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Aims Machine-learning (ML)-based automated measurement of echocardiography images emerges as an option to reduce observer 
variability. The objective of the study is to improve the accuracy of a pre-existing automated reading tool (‘original detector’) 
by federated ML-based re-training.

Methods 
and results

Automatisierte Vermessung der Echokardiographie was based on the echocardiography images of n = 4965 participants of the 
population-based Characteristics and Course of Heart Failure Stages A–B and Determinants of Progression Cohort Study. 
We implemented federated ML: echocardiography images were read by the Academic Core Lab Ultrasound-based 
Cardiovascular Imaging at the University Hospital Würzburg (UKW). A random algorithm selected 3226 participants for 
re-training of the original detector. According to data protection rules, the generation of ground truth and ML training cycles 
took place within the UKW network. Only non-personal training weights were exchanged with the external cooperation 
partner for the refinement of ML algorithms. Both the original detectors as the re-trained detector were then applied to the 
echocardiograms of n = 563 participants not used for training. With regard to the human referent, the re-trained detector 
revealed (i) superior accuracy when contrasted with the original detector’s performance as it arrived at significantly smaller 
mean differences in all but one parameter, and a (ii) smaller absolute difference between measurements when compared 
with a group of different human observers.

Conclusion Population data–based ML in a federated ML set-up was feasible. The re-trained detector exhibited a much lower measurement 
variability than human readers. This gain in accuracy and precision strengthens the confidence in automated echocardiographic 
readings, which carries large potential for applications in various settings.
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Introduction
Echocardiography is widely used to guide the diagnosis and manage-
ment of cardiac diseases. Clinical decisions regarding pharmacotherapy 
or devices are frequently based on echocardiography-derived measure-
ment values and/or serial assessment of cardiac structure and function, 
e.g. when targeting potentially cardiotoxic chemotherapy.1,2 Another 
field of application of this imaging modality is clinical and epidemiologic 
research. There, the sample size required to reveal a significant 
between-group difference or temporal change of an echocardiography 
parameter critically depends on the respective measurement error. 
Minimizing measurement variability, hence, is of utmost importance 
for both patient care and clinical research.

Both image acquisition and reading generate measurement variabil-
ity and thus impact the total difference between two measure-
ments.3–5 Acquisition variability can be reduced by the deployment 
of standardized sonographer training and regular credentialing, provi-
sion of state-of-the-art equipment, alignment of ultrasound machine 
system pre-sets, and standardization of imaging protocols.6 Reading 
variability can be reduced by the implementation of central reading in 
an echocardiography core laboratory.7,8 These approaches, however, 

are frequently cost- and/or time-intensive and therefore have not yet 
become routine clinical standard.

Machine-learning (ML)-based automated measurement of echocar-
diography images have emerged as a potential modality to reduce read-
ing variability.9–12 Only recently, Tromp et al.13 showed that the 
disagreement between the measurements of a deep-learning-based 
automated workflow and a human measurement was lower than the 
disagreement among three core laboratory readers. The World 
Alliance of Societies of Echocardiography Normal Values (WASE) 
study recruited healthy individuals from 15 different countries to derive 
reference values from standardized echocardiograms.14,15 Based on 
these echocardiograms and the respective core laboratory readings, 
Lang et al.16 trained a detector by ML to automatically determine stand-
ard echocardiography parameters. Validation of the detector in a sub-
set of WASE echocardiograms showed excellent agreement with the 
manual measurements of an expert reader.16 Further, measurement 
variability was comparable with the human inter-observer variability be-
tween two expert readers.16

Given the excellent performance originating from close-to-perfect 
conditions found in highly selected cohorts of healthy participants, 
the next step of advancement necessitates training of detectors on 
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the echocardiograms of the general population. Here, detectors need 
to master suboptimal acoustic windows and deviations from normal 
cardiac morphology and function. This requires access to large amounts 
of echocardiographic data and the respective phenotypic characteriza-
tion of the imaged participants. As this process is frequently impeded by 
stringent data protection laws posing major barriers, alternative modal-
ities such as federated learning have to be explored.

Federated learning is an ML technique that allows multiple training 
sites to collectively build, train, and refine an ML model without the 
need to access or share a central data pool. Each site has its own local 
data pool, and only the trained model weights are exchanged among 
them. As no sensitive patient data are shared outside the clinical net-
work, federated learning offers a promising approach for collaborative 
ML developments among multiple (clinical) sites, considering critical as-
pects such as data privacy, data security, access rights, and access to het-
erogeneous data.

The present study aims to (i) implement a federated ML system in a 
clinical environment and (ii) apply the above-described detector to the 
echocardiograms of a large and well-characterized population-based 
cohort with the goal of further improving measurement accuracy by 
federated artificial intelligence–supported re-training.

