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Abstract

Purpose

To explore the value of radiomics in the identification of lung adenocarcinomas with predom-

inant lepidic growth in pure ground-glass nodules (pGGNs) larger than 10 mm.

Methods

We retrospectively analyzed CT images of 204 patients with large pGGNs (� 10 mm) patho-

logically diagnosed as minimally invasive adenocarcinomas (MIAs), lepidic predominant

adenocarcinomas (LPAs), and non-lepidic predominant adenocarcinomas (NLPAs). All

pGGNs in the two groups (MIA/LPA and NLPA) were randomly divided into training and test

cohorts. Forty-seven patients from another center formed the external validation cohort.

Baseline features, including clinical data and CT morphological and quantitative parame-

ters, were collected to establish a baseline model. The radiomics model was built with the

optimal radiomics features. The combined model was developed using the rad_score and

independent baseline predictors. The performance of the models was evaluated using the

area under the receiver operating characteristic curve (AUC) and compared using the

DeLong test. The differential diagnosis performance of the models was compared with three

radiologists (with 20+, 10+, and 3 years of experience) in the test cohort.

Results

The radiomics (training AUC: 0.833; test AUC: 0.804; and external validation AUC: 0.792)

and combined (AUC: 0.849, 0.820, and 0.775, respectively) models performed better for dis-

criminating than the baseline model (AUC: 0.756, 0.762, and 0.725, respectively) developed

by tumor location and mean CT value of the whole nodule. The DeLong test showed that the
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AUCs of the combined and radiomics models were significantly increased in the training

cohort. The highest AUC value of the radiologists was 0.600.

Conclusion

The application of CT radiomics improved the identification performance of lung adenocarci-

nomas with predominant lepidic growth appearing as pGGNs larger than 10 mm.

Introduction

Since the International Association for the Study of Lung Cancer/American Thoracic Society/

European Respiratory Society (IASLC/ATS/ERS) classification in 2011 defined the terms “lepi-

dic predominant adenocarcinoma (LPA)” and “minimally invasive adenocarcinoma (MIA,�

5 mm invasion in greatest dimension)”, many studies have started to discuss the specificity of

the lepidic growth pattern [1]. As two subtypes of lung adenocarcinomas with predominant

lepidic growth, MIA and LPA have a 5-year disease-free survival (DFS) rate of nearly 100%,

while non-lepidic predominant adenocarcinoma (NLPA, including acinar, papillary, micropa-

pillary, and solid) has a maximum 5-year DFS rate of 82.4% with higher risk [2].

At the molecular level, the intratumor genetic heterogeneity differed between MIA/LPA

and NLPA [3]. Previous studies have shown that mutant epidermal growth factor receptor

(EGFR) is associated with MIA/LPA [4, 5]. In addition, Miyazawa et al. reported that pro-

grammed death-ligand 1 (PD-L1)-positive cases were 0/12 in MIA and 1/10 in LPA, and were

>1/2 in all types of NLPA [6]. For the treatment plan, MIA/LPA may be treated with limited

resection (segmentectomy or wedge resection), whereas other subtypes require standard ther-

apy for lobectomy [1, 7]. However, currently, thoracic surgeons rely heavily on the pathologi-

cal assessment of intraoperative frozen sections (FS) when choosing the procedure. Some

studies have pointed to the limited sensitivity of FS diagnosis for MIA/LPA [8, 9]. Hence, there

is an urgent need to establish more effective, noninvasive methods to precisely identify the

pathological type of invasive lesions prior to surgery to analyze their proliferation and growth

status and help decide the surgical approach.

