and metabolic factors (Peça et al., 2011; Krakowiak et al., 2012;
Modabbernia et al., 2017). Fragile X syndrome (FXS) is a X-linked hereditary intellectual disability
associated with ASD. FXS mainly results from the abnormal CGG amplification (>200 repeats) of the
fragile X mental retardation 1 (Fmr1) gene that leads to loss of the expression of fragile X intellectually
retarded protein (FMRP) (Saldarriaga et al., 2014). FMRP is an RNA-binding protein that regulates the
synaptic development and plasticity (Richter and Zhao, 2021). FXS is the most common genetic cause of
ASD, accounting for about 2–6% of the cases (Hogan et al., 2017), and approximately 30% of FXS patients
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are also diagnosed with ASD (Hagerman and Harris, 2008). Shared
symptoms between FXS and ASD, such as repetitive behaviors and
social deficits (Kazdoba et al., 2014), indicate an overlap of molecular
mechanisms in these diseases (Salcedo-Arellano et al., 2021).

All-trans retinoic acid (RA) is a naturally occurring metabolite
from retinol (vitamin A) (Kumar and Duester, 2011). As a critical
signaling molecule, RA is involved in synaptic plasticity, neuronal
differentiation and brain maturation (Aoto et al., 2008; Chen
et al., 2014). Disruption of RA signaling is closely related to the
abnormal patterns of the central nervous system, especially the
synaptic plasticity homeostasis (Chen et al., 2014). Study in Fmr1
knock-out (KO) mice, a disease model of FXS, indicated an
interaction between FMRP and retinoic acid receptor alpha
(RARα), an essential component in RA signaling (Park et al.,
2021). Furthermore, RA-mediated synaptic strength regulation
was abolished in Fmr1 KO hippocampal neurons and FXS
patient-derived induced pluripotent stem (iPS) cells, thus
leading to abnormal synaptic function (Zhang et al., 2018;
Zhong et al., 2018). These studies suggested that FXS might
result from impaired synaptic plasticity homeostasis caused by
dysregulation of RA signaling. Most recently, we have discovered
that RA synthesis and RA signaling were down-regulated in the
mouse ASD model induced by excessive UBE3A expression, and
the ASD-like behaviors caused by repression in RA signaling were
successfully ameliorated by oral supplementation of RA in mice
(Xu et al., 2018). It was fascinating to ask whether RA
replenishment would have beneficial effects on core traits of
ASD in Fmr1 KO mice.

In this study, we have thus first examined whether RA
signaling was indeed down-regulated when the expression of
FMR1 was disrupted. Subsequently, we went on to directly test
the effect of RA supplementation on the social deficits manifested
by the Fmr1 KO mice, and investigated the potential molecular
mechanism by analyzing RNA-seq data. Our findings provide RA
replenishment as a potential therapeutic intervention for the
social novelty deficit in FXS.

MATERIALS AND METHODS

Animals
Fmr1(-/y) (Fmr1 KO) mice (aged 2–3 months, FVB background)
were gifted from Prof. Chen Zhang of Capital Medical University,
Beijing. Thesemice were then backcrossed for ten generations to our
C57BL/6J strain. This Fmr1 strain was maintained in C57
background. To obtain hemizygous males and WT males,
heterozygous females and wildtype males were intercrossed. Mice
were housed in a specific-pathogen-free (SPF) facility with 12-h
light/dark cycle and ad libitum access to food andwater. Per cagewas
housed three to five mice by genotype. All animal experiments were
performed strictly in accordance with the instructions of the
Institutional Animal Care and Use Committee (IACUC) at the
Center for Excellence in Molecular Cell Science, CAS.