Methods
Study population
The population-based Characteristics and Course of Heart Failure Stages A–B 
and Determinants of Progression (STAAB) Cohort Study included individuals 
without self-reported heart failure from the general population of Würzburg, 
Germany, aged 30–79 years and stratified for age (10:27:27:27:10 for the re-
spective decades) and sex (1:1) between December 2013 and October 
2017. The detailed study design and methodology have been published.17,18

We implemented a rigid and regular quality control process for all study- 
related procedures.17,18 The STAAB cohort study protocol and procedures 
complied with the Declaration of Helsinki and received positive votes from 
the Ethics Committee of the Medical Faculty (vote #98/13) as well as from 
the data protection officer of the University of Würzburg. All participants pro-
vided written informed consent prior to any study examination.

Echocardiography
All participants underwent transthoracic echocardiography (Vivid S6 or 
Vivid E95; GE Healthcare, Horten, Norway) performed by dedicated 
trained personnel, which was internally certified and quality-controlled on 
a regular basis.3 Cine loops were recorded based on three R-R intervals, la-
belled only with the participant’s study identification number (pseudony-
mized) and stored in raw data format. The pre-specified assessment 
protocol included a parasternal long-axis view for the measurement of 
the left ventricular outflow tract diameter (LVOT), the left ventricular 
(LV) end-diastolic (LVDd) and end-systolic (LVDs) diameters, the end- 
diastolic thickness of the interventricular septum (IVSd), and the LV poster-
ior wall (LVPWd), as well as an M-mode recording of the basal LV with the 
ultrasound beam perpendicular to the IVS. We further recorded apical 
four- and two-chamber views and performed tissue-Doppler pulsed-wave 
Doppler measurements of the septal and lateral mitral annulus to assess the 
respective velocities septal eʹ and lateral eʹ. Early (E) and late (A) diastolic 
mitral inflow velocities were assessed by using pulsed-wave Doppler with 
the acquisition window positioned at the mitral leaflet tips.18–20 Along 
the scanning procedure, the sonographer immediately performed pre- 
specified measurements [human on-site measurement; i.e. LVDd, LVDs, 
IVSd, LVPWd, septal eʹ, lateral eʹ, E, A, as well as LV end-diastolic and end- 
systolic volumes to calculate the LV ejection fraction (LVEF)] and congre-
gated them in a result sheet for each study participant.

The Automatisierte Vermessung der 
Echokardiographie project
Automatisierte Vermessung der Echokardiographie (AVE) was performed as co-
operation project of the University Hospital and University of Würzburg and 

TOMTEC Imaging Systems GmbH, Unterschleißheim, Germany. The study 
protocol was approved by the Ethics Committee of the Medical Faculty 
Würzburg in the format of an amendment to the STAAB study protocol. 
All study procedures were in concordance with the German data protection 
law as confirmed by the data protection officer of the University of Würzburg. 
All echocardiography images remained within the University Hospital 
premises at any time. The stored echocardiography images of all STAAB 
participants were exported in DICOM format and imported into the clinical 
image analysis software (TOMTECArena®, TOMTEC Imaging Systems 
GmbH) of the Academic Core Lab Ultrasound-based Cardiovascular 
Imaging at the Comprehensive Heart Failure Center (CHFC), Würzburg, 
Germany (Figure 1). Trained and internally certified personnel performed mea-
surements on the complete STAAB population according to a pre-specified 
protocol, including LVDd, LVDs, IVSd, LVPWd, septal eʹ, lateral eʹ, E, and A. 
Thus, derived measurements served as a human referent in statistical analyses 
on measurement differences. In order to quantify the performance of the ori-
ginal detector and to train and validate a potentially improved detector, the 
STAAB population was divided into three distinct subgroups (training pool, val-
idation Pool 1, and validation Pool 2) stratified for sex and age decades using a 
random algorithm applying a 4:1:1 ratio. The respective group size allowed for 
a larger training pool and two equally sized validation pools. In addition, images 
of the first 250 participants from validation Pool 1 were measured repetitively 
by observers of different experiences, who were blinded to the results of the 
other observers (repeat human measurements). Validation Pool 2 has not been 
used in the study yet and is part of the ongoing utilization phase of the AVE 
project.

Federated machine learning
At no point during the AVE project were patient data or DICOM studies 
shared with the external partner TOMTEC Imaging Systems or processed 
outside of the hospital network. The generation of ground truth data and 
the computations for the ML training cycles took place strictly on compu-
ters within the hospital network. Only non-personal model weights and 
training states were exchanged with the software engineers for analysis 
and refinement of the algorithms (Figure 1). A centralized server-based 
federated ML mechanism was developed for this project. Each node had 
exclusive access to its local data pool and only the current solver state, 
and a model snapshot was exchanged with the server (Figure 1). Because 
of the sensitivity of patient data, internet access was highly restricted on 
all nodes.