Previous studies have suggested that MIA and LPA are more likely to present as pure

ground-glass nodules (pGGNs) [1, 10]. However, Son et al. reviewed CT images and patho-

logic specimens from 191 pGGNs, and their sample comprised 61 cases of MIA (31.94%), 49

cases of LPA (25.65%), and 43 cases of NLPA (22.51%) [11]. Additionally, in a study of stage I

invasive lung adenocarcinoma by Fu et al., there were 146 cases in the pGGN group, including

81 cases of LPA (55.48%) and 64 cases of NLPA (43.84%) [12]. In other words, not only MIA

and LPA but also NLPA can manifest as pGGNs [13]. Many studies have shown that invasive

pGGNs are larger than or equal to 10 mm in size [14, 15]. In a previous study, the likelihood of

invasive lesions was 88.73% when the size was greater than 10.5 mm [16]. In addition, a previ-

ous study showed that invasive lung adenocarcinomas larger than 10 mm are more likely to be

misdiagnosed by FS due to sampling errors [8]. Based on these studies, we determined a

threshold of 10 mm for large pGGNs.

Medical images implicitly contain many high-throughput data that cannot be identified by

the naked eye [17]. Radiomics can capture tumor heterogeneity and quantify the characteris-

tics of tumor appearance, structure, and arrangement into texture features to better character-

ize the tumor environment from medical images, and it has been widely used in studies related

to lung malignancies [18, 19]. Our objectives were to use radiomics to fully exploit the
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information in CT images to distinguish between MIA/LPA and NLPA appearing as pGGNs

larger than 10 mm and to compare the predictive performance of the radiomics model with a

baseline model with clinical data, CT morphological and quantitative parameters, and the inte-

grated baseline-radiomics combined model.

Materials and methods

Patients

This retrospective study was approved by the Ethics Committee of the First Affiliated Hospital

of Dalian Medical University and the Ethics Committee of the Second Hospital of Dalian Med-

ical University, and the requirement for informed consent was waived.

We reviewed patients with lung adenocarcinomas that had postoperative pathological

results and presented as pGGNs on imaging at center 1 between November 2012 and Decem-

ber 2018. The inclusion criterion was invasive lesions from adenocarcinoma with

pGGNs� 10 mm. The exclusion criteria were (i) no CT images with a slice thickness of 1.5

mm or less within one month before surgery; (ii) biopsy, radiotherapy, chemotherapy, or sur-

gical resection of nodules before CT scan; and (iii) significant artifacts around nodules on CT

images. In our study, pGGNs were defined as lung nodules without any solid component in

the mediastinal window setting (level, 40 HU; width, 400 HU), while one of their first-order

histogram features, 90th percentile, needed to be less than or equal to –300 HU [15, 20]. In

addition, we collected pGGNs with surgically confirmed lung adenocarcinoma from April

2021 to January 2022 from center 2, and eligible lesions were identified using the same inclu-

sion and exclusion criteria. Since the number of NLPAs was smaller than that of MIAs and

LPAs, we used a simple random undersampling method in datasets of center 1 to obtain the

same number of MIAs and LPAs and adjusted the ratio of the sample sizes in the MIA/LPA

and NLPA groups to 1. This helped to eliminate the effect of sample imbalance and ensure that

our modeling and validation were based on actual data.

Pathological evaluation

A senior pathologist blinded to the previous diagnoses reviewed the hematoxylin and eosin-

stained slides of all surgically resected specimens to reconfirm the pathologic diagnosis. The

outcome was based on the adenocarcinoma classification proposed by IASLC/ATS/ERS [1].

For invasive adenocarcinomas (IAs), we used comprehensive histological subtyping to assess

histological type in 5% increments. The histological subtypes were divided into two groups

based on the lepidic status (MIA/LPA and NLPA).

In addition, FS pathology results were collected for further analysis. The results were diag-

nosed by pathologists immediately after tumors were removed and reported according to the

adenocarcinoma classification proposed by IASLC/ATS/ERS [1].