Plasmid Construction
The pGL4-RARE-TK-EGFP-CLPEST plasmid was modified
based on pCBG99-Control (Promega) plasmid. The DNA

fragment between the two polyA signals, including SV40
promoter, Puromycin and polyA signals, were amplified by
PCR from pGL4.22-RARE-TK-luciferase (Xu et al., 2018)
plasmid and inserted into pCBG99-Control between XmaⅠ and
BamHⅠ. The CL1-PEST sequence from pGL4.22-RARE-TK-
luciferase was amplified together with EGFP from pEGFP-N1
plasmid before inserted between XmaⅠ and NheⅠ. The retinoic
acid response element (RARE) together with thymidine kinase
(TK) promoter were amplified from pGL4.22 and inserted
between KpnⅠ and NheⅠ.

The pGL4-RARE-TK-EGFP-CLPEST plasmid contains three
copies of DR5 (direct repeat with 5 bp of spacing) variant of
RARE in different directions (one in forward direction and the
other two in reverse direction according to the sequence) and a
EGFP reporter gene with CL1-PEST sequence, which could
promote the degradation of EGFP and hence result in rapid
turnover of the reporter.

Cell Line and Transfection
SH-SY5Y(ATCC) cell line was cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Corning) supplemented with 10% fetal
bovine serum (FBS, Gibco) and 50 μg/ml penicillin/streptomycin
(Life Technologies). Cells were maintained at 37°C in a saturated
humidity atmosphere containing 5% CO2.

SH-SY5Y cells were transfected with indicated plasmids
and siRNAs using Lipofectamine 2000 (Thermo Fisher
Scientific) according to the manufacturer’s instructions.
The siRNA sequences were listed below (Khalil et al.,
2008):

si-FMR1-1-F: GGGUGAGUUUUAUGUGAUA
si-FMR1-1-R: UAUCACAUAAAACUCACCC
si-FMR1-2-F: GGAUGAUAAAGGGUGAGUU
si-FMR1-2-R: AACUCACCCUUUAUCAUCC.

Flow Cytometry
The cells transfected with siRNAs and plasmids for 48 h were
digested and suspended with PBS, before subjected to flow
cytometry analysis on Beckman CytoFlex. GFP positive cells
were selected and calculated for the proportion. The
fluorescence intensity of all live, single cells was also recorded
for further analysis.

RA Administration
Mice (4 weeks old) were administered daily with RA (Sigma,
USA) dissolved in olive oil (Aladdin, China) via oral gavage for
1 month, at the dosage of 5 mg/kg. The control group received
the olive oil only. Body weights of the mice were measured
every 2 days.

Behavioral Analysis
Male mice at 8 weeks of age were subjected to behavioral tests.
Mice were tested at a room with lighting maintained at 230
Lux. Before the experiments began, mice were transferred to
the testing room and acclimated for at least 1 h. After each test,
wipe the instrument with 75% ethanol to remove any residual
odors which may affect subsequent tests. All the behavioral
experiments except for self-grooming test and rotarod test
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were tracked by EthoVision XT (Noldus) tracking system. All
data acquisition and analysis were carried out by an individual
blinded to the genotype and treatment.

(1) Self-grooming test

The Self-grooming test was performed as previously
described (Wang et al., 2020). Mice were placed individually
to a clean cage covered with beddings (~0.5 cm). Prior to the
test, animals were allowed to habituate to the novel
environment for 10 min. Then the time spent in grooming
behaviors was recorded for 10 min. All instances of face-
wiping, head and ears scratching/rubbing, and full-body
grooming were counted as grooming behavior.

(2) Three-chamber social test

The Three-chamber social test was executed according to
previously reported with minor modifications (Rein et al.,
2020). In brief, a transparent acrylic box (60 cm × 40 cm ×
20 cm) was equally divided into three chambers with
removable doors in each partition. Two days prior to the
test, the stranger mice (sex and age were matched with test
mice) were habituated to the wire cages for 1 h per day. The test
mouse was introduced to the central chamber to explore the
apparatus freely for 10 min for habituation prior to the
experiment.