The server’s main task is to take the training state from one node and 
pass it to the next one. It considers the pool size on each node and decides 
when the training is completed. Local epoch counts and learning rates are 
adapted with respect to the pool sizes. An additional worker process is 
launched on each node, which is responsible for observing the local training 
(states) and synchronizing the training data with the centralized server 
(Figure 1). In contrast to conventional federated learning approaches, the 
averaging of model weights after each training round was omitted for our 
project. Instead, the model was passed from one node to the next (including 
the solver state). If the model/solver exchange happens very frequently, the 
training conditions become similar to a traditional non-federated set-up. 
This approach is time-consuming, as nodes do not work in parallel but 
must wait for each other. Also, the binary files for solver state and model 
weights must be exchanged frequently. One data exchange includes be-
tween 10 and 30 Megabytes and happens every 20–60 s. This is equivalent 
to ∼1000 learning iterations on one node before the next model exchange. 
There is a trade-off between network transfer times and the smallest pos-
sible learning increment. Because training time efficiency was not consid-
ered critical for this project, equivalence to a result that would be 
expected using a common pool on a central site was a matter of priority 
for our approach.

Re-training of measurement detectors
All detector models were trained from the ground up and no pre-trained 
model weights were used. Re-training of the detectors was based on the 
measurements of the human referent. The de-identified measurements 
values and coordinates were extracted from the clinical image analysis 
software by using a specifically developed database extraction tool 
(TOMTEC Imaging Systems GmbH). The clinical image analysis software 
provides a specialized detector for each labelled measurement; for example, 
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there are separate line segment detectors for LVOT, LVPWd, IVSd, eʹ, etc. 
which had been trained previously. Each measurement has a geometry type; 
for example, a Doppler velocity measurement is represented by a 2d point, 
a distance measurement by two 2d points, and a tracked endocardial con-
tour by a list of splines. For each geometry type, there is a separate detector 
class consisting of a cascade of multiple convolutional neural networks 
(CNNs) + optional trackers. Within the CNN cascade, coarse features 
such as the bounding box are detected at the beginning and the position 
of individual points is refined towards the end. In the re-training of the de-
tectors, both grid search and manual steps were used for obtaining cardiac 
ultrasound data. The training pool was used for a 10-fold cross validation 
(9:1 split) and hyperparameter optimization.

Each detector consists of several cascaded detection stages with individ-
ual CNNs. In earlier detection stages, coarse features like oriented regions 
of interests are trained, whereas in later stages, the focus is on finer details 

like point positions. The output from each stage is used as an input by the 
next one. This way complexity is reduced, and the detection task is distrib-
uted across specialized subdetectors (Graphical Abstract).

The image pre-processing pipeline has a key role in generating the actual 
input for the neural networks. We identified the frames that had been se-
lected for the generation of the ground truth and sampled the input frames 
equidistantly from the corresponding RR cycle. For 2D measurements, 
from the original B-mode clip, an interval of frames between two R-wave 
events is extracted. In the case of a Doppler clip, one complete R-R cycle 
is cropped from the tissue region. The selected images are then processed 
by using a detector-specific pipeline, which, for example, includes contrast 
normalization, image orientation normalization, signal wrapping and scaling 
(Doppler), down sampling, ultrasound sector mask extraction, etc. The 
processed frames are then merged into a multi-channel image and for-
warded to the CNN inference engine.
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Figure 1 Federated machine-learning set-up. The pseudonymized echocardiography images of the participants of the population-based 
Characteristics and Course of Heart Failure Stages A–B and Determinants of Progression (STAAB) Cohort Study were imported in DICOM format into 
the TomtecArena® (TOMTEC Imaging Systems GmbH) of the Academic Core Lab Ultrasound-based Cardiovascular Imaging at the 
Comprehensive Heart Failure Center, University Hospital Würzburg, Germany. Trained and internally certified personnel (human referent) performed 
measurements according to a pre-specified protocol. The de-identified values and coordinates of measurements performed by the human referent 
were extracted as ground truth from the TomtecArena® using a specifically developed database extraction tool (TOMTEC Imaging Systems 
GmbH). The ground truth conversion and the computations for the machine-learning training process took place on computers within the hospital 
network. The same was true for the Cooperation partner site using the echocardiography images from the World Alliance of Societies of 
Echocardiography Normal Values (WASE) study. For the centralized server-based federated machine learning, the respective convolutional neural net-
work models had exclusive access to their local data pools within their own virtual private networks. Only the current solver status and a model snap-
shot were exchanged with the federated server that had access to both networks.
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Figure 2 Example of one convolutional neural network as applied for each echocardiography parameter. One convolutional neural network contains 
convolutional rectified linear units and fully connected layers. Its output is of low dimensionality, e.g. a vector of five floating point values representing a 
bounding box and its orientation. Only the combination of multiple convolutional neural networks leads to the desired precision. conv, convolution; 
MAX, maximal; ip, inner product.
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Figure 3 Study flow. Of the 4965 participants of the population-based Characteristics and Course of Heart Failure Stages A–B and Determinants of 
Progression (STAAB) Cohort Study, 4859 had valid echocardiograms and entered the Automatisierte Vermessung der Echokardiographie project. All 
echocardiograms had been read at the time point of scanning (human on-site measurement). At project start, the stored pseudonymized echocardi-
ography images of the STAAB participants were imported into the TomtecArena®. Subsequently, all scans were read by the original detector. Further, 
trained and internally certified personnel of the Academic Core Lab Ultrasound-based Cardiovascular Imaging at the Comprehensive Heart Failure 
Center, Würzburg, Germany, performed measurements in all echocardiograms, serving as the human referent in further analyses. The STAAB popu-
lation was then divided into three distinct subgroups using a random algorithm applying a 4:1:1 ratio. The respective group size allowed for a larger 
training pool (n = 3226), and two equally sized validation pools. The training pool served for machine-learning-based training of the original detector. 
Images of the first 250 STAAB participants allocated to validation Pool 1 were measured repetitively by observers of different experience, blinded to the 
results of the other observers (repeat human measurements). The remaining images of validation Pool 1 served for measurements of the re-trained 
detector. The validation Pool 2 was not used in the current analysis.
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The CNN architecture has not been modified for the federated learning 
set-up. The only adaption was an appropriate learning rate reduction in or-
der to prevent the fine-tuned model weights from different nodes from 
overwriting each other during the final solver state exchanges. An Adam 
solver was selected as optimizer, reducing the initial learning rate by half 
every 30–90 epochs with a total epoch count of 100–300. All networks 
were designed with a focus on fast object detection for cardiologic ultra-
sound images. A single CNN follows a simplistic approach by using a few 
blocks of convolutional, Rectified Linear Unit and fully connected layers. 
Their output is also of low dimensionality, e.g. a vector of five floating point 
values representing a bounding box and its orientation. Only the combin-
ation of multiple CNNs leads to the desired precision. Depending on the 
specific detector and detection stage, the parameters differ for neuron 
count, kernel size, padding, etc. Figure 2 shows the layout of a typical neural 
network applied in this study.