Baseline features

The clinical data included sex, age, and smoking status. Two thoracic radiologists (a junior

radiologist and a senior radiologist with 20 years of experience) who were blinded to each

patient’s clinical and pathological information assessed the CT morphological parameters,

including tumor location, shape (irregular or round and oval), tumor-lung interface (clear or

unclear), lobulation (an appearance resembling lobules), vacuole (air attenuation vesicle-like

lucency), air bronchogram (air-filled bronchi of low attenuation), and pleural indentation

(pleural retraction, or pleural thickening at the pleural end). The CT quantitative parameters,

including volume (cm3), maximum diameter (on the largest cross-section, cm), mean CT

PLOS ONE Radiomics for lung adenocarcinomas with predominant lepidic growth in pGGN� 10 mm

PLOS ONE | https://doi.org/10.1371/journal.pone.0269356 June 24, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0269356


value of the whole nodule (mCTv, HU), mean CT value of the largest cross-section (mCTv-

Lcs, HU), and mass (mg), were also recorded. The formula to calculate mass was [21]:

Mass ¼ volume� mCTv þ 1000ð Þ:

Image acquisition

Images were obtained using several tomographs, including Optima CT660, Discovery CT750

HD, Revolution CT and LightSpeed16 (General Electric), SOMATOM Perspective and Emo-

tion 16 (Siemens), and Brilliance 16P (Philips) with the following parameters: matrix,

512×512; in-plane pixel size, 0.6–0.9 mm; rotation time, 0.5–0.6 s; tube voltage, 120 kVp; tube

current, 170–200 mA. CT imaging data were reconstructed by using the lung reconstruction

algorithm with a thickness of 1–1.25 mm and slice interval of 1.00–1.50 mm. All CT examina-

tions were performed without intravenous contrast material injection.

Image segmentation and radiomics feature extraction

Segmentation of pGGNs was performed on CT images by a radiologist who was unaware of

the pathological findings of the nodules. The regions of interest (ROIs) were plotted layer by

layer on CT images with the lung window setting (level, –600 HU; width, 1500 HU), excluding

the bronchi, vacuoles, and blood vessels. Then, 106 well-defined radiomics features were

extracted. The open software 3Dslicer (version 4.8.1, https://www.slicer.org/) was used for

image segmentation and radiomics feature extraction (S1 File).

Feature selection and modeling

Feature selection and modeling were performed in the training cohort. Univariate and multi-

variate logistic regression analyses were used to select the optimal features in the clinical data,

CT morphological parameters, and CT quantitative parameters, which ensured that the fea-

tures in the baseline model were all independent and valid predictors.

For the radiomics features, we used inter- and intraclass correlation coefficients (ICCs),

max-relevance and min-redundancy (mRMR), and least absolute shrinkage and selection

operator (LASSO) methods to select the most effective radiomics features.

First, we randomly selected 40 pGGNs as small samples. Two radiologists independently

segmented the pGGNs in these samples and extracted radiomics features. One of the radiolo-

gists performed the second segmentation one month later. The ICCs were calculated to evalu-

ate the consistency and reliability of radiomics features. In our study, we retained only features

with an ICC of� 0.75 [22, 23]. Furthermore, after the data were standardized using Stan-

dardScaler, mRMR was used to select features according to the maximum dependency crite-

rion and punish the correlation of features by its redundancy in the presence of other selected

features. Then, LASSO can shrink the regression coefficients within a certain region and con-

struct a first-order penalty function to obtain a refined model. With tenfold cross-validation,

the best hyperparameter λ was obtained during the regularized L1 logistic regression proce-

dure to choose the best model.

Five other machine learning methods, including support vector machine, naive Bayesian

classifier, K-nearest neighbor, decision tree, and random forest, were also used to build the

model with the selected radiomics features and compare the performance to select the best

model.

Finally, we combined the features of the baseline model and the rad_score to construct the

combined model and plotted the nomogram.
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Performance comparison with radiologists

Three thoracic radiologists (Radiologist A, B, and C) with 20+, 10+, and 3 years of experience

in thoracic imaging, respectively, were asked to make a differential diagnosis (MIA, LPA, or

NLPA) of the cases in the test cohort.