In the sociability test phase, a stranger mouse (stranger Ⅰ) and
an inanimate object were placed into the right and left cages,
respectively. The test mouse was allowed to explore all three
chambers freely for 10 min and the amount of time spent in each
chamber was recorded. Then the test mouse was asked to spend
an extra 5 min in the stranger I chamber to get more familiar with
stranger I before the next phase.

In the social novelty test phase, the inanimate object was
replaced with a novel mouse (stranger II). Similarly, the test
animal was allowed to freely explore all three sections of the
apparatus for 10 min and the amount of time spent in each
chamber was recorded. The sociability preference index =
(time spent in stranger I chamber-time spent in object
chamber)/(total time in the two chambers); social novelty
preference index = (time spent in stranger II chamber-time
spent in stranger I chamber)/(total time in the two
chambers).

(3) Open-field test

Locomotor activity was evaluated in an acrylic box (40 cm ×
40 cm × 40 cm, Med Associates) and videotaped by an
overhead camera. The mouse was initially placed in the
center of the device and allowed to explore the arena freely
for 10 min. The central zone is defined as a 20 cm × 20 cm area
in the center of the bottom. The distance travelled and average
speed were measured by EthoVision XT (Noldus) tracking
system.

(4) Rotarod test

To assess motor coordination and balance, mice were
placed on a rotarod apparatus (Columbus Instruments) that
accelerates from 4 to 40 rpm for 5 min. The latency to fall was
automatically recorded by the infrared detection system. Each
mouse was tested for three trials, with 1–2 h between trials in
the same day.

RNA Sequencing
Total RNA samples were extracted from the PFC tissues with
Trizol reagent (Tiangen, China) according to the manufacturer’s
instruction. PFC tissues from 2 mice of the same genotype and
treatment were pooled together as one sample. A total of three
samples from six mice in each group were used for high-
throughput sequencing. Differential expression was determined
using DESeq2. The differentially expressed genes (DEGs) were
determined by using 1.5-fold change, with p value <0.05 as
threshold. GO enrichment analysis of the identified DEGs was
performed with ‘clusterProfiler ’package in R. Volcano plots,
heatmap and dot plot were drawn in RStudio with the
‘ggplot2’ packages. The generated RNA-seq data have been
deposited in the Gene Expression Omnibus (The GEO
accession number is: GSE201672).

Quantitative Real-Time PCR
Total RNA was converted to complementary DNA
(cDNA) by using the HiScript® III RT SuperMix for
qPCR (+gDNA wiper) (Vazyme, China) according to
the manufacturer ’s instructions. Quantitative real-
time PCR (qRT-PCR) amplifications of various genes
were performed using ChamQ universal SYBR qPCR
Master Mix (Vazyme, China) in a Roche LightCycler®
384 (Roche, Switzerland). The relative expression level
of each transcript was normalized to Gapdh using the
2ΔΔCt method. Sequences for the primers used in this
study were listed below. All data were obtained from
three independent experiments.

Gene name Primers

GAPDH Forward Primer GAGTCAACGGATTTGGTCGTATTG
Reverse Primer ATTTGCCATGGGTGGAATCATATTG

FMR1 Forward Primer TATGCAGCATGTGATGCAACT
Reverse Primer TTGTGGCAGGTTTGTTGGGAT

Gapdh Forward Primer AGGTCGGTGTGAACGGATTTG
Reverse Primer GGGGTCGTTGATGGCAACA

Foxp2 Forward Primer AGTGTGCCCAATGTGGGAG
Reverse Primer CATGATAGCCTGCCTTATGAGTG

Xdh Forward Primer ATGACGAGGACAACGGTAGAT
Reverse Primer TCATACTTGGAGATCATCACGGT

Ccn2 Forward Primer CCAATGACAATACCTTCTGC
Reverse Primer GAAAGCTCAAACTTGACAGG

Arc Forward Primer AAGTGCCGAGCTGAGATGC
Reverse Primer CGACCTGTGCAACCCTTTC

Lepr Forward Primer TGGTCCCAGCAGCTATGGT
Reverse Primer ACCCAGAGAAGTTAGCACTGT

Serpina3n Forward Primer ATTTGTCCCAATGTCTGCGAA
Reverse Primer TGGCTATCTTGGCTATAAAGGGG