The ‘caffe’ deep-learning framework (https://caffe.berkeleyvision.org/) 
was used for all training activities on a Linux machine with a NVIDIA 
GeForce RTX 3070 TI.

Data analysis
Statistical analysis was performed using SPSS (Version 26; SPSS Inc., Chicago, 
IL, USA). Descriptives were summarized as frequencies (per cent) and mean 
(standard deviation), as appropriate. To assess measurement variability, we 
performed Bland–Altman analyses calculating the mean differences between 
the human referent and the respective measurements of the original detector 
(Scenario A) as well as of the re-trained detector (Scenario B). To quantify 
changes in measurement variability purported by the re-trained detector, 
we also determined the absolute differences between Scenario A vs. 
Scenario B. Accordingly, a negative value for measurement differences would 

favour Scenario B, indicative of an improvement of the detector by ML-based 
training. We further assessed, how often the measurement difference was 
smaller in Scenario B. Correlations were calculated using Pearson’s correl-
ation coefficient. Groups were compared by parametric or non-parametric 
tests, as appropriate. We calculated percentiles for the absolute difference 
between measurements. All tests were performed two-sided, and P-values 
<0.05 were considered statistically significant.

Results
For the AVE study, development of a federated ML system was feasible 
providing training conditions similar to a traditional non-federated set- 
up. This approach ensured that no personal data left the hospital net-
work and that the measurement detectors could be re-trained within 
the clinical environment.

From the total STAAB sample,18 which comprised n = 4965 partici-
pants [52% women, mean age 55 (12) years], n = 4859 (98%) had valid 
echocardiograms and qualified for the AVE protocol (Figure 3). The ran-
dom algorithm allocated n = 3226 participants to the training pool, n =  
813 to the validation Pool 1, and n = 820 to the validation Pool 2. From 
validation Pool 1, the first consecutive n = 250 participants were eval-
uated from five different observers (repeat human measurements; 
Figure 3). Distribution of age, sex, and body dimensions as well as of car-
diovascular risk factors, comorbidities, and cardiac structure and func-
tion were comparable among the three pools (Table 1).