Statistical analysis

We used receiver operator characteristic (ROC) curve analysis to observe the performance of

the models and calculated the corresponding area under the curve (AUC), 95% confidence

interval (CI), sensitivity, specificity, and accuracy for the two cohorts. The DeLong test was

used to compare the AUCs to visualize whether there was a significant improvement in model

performance and to verify the stability of the models between the training and test cohorts. In

addition, we observed the goodness of fit of the models by performing the Hosmer–Lemeshow

test and plotting calibration curves. Decision curve analysis was applied to evaluate the clinical

utility of the model.

Variable differences between the two groups were assessed using a traditional monofactor

analysis. Differences in sex, smoking status, and CT morphological features were analyzed

using a chi-square test or Fisher’s exact test. The Mann–Whitney test or Student’s t test was

used for continuous variables. Statistical significance was set at p< 0.05. SPSS (version 26.0,

IBM), R (version 3.5.1), and Python (version 3.5.6) were used for statistical analyses.

Results

Demographic characteristics

Two hundred and four patients (68 men and 136 women; median age, 61 years [interquartile

range, 55–66 years]) were included in center 1. A total of 204 pGGNs from these patients

included 51 MIAs, 51 LPAs, and 102 NLPAs. Patients in the two groups (MIA/LPA and

NLPA) were randomized in a 7:3 ratio into two separate cohorts for training and testing.

Examples of these cases are presented in Fig 1.

Forty-nine pGGNs of 47 patients (16 men and 31 women; mean age, 59.51 ± 10.68 years)

were collected as the external validation cohort for performance testing. There were two

patients with two pGGNs (all pathologically diagnosed as MIAs) and forty-five patients with a

single pGGN, including 15 MIAs, 14 LPAs, and 16 NLPAs.

Fig 1. CT images and features of three pure ground-glass nodules with different pathological results. (A) A

39-year-old woman with a pure ground-glass nodule (pGGN) in the right middle lobe was diagnosed pathologically

with minimally invasive adenocarcinoma (MIA). The CT image shows that the size of the pGGN is 1.34 cm. The mean

CT value of the whole nodule (mCTv) was –694.21 HU, as measured using a region of interest (ROI) after 3D volume

segmentation, and the rad_score was –1.340. (B) A 63-year-old woman with a pGGN in the left upper lobe was

diagnosed pathologically with lepidic predominant adenocarcinomas (LPA). The CT image shows that the size of the

pGGN is 1.55 cm. The mCTv was –708.496 HU, and the rad_score was –1.139. (C) A 42-year-old woman with a

pGGN in the right lower lobe was diagnosed pathologically with non-lepidic predominant adenocarcinoma (NLPA).

The CT image shows that the size of the pGGN is 1.22 cm. The mCTv was –566.138 HU, and the rad_score was 0.262.

https://doi.org/10.1371/journal.pone.0269356.g001
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Model construction

A comparative analysis of variables between MIA/LPA and NLPA in the two cohorts from

center 1 is shown in Table 1. There were significant differences in mCTv and mCTv-Lcs in

both the training and test cohorts. However, after the univariate and multivariate logistic

Table 1. Comparison of variables between MIA/LPA and NLPA in the training and test cohorts.

Variables Training cohort Test cohort

MIA/LPA NLPA p value MIA/LPA NLPA p value

Age (year) 58.96 ± 11.40 61.00 (57.00, 65.75) 0.511 62.00 ± 10.48 60.93 ± 7.34 0.650

Sex 0.289 0.584

Female 45 (62.50%) 51 (70.83%) 19 (63.33%) 21 (70.00%)

Male 27 (37.50%) 21 (29.17%) 11 (36.67%) 9 (30.00%)

Smoking status 0.413 0.353

Never smoked 63 (87.50%) 66 (91.67%) 29 (96.67%) 26 (86.67%)

Former or current smoker 9 (12.50%) 6 (8.33%) 1 (3.33%) 4 (13.33%)

Tumor location 0.099 0.318

Left lower lobe 15 (20.83%) 7 (9.72%) 3 (10.00%) 4 (13.33%)

Left upper lobe 22 (30.56%) 16 (22.22%) 10 (33.33%) 7 (23.33%)