Tnfsf10 Forward Primer ATGGTGATTTGCATAGTGCTCC
Reverse Primer GCAAGCAGGGTCTGTTCAAGA
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Western Blot
Protein lysates from tissues were extracted using RIPA
buffer (50 mM Tris–HCl, 150 mM NaCl, 5 mM EDTA,

0.1% sodium dodecyl sulfate (SDS), 0.5% sodium
deoxycholate and 1% NP-40 pH 7.6), supplemented with
protease inhibitor cocktail and quantified with a BCA kit

FIGURE 1 | RA-induced gene expression was down-regulated in FMR1 knockdown cells. (A,B) Analysis with (A) RT-qPCR and (B)Western blotting for the effects
of siRNAs on the expression level of FMR1 in SH-SY5Y cells. (C) Schematic diagram of 3×RARE-EGFP reporter construct. The expression of EGFP was regulated by
three copies of RA-response element (RARE). CL1PEST sequence was attached to the C terminal of EGFP to promote its turnover. (D) Flow cytometry analysis of SH-
SY5Y cells transfected with RARE-EGFP reporter and indicated siRNAs. The proportion of GFP positive (GFP+) cells were noted (E). Quantification of normalized
GFP fluorescence intensity from flow cytometry analysis. n = 3 biological replicates. Data are presented as means ± SEM. **p < 0.01, ****p < 0.0001. One-way ANOVA
with Dunnett post hoc test.
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(Beyotime, China). The protein lysates were denatured at
100°C for 10 min in 1× SDS loading buffer and then
separated by SDS-PAGE. The proteins were transferred
to polyvinylidene difluoride membranes (Millipore,
Bedford, MA, United States) and blocked in 10% fat-free
milk for 1 h at room temperature. Then the membranes
were immunoblotted with the primary antibodies overnight

at 4°C: anti-FMRP (1:1000, Abcam, ab17722); anti-GAPDH
(1:3000, Proteintech, 60004-1-Ig). The corresponding
HRP-conjugated secondary antibodies were used at room
temperature for 1 h to detect the primary antibody and
finally visualized with ECL Western Blotting
Reagent (Tanon, Shanghai, China) using Tanon 5200
Imaging System.

FIGURE 2 | RA administration restores social novelty behavior in Fmr1 KOmice. (A) Schematic diagram of experimental design. WT and Fmr1 KOmale mice were
orally administered with Oil or RA (5 mg/kg/d) for 4 weeks, before subjected to behavioral tests at postnatal day P58-P65. (B) Body weights of mice recorded every
4 days for 1 month after Oil or RA administration. WT + Oil (n = 13), WT + RA (n = 13), Fmr1 KO + Oil (n = 13), Fmr1 KO + RA (n = 12). (C–E) Time spent in each chamber
(C), representative heat map (D) and the preference index (E) for the sociability test performed with 4 groups ofmice. The Ob and SI indicate the object and stranger
Ⅰ, respectively.WT +Oil (n = 13), WT +RA (n = 13), Fmr1KO +Oil (n = 12), Fmr1 KO+RA (n = 10). (F–H) Time spent in each chamber (F), representative heat map (G) and
the preference index (H) for the social novelty test performed with 4 groups of mice. The SI and SII indicate the stranger Ⅰ and stranger Ⅱ, respectively. WT + Oil (n = 13),
WT + RA (n = 13), Fmr1 KO +Oil (n = 12), Fmr1 KO +RA (n = 10). Data are presented as means ± SEM. *p < 0.05, ***p < 0.001, ****p < 0.0001, ns, not significant. (B,C,F)
Two-way ANOVA with Bonferroni post hoc test; (E,H) Unpaired two-tailed t test with Welch’s correction.
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Statistics
Data were analyzed using GraphPad Prism 8.0 software
(GraphPad Software, San Diego, CA, United States).
Statistical tests were conducted as stated in the figure
legends. Values are presented as means ± SEM.