We first applied the original detector to the imported images. 
Comparing these automated measurements with the human referent 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Characteristics of STAAB participants with valid echocardiograms entering Automatisierte Vermessung der 
Echokardiographie

Total sample (n = 4859) Training pool (n = 3226) Validation Pool 1 (n = 813) Validation Pool 2 (n = 820)

Female sex 2561 (52.7) 1700 (52.7) 429 (52.8) 432 (52.7)
Age (years) 54.9 (11.8) 54.9 (11.8) 55.0 (11.8) 54.9 (11.9)

BSA [m2] 1.9 (0.2) 1.9 (0.2) 1.9 (0.2) 1.9 (0.2)

Hypertension 2246 (46.2) 1473 (45.7) 411 (50.6) 362 (44.1)
Diabetes mellitus 451 (9.3) 299 (9.3) 72 (8.9) 80 (9.8)

Coronary heart disease 191 (3.9) 122 (3.8) 34 (4.2) 35 (4.3)

Heart rate [min−1] 68 (11) 68 (11) 67 (10) 68 (10)
Systolic BP [mmHg] 131 (18) 131 (18) 132 (18) 130 (18)

Diastolic BP [mmHg] 78 (12) 78 (11) 79 (15) 78 (13)

Echocardiographya

LVDd [mm] 48.5 (5.1) 48.5 (5.1) 48.4 (5.3) 48.6 (4.9)

LVDs [mm] 32.6 (7.0) 32.7(7.4) 32.5 (5.9) 32.5 (5.8)

IVSd [mm] 8.8 (1.6) 8.7 (1.6) 8.8 (1.6) 8.8 (1.5)
LVPWd [mm] 7.7 (1.5) 7.7 (1.5) 7.8 (1.5) 7.7 (1.4)

LVOT diameter [mm]b 21.6 (1.9) 21.6 (1.9) 21.8 (2.1) 21.7 (1.8)

E [cm/s] 70 (20) 70 (20) 70 (20) 70 (30)
A [cm/s] 60 (20) 60 (20) 60 (20) 60 (30)

eʹ lateral [cm/s] 10.9 (3.2) 10.9 (3.2) 10.9 (3.3) 10.8 (3.2)

eʹ septal [cm s−1] 8.5 (2.5) 8.5 (2.5) 8.4 (2.5) 8.5 (2.5)
LVEF [%] 59.8 (4.8) 59.8 (4.9) 59.9 (4.9) 59.9 (4.6)

LVVd [mL] 101 (27) 101 (27) 100 (28) 103 (27)

Data are count (per cent) or mean (SD). 
A, late mitral inflow velocity; BP, blood pressure; BSA, body surface area; E, early mitral inflow velocity; eʹ, mitral annular early diastolic velocity; IVSd, end-diastolic thickness of the 
interventricular septum; LVDd, left ventricular end-diastolic diameter; LVDs, left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; LVPWd, end-diastolic 
thickness of left ventricular posterior wall; LVOT, left ventricular outflow tract diameter; LVVd, left ventricular end-diastolic volume. 
aHuman on-site measurement. 
bAvailable in n = 2313 participants.
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(Scenario A; Figure 4), we observed a significant measurement differ-
ence for LVDd, LVDs, LVPWd, E-wave velocity, A-wave velocity, eʹ lat-
eral velocity, and eʹ septal velocity, respectively. No significant 
differences emerged for IVS and LVOT diameter (Table 2 and Figure 5).

When compared with the original detector (Scenario A), the re- 
trained detector (B) arrived at significantly smaller mean differences 
in all but one parameter (IVS) with respect to the human referent 
(Scenario B; Figure 4 and Table 2). Specifically, all differences between 

Validation pool 1

Measurement 
by human referent

(CoreLab)

Measurement 
by original 
detector

Measurement 
by re-trained

detector

Serial measurements
by different 

human observers

Scenario B
Human referent

vs re-trained detector

Difference between two
measurements (∆B)

Scenario A
Human referent

vs original detector

Difference between two
measurements (∆A)

Scenario C
Human referent

vs human measurements

Difference between two
measurements (∆C)

Figure 4 Scheme of measurement scenarios. The images of the 813 STAAB participants allocated to validation Pool 1 were used for the assessment 
of measurement accuracy. All images had been measured by trained and internally certified personnel of the Academic Core Lab Ultrasound-based 
Cardiovascular Imaging at the Comprehensive Heart Failure Center, Würzburg, Germany, serving here as human referent. Scenario A compares 
the measurements of the original detector against the human referent, Scenario B compares the measurements of the re-trained detector against 
the human referent, and Scenario C compares the measurements of different human observers against the human referent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Measurement variability of the original detector (A) and the trained detector (B) in comparison with the 
human referent, respectively

No. of 
measurements

Original detector 
vs. human referent 

(Scenario A)

Re-trained detector 
vs. human referent 

(Scenario B)

Absolute difference between 
measurement differences 

(Scenarios A vs. B)

Smaller difference 
observed in 
Scenario B

Mean difference 
between 

measurements 
(95% CI)

Mean difference 
between 

measurements 
(95% CI)

Mean (95% CI) n (% of 
measurements)

LVDd [mm] 428 −1.1 (−1.5, −0.7) 0.2 (−5.9, 6.2) −0.9 (−1.2, −0.7)** 281 (66)**
LVDs [mm] 388 2.9 (2.3, 3.4) 1.0 (0.6, 1.4) −1.4 (−1.8, −1.0)** 242 (62)**

IVSd [mm] 427 0.0 (−0.1, 0.2) −0.1 (−0.3, 0.0) −0.1 (−0.2, 0.0) 223 (52)