Right lower lobe 8 (11.11%) 13 (18.06%) 6 (20.00%) 4 (13.33%)

Right middle lobe 4 (5.56%) 2 (2.78%) 0 (0.00%) 4 (13.33%)

Right upper lobe 23 (31.94%) 34 (47.22%) 11 (36.67%) 11 (36.67%)

Shape 0.404 0.067

Irregular 36 (50.00%) 31 (43.06%) 16 (53.33%) 9 (30.00%)

Round and oval 36 (50.00%) 41 (56.94%) 14 (46.67%) 21 (70.00%)

Tumor-lung interface (clear) 0.695 0.117

Clear 54 (75.00%) 56 (77.78%) 21 (70.00%) 26 (86.67%)

Unclear 18 (25.00%) 16 (22.22%) 9 (30.00%) 4 (13.33%)

Lobulation 0.849 1.000

Presence 54 (73.61%) 53 (73.61%) 22 (73.33%) 22 (73.33%)

Absent 18 (26.39%) 19 (26.39%) 8 (26.67%) 8 (26.67%)

Vacuole 0.853 0.781

Presence 20 (27.78%) 21 (29.17%) 9 (30.00%) 10 (33.33%)

Absent 52 (72.22%) 51 (70.83%) 21 (70.00%) 20 (66.67%)

Air bronchogram 0.846 0.766

Presence 17 (23.61%) 18 (25.00%) 7 (23.33%) 8 (26.67%)

Absent 55 (76.39%) 54 (75.00%) 23 (76.67%) 22 (73.33%)

Pleural indentation 0.613 0.584

Presence 29 (40.28%) 32 (44.44%) 9 (30.00%) 11 (36.67%)

Absent 43 (59.72%) 40 (55.56%) 21 (70.00%) 19 (63.33%)

Volume (cm3) 1.02 (0.53, 1.61) 1.07 (0.66, 2.06) 0.453 1.22 (0.60, 2.84) 1.01 (0.69, 1.62) 0.433

Maximum diameter (cm) 1.56 (1.23, 1.80) 1.55 (1.35, 2.07) 0.207 1.82 ± 0.57 1.52 (1.36, 2.12) 0.579

mCTv (HU) –674.82 ± 59.24 –610.52 (-682.99, -577.62) <0.001 –669.99 ± 60.41 –611.83 ± 58.96 <0.001

mCTv-Lcs (HU) –664.99 ± 70.61 –605.69 ± 72.26 <0.001 –658.41 ± 72.77 –602.03 ± 76.72 0.005

Mass (mg) 314.33 (177.48, 499.58) 384.47 (222.31, 702.13) 0.060 373.06 (218.80, 958.132) 399.86 (263.62, 611.24) 0.929

The values are presented as no. (%), mean ± standard deviation, or median (interquartile range). MIA, minimally invasive adenocarcinoma; LPA, lepidic predominant

adenocarcinoma; NLPA, non-lepidic predominant adenocarcinoma; mCTv, mean CT value of the whole nodule; mCTv-Lcs, mean CT value of the largest cross-section;

HU, Hounsfield units.

https://doi.org/10.1371/journal.pone.0269356.t001
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regression analyses in the training cohort, only tumor location (p = 0.014) and mCTv

(p< 0.001) remained significant (Table 2).

According to the three feature selection methods, we removed unstable radiomics features

and chose the best nine features to construct the final model (further details about the nine

radiomics features are given in S2 File). The mean (standard deviation) inter- and intraclass

ICC values of the final nine features were 0.870 (0.061) and 0.919 (0.066), respectively. After

comparing the performance of the models with six machine learning methods (S1 Table), the

best logistic regression was used to build the radiomics model and generate the rad_score,

which was created by summing the selected features weighted by their coefficients. The other

five methods were discarded because of apparent differences in performance or the presence

of overfitting problems in the two cohorts.