RESULTS

To investigate whether RA signaling was down-regulated when
the expression of FMR1 was decreased, we first knocked down
FMR1 gene expression by siRNA in SH-SY5Y cells, a commonly
used cell line in RA research (Cheung et al., 2009). The mRNA
level (Figure 1A) and protein level (Figure 1B) of FMR1 were
markedly decreased in cells transfected with siRNAs targeting
FMR1. We then co-transfected SH-SY5Y cells with siRNA and a
GFP reporter, the expression of which was driven by RA-response
element (RARE), to examine the RA signaling (Figure 1C). The
proportion of GFP positive cells (Figure 1D) and the mean value
of GFP fluorescence intensity (Figure 1E) were decreased in cells
with FMR1 siRNAs. Overall, these results suggested that RA
signaling was indeed down-regulated in cells with decreased level
of FMR1.

We used male Fmr1 KOmice (Fmr1(-/y)) and their wild-type
(WT) littermates to explore the effect of RA exerting on the

behaviors. Both WT and KO mice were treated with RA by oral
gavage at 5 mg/kg/day or olive oil as control from 4 weeks of
age for 1 month as previously described (Pasqualetti et al.,
2001; Xu et al., 2018), followed by behavior tests at postnatal
day 58 (Figure 2A). During the intragastric administration, no
significant weight differences were observed among the four
groups of mice (WT + Oil, WT + RA, KO + Oil, KO + RA)
(Figure 2B). The shared symptoms between FXS and ASD are
impaired social skills and repetitive, stereotyped behaviors
(Kazdoba et al., 2014), which were tested by the Three-
chamber social task and Self-grooming task. Compared with
WTmice, Fmr1 KOmice spent comparable time with an object
or a live mouse regardless of RA administration (Figures
2C,D), manifesting impaired sociability (Figure 2E). WT
mice spent longer time with a novel mouse (stranger II)
than with a familiar mouse (stranger I), while Fmr1 KO
mice, if not treated with RA, spent similar time in each
chamber (Figures 2F,G), showing defects in social novelty
behavior (Figure 2H). The supplementation of RA, however,
significantly increased the time that KO mice spent with a
novel stranger, thus restoring the defective social novelty
behavior (Figures 2F,H). We found that RA
supplementation could rescue the deficits in social novelty,
yet not in sociability, of Fmr1 KO mice, without significantly
changing the behaviors of the WT mice.

FIGURE 3 |RA administration does not affect repetitive behavior, locomotion, or motor coordination in Fmr1 KOmice. (A) Time spent in self-grooming for repetitive
behavioral test performed with 4 groups of mice. WT + Oil (n = 11), WT + RA (n = 12), Fmr1 KO +Oil (n = 13), Fmr1 KO + RA (n = 10). (B–F) Representative activity traces
(B), total distance moved (C), average speed (D), time spent in center (E), and ratio of central distance to total distance (F) in the open-field test performed with 4 groups
of mice. The dotted line indicates the central area. WT + Oil (n = 13), WT + RA (n = 13), Fmr1 KO + Oil (n = 13), Fmr1 KO + RA (n = 12). (G) Latency to falling in the
rotarod test performed with 4 groups of mice. WT + Oil (n = 11), WT + RA (n = 12), Fmr1 KO + Oil (n = 13), Fmr1 KO + RA (n = 11). Data are presented as means ± SEM.
****p < 0.0001. (A) One-way ANOVA with Bonferroni post hoc test; (C–G) Two-way ANOVA with Bonferroni post hoc test.
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FIGURE 4 |RA administration restores mRNA expression in the PFC of Fmr1 KOmice. (A)Representative western blots of FMRP proteins in the hippocampus and
prefrontal cortex from 4 groups of mice. (n = 3 per group). (B) Venn diagram for overlap analysis (57 genes) between differentially expressed genes (DEGs) in WT + Oil vs
KO + Oil groups (293 genes) and DEGs in KO + Oil vs KO + RA groups (263 genes). (C) Volcano plots for differentially expressed genes (DEGs). Left: WT + Oil and KO +
Oil groups; Right: KO + Oil and KO + RA groups. Blue dots represent down-regulated genes while red dots represent upregulated genes. The blue dashed line
indicates p = 0.05. The red dashed lines indicate |FoldChange|> 1.5 (|log2(FoldChange)|> 0.5849). (n = 3 pooled from six mice per group). (D) Heatmap represents the