LVPWd [mm] 427 1.2 (1.1, 1.3) 0.7 (0.6, 0.8) −0.2 (−0.3, −0.1)** 248 (58)*
LVOT diameter [mm] 440 0.2 (−0.0, 0.4) 0.1 (−0.1, 0.2) −0.3 (−0.5, −0.2)** 264 (60)**

E [cm/s] 494 3.7 (3.3, 4.0) 0.1 (−0.3, 0.4) −1.5 (−1.8, −1.20)** 341 (69)**

A [cm/s] 489 5.8 (5.2, 6.3) 0.1 (−0.4, 0.6) −3.3 (−3.7, −2.9)** 389 (80)**
eʹ lateral [cm/s1] 467 1.0 (0.9, 1.1) 0.0 (−0.1, 0.1) −0.6 (−0.7, −0.5)** 380 (81)**

eʹ septal [cm/s−1] 471 0.5 (0.4, 0.6) 0.0 (−0.0, 0.1) −0.2 (−0.2,−0.1)** 322 (68)**

The original detector performed well regarding determination of IVSd, for example, and there was no significant difference between the automated measurement and the human referent. 
The re-trained detector was able to achieve even smaller measurement differences in 52% of cases. On the other hand, re-training of the original detector for eʹ lateral, for example, 
improved measurement accuracy to a large extent: there, the re-trained detector was superior in 81% of cases. Abbreviations as in Table 1. 
*P < 0.01. 
**P < 0.001.
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the re-trained detector and the human referent became non-significant, 
with the exception of LVDd and LVPWd, respectively. Further, the 
amount of absolute measurement differences was more likely to be 
smaller in Scenario B than in Scenario A (ΔB < ΔA) regarding all para-
meters except for IVS (Table 2).

Table 3 displays the 50th and the 95th percentiles of the absolute dif-
ferences between measurements in different scenarios, respectively. 
The 50th and 95th percentiles of the absolute difference between 
the automated measurement performed by the re-trained detector 
and the human referent (Scenario B) for LVDd were 1.3 and 6.3 mm, 
respectively. This means that in 50% of cases, the absolute difference 
between the automated and the human reference measurement was 
≤1.3 mm, and in 95% of cases ≤6.3 mm. To put these results into per-
spective, we also evaluated the absolute differences between measure-
ments of different human observers and the human referent (Scenario 
C). For LVDd, the 50th and the 95th percentiles were 2.5 and 8.6 mm, 
respectively (Table 3 and Figure 6). The measurement difference was 
significantly more often smaller in Scenario B when compared with 
Scenario C (ΔB < ΔC ). The same was true for IVSd, LVOT diameter, 
E-wave, A-wave, eʹ lateral, and eʹ septal, respectively (Table 3 and 
Figure 6).

Discussion
We implemented a federated ML system into the clinical environment 
providing training conditions similar to a traditional non-federated set- 
up but ensuring that no personal data left the hospital network. This 
novel approach enables the privacy-compliant handling of sensitive pa-
tient data and a location-independent refinement of ML algorithms. 
Application of an automated detector to the standardized transthor-
acic echocardiograms of the population-based STAAB cohort revealed 
small but significant and clinically meaningful measurement differences 
for all but two of the selected parameters, when compared with the hu-
man referent. Machine-learning-based re-training of the detector re-
sulted in significantly smaller differences between automated and 
human referent measurements, and the differences between auto-
mated measurements and human referent lost significance in all but 
two parameters. Hence, population data–based machine-learning 
algorithm can improve automated echocardiographic quantification 
of selected parameters of cardiac structure and function. When com-
pared with the measurements of the human referent, the absolute dif-
ference between the measurements was smaller for the re-trained 
detector than for a group of different human observers implying that 
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Figure 5 Bland–Altman plots displaying differences between measurements performed by the original and the re-trained detector, respectively, in 
comparison with the human referent (Scenario A vs. Scenario B) regarding (A) IVSd, (B) LVOT, (C) LVEDd, (D) septal e´, (E) lateral e´, and (F) E wave 
velocity. LoA, limits of agreement; LVDd, left ventricular end-diastolic diameter; IVSd, end-diastolic thickness of interventricular septum; LVOT, left 
ventricular outflow tract diameter; E, early mitral inflow velocity; eʹ, mitral annular diastolic velocity.
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the automated measurements of the re-trained detector might be at 
least inter-changeable with human measurements.