The formula to calculate rad_score was:

Rad score ¼ � 0:047þ 0:225 � 10Percentileþ 0:457 � glcmMCC � 0:015

�gldmSmallDependenceLowGrayLevelEmphasisþ 0:324

�Maximum2DDiameterSliceþ 0:321 �Maximum � 0:509

�Skewness � 0:29 � Sphericity � 0:96

�glszmLargeAreaHighGrayLevelEmphasisþ 0:189

�glszmZoneEntropy

The boxplots of the radiomics model are shown in S1 Fig.

The model that combined the tumor location, mCTv, and rad_score was developed as a

nomogram (Fig 2). The ROC curves of the three models are shown in Fig 3, and the corre-

sponding AUC and other performance parameters are presented in Table 3. The radiomics

(training AUC, 0.833; test AUC, 0.804) and combined (AUC, 0.849 and 0.820, respectively)

models performed better for discriminating than the baseline model (AUC, 0.756 and 0.762,

respectively).

Performance evaluation

According to the ROC curves, the area under the curve for the radiomics and combined mod-

els was significantly larger than that of the baseline model, demonstrating the improved per-

formance due to radiomics. The DeLong test also showed that the AUC values of the

radiomics model and the combined model were significantly better than that of the baseline

model in the training cohort (p = 0.015 and 0.002, respectively). In addition, the models had

no significant difference in AUC values between the training and test cohorts, demonstrating

that none of the three models had any overfitting problems. The calibration curves (Fig 4) and

the results of the Hosmer–Lemeshow test showed that all three models had good agreement

Table 2. Univariate and multivariate logistic regression analysis for the baseline features.

Features Univariate Logistic Regression Multivariate Logistic Regression

OR 95% CI p value OR 95% CI p value

Tumor location 1.276 1.030, 1.582 0.026 1.351 1.064, 1.716 0.014

mCTv 1.014 1.007, 1.020 <0.001 1.014 1.008, 1.021 <0.001

mCTv-Lcs 1.009 1.006, 1.017 <0.001

mCTv, mean CT value of the whole nodule; mCTv-Lcs, mean CT value of the largest cross-section; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0269356.t002
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with the actual observations in the two cohorts (p> 0.05, all). The decision curves are plotted

in Fig 5.

Additionally, the radiomics model also showed superior diagnostic performance (AUC,

0.792) in the external validation cohort, especially for the sensitive identification of NLPA

(Table 4). The baseline features of the external validation cohort are shown in S2 Table.

Fig 2. Nomogram of the combined model for the training cohort. The personalized predictive nomogram was

constructed with tumor location, mean CT value of the whole nodule (mCTv), and rad_score. The “1”—“5” in the

diagram represents the tumor location in the left lower lobe, left upper lobe, right lower lobe, right middle lobe, and

right upper lobe.

https://doi.org/10.1371/journal.pone.0269356.g002

Fig 3. Receiver Operating Characteristic (ROC) curves of the three models for the training (A) and test (B) cohorts. AUC, area under the receiver

operating characteristic curve; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0269356.g003
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Diagnostic performance of the radiologists

The differential diagnosis performance of the radiologists can be found in Table 5. The highest

AUC value of the radiologists was 0.600.

Frozen section diagnosis

Since the pathologists at our institution did not identify LPA and NLPA by FS, the FS results

of the 204 cases in this study included adenocarcinoma in situ (AIS), MIA, and IA. A compari-

son of FS and final pathology diagnosis is shown in S3 Table.

Discussion

In our study, radiomics features extracted from CT images were used to better discriminate

NLPA from MIA/LPA appearing as large pGGNs compared to clinical data and traditional CT

Table 3. Performance of the three prediction models.