(Continued )
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We then examined the repetitive behavior, the other core
symptom of ASD, in Fmr1 KO mice. We found no significant
difference in self-grooming time, a manifestation of
repetitiveness, either with or without RA treatment
(Figure 3A). In addition to the behavioral study of mutual
symptoms mentioned above, motor activity and coordination
in Fmr1 KO mice were also detected. Consistent with previous
studies (Ding et al., 2014; Gantois et al., 2017; Nolan et al., 2017),
KO mice showed increased travel distance and average speed in
the open field test, indicating hyperactivity, which was not
ameliorated by RA (Figures 3B–D). The time spent in central
area (Figure 3E) and the ratio of total distance travelled in the
central area (Figure 3F) were significantly increased in Fmr1 KO
mice, suggesting that Fmr1 KOmice manifested reduced anxiety-
like behavior compared with the WT mice, which was consistent
with other reports (Yan et al., 2004; Zieba et al., 2019). The motor
coordination was not significantly affected by either elimination
of Fmr1 expression or RA treatment (Figure 3G). Taken together,
these results suggest that RA supplementation can alleviate the
defects in social novelty, but not in sociability or hyperactivity, in
Fmr1 KO mice.

The behavioral results have revealed the therapeutic potential
of RA for rescuing aberrant social novelty behavior. Since RA
treatment did not restore the protein level of FMRP in the
hippocampus or prefrontal cortex (PFC) of Fmr1 KO mice
(Figure 4A), we performed RNA sequencing (RNA-seq) of
PFC samples from three groups of mice (WT + Oil, KO + Oil,
KO + RA) to acquire further insight into the underlying
mechanisms of RA treatment. The PFC region has been
shown to be one of the primary brain regions that regulating
social behaviors (Amodio and Frith, 2006; Brumback et al., 2018).
Differentially expressed genes (DEGs) (|FoldChange|> 1.5, p
value <0.05) were identified by comparing the sequencing
results between WT + Oil and KO + Oil, as well as KO + Oil
and KO + RA. As shown in the Venn diagram (Figure 4B), 293
and 263 DEGs were found, respectively, with 57 of them
overlapped (Detailed information in Supplementary Table
S1). In specific, compared with WT + Oil group, 110 genes
were up-regulated and 183 genes were down-regulated in KO +
Oil group. While compared with KO + Oil group, there were
149 up-regulated genes and 114 down-regulated genes in KO +
RA group (Figure 4C). Our intention was to find out the DEGs in
the KO + Oil group, of which the expression levels were restored
to the similar level as those in the WT + Oil group after RA
supplementation. As shown in Figures 4D, 56 out of 57
overlapped DEGs (except Tagap, T cell activation RhoGTPase
activating protein) meet the criteria mentioned above, including
some autism-related genes (Simons Foundation Autism Research
Initiative, SFARI), such as period circadian clock 1 (Per1), period
circadian clock 2 (Per2) and forkhead box P2(Foxp2). Several
DEGs associated with neuronal functions were also identified