The reliability of measurements is the key in the clinical and scientific 
application of echocardiography. Smaller measurement differences al-
low for more accurate diagnoses and for early and valid detection of 
changes over time, which both are essential in clinical care and clinical 
science. Major efforts including training and certification of sonogra-
phers and readers, standardization of measurements, alignment of sys-
tem pre-sets, and acquisition protocols have been made and resulted 
in a reduction of measurement variability.3,4,6–8 With regard to linear 
measurements, a relative difference between the measurements of 
two observers of 7 ± 2% could be achieved for LV mass,21 for example, 
in NORRE, a large multi-centre study aiming to derive echocardiography 
reference values, while data on reproducibility of Doppler-derived 
parameters are scarce. Previous own data from the STAAB quality as-
surance program showed an inter-reader variability of ≤1.1 mm for 
IVS,  ≤ 3.2 mm for LVDd,  ≤ 1.7 mm for LV posterior wall, as well as 
≤1.3 cm/s for lateral eʹ, and ≤0.2 m/s for E-wave velocity in 95% of 
cases, respectively.3 As such low measurement variability was achieved 
under optimized study conditions, measurement variability likely is high-
er in clinical routine.

New echocardiography machines provide automated measure-
ments, which can be manually adopted to speed up the reading process 
and reduce measurement variability. Nevertheless, until now, the per-
ceived low accuracy in non-optimal images prevents broader applica-
tion of automated measurement by clinical users. Hence, there is 
need for its further optimization in echocardiography.

To overcome the challenge of data privacy, we implemented a fed-
erated ML system achieving training conditions equivalent to those 
that would be expected using a common pool on a central site. This 
technology allows various (clinical) sites to build and refine ML models 
together without exchanging sensitive patient data.

Based on the WASE study14 echocardiography images, an ML de-
tector was trained to measure structural and functional cardiac 
parameters.16 In a subset of WASE echocardiograms not used for train-
ing, the detector showed high accuracy when compared with manual 
measurements of an expert reader as well as an inter-observer variability 
comparable with two expert readers but with substantial reduction 
in the time required for reading.16 World Alliance of Societies of 

Echocardiography Normal Values was performed to derive echocardi-
ography reference values from a multi-nation multi-ethnicity cohort of 
healthy individuals covering a wide age range and aiming for a 1:1 strati-
fication for sex.14,15 Hence, the sample was appropriate to derive wide-
ly applicable reference values, but at the same time was highly selected 
and thus not representative of the general population.

When compared with WASE participants,15 STAAB participants 
were about 10 years older and had higher body surface area as well 
as higher systolic and diastolic blood pressure. Further, a substantial 
number of participants had cardiovascular risk factors like hyperten-
sion, diabetes, and coronary heart disease. Hence, STAAB participants 
showed mean measures of LV structure within the reference ranges 
proposed by WASE,15 but revealed lower mean values for diastolic 
functional parameters when compared with WASE.22 In summary, 
we expected the STAAB cohort with more frequent abnormal cardiac 
structure and function than WASE, challenging the original detector 
and constituting a good basis for further optimization of the detector 
by ML-based re-training. Prediction models, by definition, optimally 
fit to the data they are derived from. Application of the prediction 
model—here the automated detector—to new, unknown data usually 
results in a lower degree of agreement but reflects the clinical reality to 
which the prediction model should be applied. For this reason, we split 
our large population-based sample into a training pool and two distinct 
validation pools. Stratification according to a random allocation algo-
rithm resulted in three subgroups of comparable age and sex distribu-
tion, body composition, and comorbidity burden as well as of 
comparable cardiac structure and function.

Application of the original detector to STAAB echocardiograms 
showed good performance regarding the selected measurement para-
meters in the range of previous reports,9,13 but for most parameters, a 
significant and clinically relevant measurement difference remained 
when compared with the human referent. Indeed, these differences 
were larger than the measurement differences reported from the appli-
cation of the detector to the WASE validation sample.16

Based on >14 000 echocardiograms from routine care, Zhang et al. 
used CNN models to train automated segmentation of cardiac cham-
bers and determination of cardiac structure and function measure-
ments. Comparison with the study report values revealed median 
absolute deviations of 15–17% for LV mass and LV end-diastolic 
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Table 3 Absolute differences between measurements performed by the trained detector (B) as well as performed by 
other human observers (C) in comparison with the human referent, respectively

Re-trained detector vs. human referent 
(Scenario B)

Human observers vs. human referent 
(Scenario C)

P for 
smaller 

measurement 
difference in 
Scenario B

No. of 
measurements

Absolute difference 
between measurements

No. of 
measurements

Absolute difference 
between measurements

50th 
percentile

95th 
percentile

50th 
percentile

95th 
percentile

LVDd [mm] 428 1.3 6.3 1325 2.5 8.6 <0.001

IVSd [mm] 427 0.9 3.1 1326 1.2 3.8 <0.001

LVPWd [mm] 427 1.0 3.3 1322 1.0 3.5 ns
LVOT diameter [mm] 440 0.8 3.3 1345 1.3 4.3 <0.001