AUC 95% CI SEN SPE ACC

Training cohort

Baseline model 0.756 0.677, 0.835 0.687 0.734 0.708

Radiomics model 0.833 0.768, 0.899 0.736 0.819 0.778

Combined model 0.849 0.787, 0.911 0.823 0.744 0.778

Test cohort

Baseline model 0.762 0.640, 0.885 0.694 0.792 0.733

Radiomics model 0.804 0.692, 0.917 0.800 0.766 0.783

Combined model 0.820 0.714, 0.926 0.793 0.774 0.783

AUC, area under the receiver operating characteristic curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.

https://doi.org/10.1371/journal.pone.0269356.t003

Fig 4. Calibration curves of the three models for the training (A) and test (B) cohorts.

https://doi.org/10.1371/journal.pone.0269356.g004
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parameters. In the training cohort, the differential diagnostic performance of the combined

model (AUC value improved by 0.093) and the radiomics model (AUC value improved by

0.077) was significantly improved compared to the baseline model, and this prediction ability

was consistently achieved in the test and external validation cohorts.

As a specific subgroup of lung nodules, pGGN has been the focus of research regarding its

invasiveness, prognosis, and follow-up. The Fleischner Society Guidelines state that a ground-

glass nodule manifests as hazy increased attenuation in the lung that does not obliterate the

bronchial and vascular margins [24]. However, the definition and differentiation of pGGNs

remain unclear. Therefore, in our study, we utilized both qualitative and quantitative criteria

to ensure that the pGGNs used for modeling were reliable.

Some studies have differed on the issue of the value of CT density in identifying LPA and

NLPA [25–27]. The study of Fu et al. showed that tumor size (OR: 5.316, p< 0.001) was the

only independent predictor of NLPA instead of CT density [27]. In our study, multivariate

Fig 5. Decision curves of the three models for the training (A) and test (B) cohorts.

https://doi.org/10.1371/journal.pone.0269356.g005

Table 4. Performance of the three prediction models in the external validation cohort.

AUC 95% CI SEN SPE ACC

External validation cohort

Baseline model 0.725 0.577, 0.874 0.500 0.667 0.612

Radiomics model 0.792 0.668, 0.916 0.875 0.576 0.673

Combined model 0.775 0.644, 0.905 0.938 0.515 0.653

AUC, area under the receiver operating characteristic curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.

https://doi.org/10.1371/journal.pone.0269356.t004

Table 5. The differential diagnosis performance of the radiologists.

AUC 95% CI SEN SPE ACC

Radiologist A 0.600 0.456, 0.744 0.600 0.600 0.600

Radiologist B 0.500 0.353, 0.647 0.167 0.833 0.500

Radiologist C 0.550 0.403, 0.697 0.267 0.833 0.550

Radiologists A, B and C are radiologists with 20+, 10+, and 3 years of experience in thoracic imaging. AUC, area under the receiver operating characteristic curve; CI,

confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.

https://doi.org/10.1371/journal.pone.0269356.t005
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logistic regression analysis identified mCTv as an independent predictor of NLPA. This may

be because our tumor density measurements were based on 3D volume segmentation, whereas

the measurements in their study were not. Our results also showed that the maximum diame-

ter measured using the same method was not significantly different between the two groups,

probably because the artificial measurement of this parameter for pGGNs may be influenced

by the experience of observers. In addition, since the object of our study was pGGNs larger

than 10 mm, the effect of size on the differential diagnosis between the two groups was elimi-

nated to a certain extent.

A previous study used quantitative measurement parameters and first-order histogram fea-

tures to build logistic regression models to distinguish between MIA/LPA and NLPA [28]. The

AUC of their model based on size and mean nodule attenuation in the third quartile of the

first-order histogram yielded an AUC of 0.877. Eriguchi et al. found that the 75th percentile

(p< 0.001) and the maximum (p = 0.009) in first-order histogram features were associated

with NLPA [29]. Our experiments analyzed a wider range of radiomics features, particularly

higher-order texture features, which could quantify heterogeneity. The diversity of tumor his-

topathology and the presence of multiple subclones within the tumor make it heterogeneous,

and high intratumoral heterogeneity may be associated with a higher tumor grade [30]. In

addition, Katsumata et al. showed that LPA was characterized by a less invasive component of

pro-oncogenic mesenchymal cells [31]. This indicates that the invasive component of LPA is

associated with a less malignant tumor microenvironment. In our study, we proved that our

radiomics features could reflect the slight differences between MIA/LPA and NLPA. Park et al.

used radiomics to discriminate between LPA and NLPA [32]. In their study, the radiomics

model using two first-order histogram features and three texture features had an AUC value of

0.917 (95% CI, 0.894–0.939). However, their study was not based on pGGNs.