(Figure 4C). The abnormal increase in the expression of activity-
regulated cytoskeleton-associated protein (Arc), cellular
communication network factor 2 (Ccn2), forkhead box P2
(Foxp2), and xanthine dehydrogenase (Xdh) in Fmr1 KO mice
was down-regulated after RA administration, while the
expression level of leptin receptor (Lepr), serine peptidase
inhibitor clade A member 3N (Serpina3n) and tumor necrosis
factor superfamily member 10 (Tnfsf10) was increased to normal
as WT. These findings were verified by quantitative Real-time
PCR (qRT-PCR) (Figure 4E). In order to probe the functional
associations of DEGs caused by RA supplementation, we
performed Gene Ontology (GO) enrichment analysis on the
DEGs between KO + Oil and KO + RA groups, and identified
significant changes in 40 terms of Biological Process (BP) (P,
adjust <0.05, complete list in Supplementary Table S2; top 20
pathways in Figure 4F). The most enriched pathways were
various metabolic processes, such as glycogen metabolic,
glucan metabolic and glutathione metabolic, etc. Besides, the
pathways associated with memory, cognition, eating behavior
and extracellular matrix organization were also enriched. The
alterations of these pathways were previously implicated in FXS
(Lumaban and Nelson, 2015; O’Leary and Nolan, 2015; Reinhard
et al., 2015; Bostrom et al., 2016; Westmark, 2021). Collectively,
these results suggested that RA alleviated defective social novelty
behavior in Fmr1 KOmice possibly through restoring anomalous
expressed genes and biological processes to normal.

DISCUSSION

Fmr1 is a strong candidate gene associated with ASD, and its
deficiency was implicated in autism development (Niu et al.,
2017). Several potential treatments have been proved to be able to
alleviate abnormalities in Fmr1 KO mice through different
pathways. Application of dopamine rescued the impaired
social novelty behaviors by reduction of striatal tyrosine
hydroxylase protein (Chao et al., 2020). Weekly treatment
with purinergic antagonist suramin restored the social
behaviors by regulating purinergic signaling (Naviaux et al.,
2015). Metformin, a widely-used anti-diabetic drug, was found
to rescue the social novelty deficit, repetitive behaviors, and
abnormal incidence of seizures in Fmr1 KO mice through
normalizing ERK signaling (Gantois et al., 2017). Recently,
increasing amount of evidence has suggested an association
between impaired RA signaling and ASD (Pavăl et al., 2017;
Chen et al., 2018; Zhou and Li, 2018; Hao et al., 2019).
Furthermore, the perturbation of synaptic plasticity
homeostasis mediated by RA was observed in Fmr1 KO mice
and FXS patient-derived induced pluripotent stem (iPS) cells
(Soden and Chen, 2010; Zhang et al., 2018). This prompted us to
investigate the role that RA plays in FXS behavioral traits.

FIGURE 4 | changes in expression of overlapped genes (57 genes). Blue stripes indicate low expression level; red stripes indicate high expression level. Genes
mentioned in the main texts were marked with an asterisk. (E) Quantitative real-time PCR analysis of indicated genes mRNA expression in the prefrontal cortex of mice
from WT + Oil, KO + Oil and KO + RA groups. (n = 3 samples pooled from six mice. (F) Top 20 biological process (BP) pathways in the Gene Ontology (GO) enrichment
analysis. Data are presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. (E) One-way ANOVA with Bonferroni post hoc test.
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Our work demonstrated that Fmr1 KO mice displayed atypical
social behaviors and hyperactivity, yet no defect in repetitive
behavior or motor coordination was noted. RA replenishment
rescued social novelty behavior, probably due to the normalization
of anomalous gene expression and defective pathways. Since the
synaptic plasticity homeostasis mediated by RA was abolished in
Fmr1 KO neuron (Soden and Chen, 2010; Sarti et al., 2013), the
treatment with RA could not increase the mEPSC amplitude as in
WT neurons. This suggested that the improvement in social
novelty behavior induced by RA might not result from the
restoration in synaptic strength, but from a transcriptional
regulation of neuronal genes. Therefore, we performed RNA-seq
and identified several genes associated with behavioral traits.