E [cm/s] 494 2.0 8.0 1441 4.5 13.4 <0.001

A [cm/s] 489 1.8 7.8 1441 4.3 14.2 <0.001
eʹ lateral [cm/s] 467 0.3 1.4 1456 1.1 3.5 <0.001

eʹ septal [cm/s] 471 0.3 1.4 1441 0.8 2.7 <0.001

Abbreviations as in Table 1.
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volume as well as for left atrial volume. The respective comparison 
with commercial software-derived values showed a median deviation 
of 9.7 and 7.5% for LVEF and LV strain.9 Although the median values 
were convincing, there was a substantial number of outliers with large 
deviation preventing unsupervised independent use in a clinical setting, 
so far.9

EchoNET-Dynamic23 published a video-based artificial intelligence 
for beat-to-beat assessment of cardiac function. Their software pre-
dicted LVEF with a mean absolute error of 4.1% in their own data 
set while application to an external data set resulted in a mean absolute 
error of 6.0%. Prospective evaluation with repeated human measure-
ments confirmed that the model had variance comparable with or less 
than that of human experts, which is in line with the general finding of 
our analyses, as well. The EchoNET-LVH24 deep-learning algorithm 
measured LV wall thickness and diameter in patients with increased 
wall thickness and achieved performance measures in the range of ex-
perienced human readers. In our study, re-training of the original de-
tector based on the echocardiography images of the STAAB training 
pool resulted in significantly lower differences between the automated 
measurements and the measurements performed by the human refer-
ent for all but one parameter and measurement differences lost stat-
istical significance. Further, when compared with the measurements 

of different human observers, differences between the automated 
measurements and the human referent were significantly smaller in 
all but one parameter. These results suggest that the automated mea-
surements might be interchangeable with human measurements when 
applied to the general population.

Interpreting our results, we have to consider several limitations. 
The set of echocardiography parameters on which the detector 
has been re-trained is incomplete. We first concentrated on linear 
and Doppler-derived measures. In the next step, we will extend the 
automated measurements to volumes and deformation parameters 
as well. Further, the STAAB cohort is a representative sample of the 
general population of Würzburg, a city with predominantly Caucasian 
inhabitants; hence, the performance of the re-trained detector might 
be different in other populations. Finally, a relevant proportion of 
STAAB participants exhibited cardiovascular risk factors, but only a 
small proportion had overt cardiac diseases. In a future step, the detect-
or will need to be re-trained in patient populations to validly measure 
impaired cardiac structure and function, too. Nevertheless, our results 
are based on strong methodology using standardized echocardiograms 
of a population-based cohort for re-training of the detector, and the 
results were consistent throughout the selected echocardiography 
parameters.
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Figure 6 Percentiles of the absolute difference between the measurements performed by the re-trained detector and human observers, respect-
ively, in comparison with the human referent (Scenario B vs. Scenario C) regarding (A) IVSd, (B) LVOT, (C) LVEDd, (D) septal e´, (E) lateral e´, and (F) E 
wave velocity. LVDd, left ventricular end-diastolic diameter; IVSd, end-diastolic thickness of interventricular septum; LVOT, left ventricular outflow tract 
diameter; E, early mitral inflow velocity; eʹ, mitral annular diastolic velocity.
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Conclusions
The implemented federated ML set-up was feasible and population 
data–based ML improved the echocardiography detector with regard 
to the automated determination of the selected parameters. 
Performance measures suggest that the automated measurements 
might at least be interchangeable with human measurements when ap-
plied to the general population.
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Clinical perspectives
It has been demonstrated that the use of an ML-based reading algo-
rithm markedly enhanced workflow efficiency of echocardiographic 
interpretation and improved the inter-reader variability of common 
measurements.16 We applied this original ML-based algorithm to 
>3000 echocardiography studies of a population-based cohort and 
re-trained the algorithm. The improved version yielded superior per-
formance and exhibited a much lower measurement variability than 
human readers. This gain in accuracy and precision strengthens the 
confidence in automated echocardiographic readings, which carries 
large potential for applications in various settings, including, but 
not refined to (i) clinical studies: using the re-trained detector is ex-
pected to result in smaller sample sizes required to identify group 
differences or changes over time; (ii) routine setting: faster reading 
with higher accuracy is expected to reduce costs and improve the le-
vel of certainty when changes over time have to be judged (monitor-
ing) or when treatment options depend on measurement thresholds 
(e.g. implantable defibrillator); (iii) point-of-care echocardiography 
performed by non-experts in the emergency care setting or in the 
general practitioner’s office, for example, may aid the confirmation 
or exclusion of defined cardiac pathologies and thus accelerate pa-
tient triage.

This project proves that it is possible to train and improve automatic 
cardiac measurements on ultrasound images across two clinical re-
search institutions without exchanging sensitive patient data. In times 
of increasing regulatory and privacy requirements, the federated learn-
ing technology offers the possibility to better evaluate systemic differ-
ences or discrepancies among larger groups of clinical observers and, 
through the more robust ML models, could provide more realistic 
standard values for cardiac measurements and correction factors for 
different observers and clinical sites.
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