The current guidelines suggest a conservative follow-up strategy to treat pGGNs due to

their usually indolent behavior [33]. However, in a previous study based on 124 patients,

51.6% of pGGNs showed growth during the two-year follow-up period, and over 40% of the

tumors with growth were confirmed by postoperative pathology to be IAs, while most

unchanged tumors were MIAs [34]. Additionally, a previous study found the presence of

pGGNs growing faster than subsolid nodules of large size (� 8 mm), which could rapidly

develop into the solid component [35]. The literature above suggests that pGGNs may also

become clinically active adenocarcinomas and that the particulars of the invasive component

are influential factors. In our study, in addition to the change in AUC, the sensitivity was

clearly improved with the application of radiomics in all cohorts. Compared to the baseline

model, the radiomics model and the combined model could better predict NLPA, which

requires closer monitoring in pGGNs larger than 10 mm.

As seen by the radiologists’ diagnosis, even if a pGGN is large in size, the radiologists would

relax their vigilance and tend to consider the nodule as low risk due to the absence of a solid

component that directly represents the invasive foci. In addition, the poor diagnostic perfor-

mance of radiologists further reflected the limited value of conventional CT features in dis-

criminating between MIA/LPA and NLPA. In contrast, the radiomics model was able to more

sensitively identify NLPAs that present as pGGNs, prompting clinicians to adjust the follow-

up frequency and management strategies for these lesions.

Currently, some pathologists have suggested that it is necessary to identify the predominant

subtypes of adenocarcinomas by FS, but this is difficult to achieve and is limited by sampling

error. The study of Trejo Bittar HE et al. showed that the sensitivity of identifying LPA on FS

was only 33.3% [9]. Our data also reflect the truth that it is difficult to recommend a definitive

assessment of adenocarcinomas by FS alone. FS in combination with or comparison with radi-

ology seems to be a more rational approach. Previous studies have confirmed that radiomics
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signatures in combination with FS can help classify peripheral lung adenocarcinoma [36–38].

In the study of Wang et al., multivariate analyses showed that the different diagnosis between

FS and the radiomic model they developed was the independent predictive factor for the mis-

diagnosis of FS (OR: 7.46; p< 0.001) [36]. In our study, using the radiomics model, we

achieved an AUC of 0.804 to distinguish between MIA/LPA and NLPA. Thus, our models

may help pathologists and clinicians to accurately determine pathology subtypes and facilitate

the selection of surgical approaches.

Our study had several limitations. First, the small sample size of the test cohort and external

validation cohort may have interfered with the results of our model. We will further confirm

the generalizability of our model with more standardized trials with large sample sizes in the

future. In the meantime, we should require the same CT scanning machine or standardization

of scanning protocols or use image resampling and batch effect correction to minimize acqui-

sition-related radiomics variability and thus improve the robustness of the models. Second, we

should have included more features for modeling, such as peritumor radiomics features. Our

study only targeted lung adenocarcinomas in pGGNs, but in the clinic, there are still many

benign lesions or precursor glandular lesions that present as pGGNs, and they require

advanced methods to enable their identification on early images to avoid overdiagnosis. In

subsequent studies, we will establish a multiclass classification model and provide a more com-

prehensive diagnostic approach to the clinic.

In conclusion, rather than relying on the clinical, CT morphological, and CT quantitative

features used in the past, the application of radiomics, a noninvasive and efficient approach,

can describe pGGNs larger than 10 mm from CT images more accurately and help clinicians

achieve risk stratification, thus providing a more targeted treatment strategy for each patient.
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