Specifically, the mRNA level of Ccn2, the connective tissue
growth factor that negatively regulates myelination (Ercan et al.,
2017), was restored to normal after RA administration. Foxp2, a
transcription suppressor related to the social defects in ASD
patients (Chien et al., 2017), was found irregularly increased in
Fmr1 KO mice. Its excessive expression could result in
transcription inhibition of mesenchymal-epithelial transition
factor (MET) and lead to abnormal neuronal differentiation
and growth (Mukamel et al., 2011). The mRNA level of Lepr,
whose insufficient level could cause impaired social interaction
(Meyer et al., 2014), was decreased when the Fmr1 gene was
knocked out. Tnfsf10, also known as tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL), encodes a membrane-bound
cytokine that induces cellular apoptosis (Park et al., 2015).
Research implied a contribution from defective programed cell
death to the excessive synaptic connections in Fmr1mutants and
behavioral phenotype of children with FXS (Gatto and Broadie,
2011; Cheng et al., 2013), which was also in accordance with our
finding that Tnfsf10 mRNA level was significantly decreased in
Fmr1 KO mice. RA supplementation restored the expression of
these genes (Figure 4E) and normalized neuronal function, which
might ameliorate social behaviors in the end.

The biological process pathways enriched in the GO analysis
were also found related to the FXS. For instance, extracellular
structure plays a pivotal role in neurite outgrowth, neural
connectivity, and synaptic plasticity (Cope and Gould, 2019;
Peteri et al., 2021). Alterations in connected tissue and
extracellular matrix (ECM) have been implied in the
pathophysiological development of FXS (Ramírez-Cheyne
et al., 2019). According to our GO analysis result, three GO
terms concerning extracellular structure were enriched within
TOP six terms. This suggested that RA treatment might
significantly improve the neural connectivity in the altered
ECM from the PFC in Fmr1 KO mice.

The enrichment in glycogen and glucan metabolic process
pathways induced by RA (Figure 4F) brought our attention to
glycogen synthase kinase 3 (GSK3), the inhibition of which was
proved to improve the impaired behaviors of ASD and FXS
(Franklin et al., 2014; McCamphill et al., 2020; Rizk et al., 2021).
Some reports demonstrated that inhibition of GSK3 could enhance
retinoic acid receptor activity (Si et al., 2011). These researches
indicated a potential link between enhanced RA signaling and
restored symptoms in FXS. It is worth mentioning that knockout
of Fmr1 or supplementation of RA did not significantly change the

mRNA level of Gsk3a or Gsk3b (data not shown). A crosstalk with
RA signaling and GSK3 activity might exist.

The impairment of cognitive abilities and infant diet, was
previously implicated in the individuals with FXS (Bostrom et al.,
2016; Westmark, 2021). The corresponding GO terms of them,
cognition and eating behaviors, were also enriched after RA
administration (Figure 4F).

RA has been used for the treatment of several diseases, like
acute myelocytic leukemia (Stahl and Tallman, 2019) and skin
disorders (Szymański et al., 2020), which suggests the safety of
RA and its potential to be used for other diseases. The
challenge here is that RA has poor solubility in aqueous
solutions, so it is rather difficult to reach an effective
concentration in tissues, like brain (Ferreira et al., 2020). In
order to increase the stability of RA in human body and the
selectivity against RARs, synthetic retinoids have been
developed for clinical trials of neurological diseases, for
example, Alzheimer’s disease (Wołoszynowska-Fraser et al.,
2020). These studies shed light on the possibility of RA
treatment in FXS and ASD patients in the future.

Although many questions remained to be addressed, our
findings that RA supplementation improved social novelty
behavior in Fmr1 KO mice provided a potential therapeutic
intervention for FXS, which may further be used in other
disease models with defective RA signaling.
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