
Vol.:(0123456789)1 3

Journal of Neurology (2022) 269:4089–4101 
https://doi.org/10.1007/s00415-022-11179-8

REVIEW

Measurement of upper limb function in ALS: a structured review 
of current methods and future directions

C. D. Hayden1,2,4  · B. P. Murphy1,2,3 · O. Hardiman4,5 · D. Murray4,5

Received: 24 January 2022 / Revised: 9 May 2022 / Accepted: 11 May 2022 / Published online: 25 May 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
Measurement of upper limb function is critical for tracking clinical severity in amyotrophic lateral sclerosis (ALS). The 
Amyotrophic Lateral Sclerosis Rating Scale-revised (ALSFRS-r) is the primary outcome measure utilised in clinical trials and 
research in ALS. This scale is limited by floor and ceiling effects within subscales, such that clinically meaningful changes 
for subjects are often missed, impacting upon the evaluation of new drugs and treatments. Technology has the potential to 
provide sensitive, objective outcome measurement. This paper is a structured review of current methods and future trends 
in the measurement of upper limb function with a particular focus on ALS. Technologies that have the potential to radically 
change the upper limb measurement field and explore the limitations of current technological sensors and solutions in terms 
of costs and user suitability are discussed. The field is expanding but there remains an unmet need for simple, sensitive and 
clinically meaningful tests of upper limb function in ALS along with identifying consensus on the direction technology 
must take to meet this need.

Keywords ALS · Upper limb · Subjective · Technology · Outcome measurement

Introduction

Amyotrophic lateral sclerosis (ALS), also known as motor 
neurone disease (MND), is a rapidly progressive and ulti-
mately fatal neurodegenerative disease characterized by 
degeneration of upper and lower motor neurons, with extra 
motor involvement increasingly recognised [1]. People with 
ALS experience muscle weakness and spasticity, which 
results in loss of limb function, respiratory impairment, loss 

of speech and swallow and in 20–50% cognitive and behav-
ioural change [2]. In about two-thirds of cases, first symp-
toms appear in the limbs [3], which manifest in problems 
such as inability to raise the arms, loss of hand dexterity, 
foot drop, and difficulty walking [4]. A recent study [5] on 
disease progression reported that symptom development in 
ALS appeared to be an organised process, with onset in the 
arm occurring more than bulbar and leg onset, respectively. 
Among arm-onset patients, involvement of the contralateral 
arm developed significantly faster compared to other sites.

Currently, there are two drugs approved for ALS: Rilu-
zole, which provides a modest benefit of slowing disease 
progression; and Edaravone, which has shown limited effi-
cacy in a highly selected cohort of patients [6]. The primary 
endpoint in the trials for these drugs and in the majority of 
ALS clinical trials to date has been the Amyotrophic Lateral 
Sclerosis Rating Scale Revised (ALSFRS-r) [7]. This multi-
item ordinal scale relies on reproducible scoring by a trained 
rater in consultation with the patient, assigning a level of 
functioning from zero to four for each of twelve domains. 
It includes specific upper limb items: handwriting, cutting 
food and handling cutlery and dressing and washing. How-
ever, problems with construct validity have been reported 
and the slope shows a non-linear longitudinal decline [8, 9]. 
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Moreover, analysis of the subgroups within the ALSFRS-r 
demonstrates floor and ceiling effects, which limit sensitiv-
ity and significantly increases the risk of failure to identify 
a real effect of an intervention under investigation [9, 10].

The measurement of patient outcomes could be improved 
using additional technology-assisted outcomes [11], such 
as Inertial Measurement Units (IMUs), activity monitors 
and motion analysis systems. Such technologies, if widely 
used, have the potential to address the subjectivity of current 
measures such as the ALSFRS-r. Additionally, the integra-
tion of technology in assessment provides opportunities for 
remote monitoring and remote data collection in clinical 
trials [12].

The aim of this paper is to present a structured review of 
the literature pertaining to both traditional, low tech, meas-
urement tools currently used for assessment of upper limb 
function and hand dexterity with a specific focus on their 
application to ALS; and novel technology-enabled devices 
that will in future provide quantitative measurement of 
upper limb function and dexterity. Improved measurement 
of motor function of the upper limb confers an increased 
power to detect changes for novel therapeutic approaches. 
Challenges and opportunities in devising and implementing 
technology are discussed.

Methodology

The authors reviewed the literature available on Google 
Scholar, PubMed, Scopus and general search engines. This 
structured review includes representative papers in each of 
the traditional and technology sections as defined by the 
authors. The following main keywords were used to identify 
papers of interest which were then assessed by the authors: 
(1) ALS, amyotrophic lateral sclerosis, MND, motor neu-
rone disease; (2) upper limb, finger tapping test; (3) medi-
cal device; (4) neurology, neuromuscular diseases. Inclusion 
criteria were not limited to ALS focused devices. Any novel 
device that focused on upper limb impairment was included 
if there was not a specific ALS equivalent. Exclusion criteria 
was as follows: posters, technology-based devices developed 
for healthy participants and multiple papers that used the 
same technology-based sensors. From this, a representative 
sample of 43 traditional upper limb measurement papers 
and 47 technology-based papers were chosen that provide a 
structured review of the overall field.

Traditional upper limb measurement

Forty-three papers were reviewed which employed tradi-
tional upper limb measurement. Assessment of upper limb 
measurement purports to examine both gross and fine motor 

control. In ALS this is currently assessed by three questions 
of the ALSFRS-r, which score handwriting, using utensils or 
feeding tube fastenings and managing dressing and hygiene. 
Limitations on detecting impairment resulting from hand 
dominance versus the affected limb have been recognised, 
as well as the inability to accommodate for cultural dif-
ferences [13, 14]. A limited number of trials incorporate 
objective outcomes by addition of objective measures such 
as manually picking up objects. Traditional measurement 
tools include questionnaires, objective functional grading 
scales such as the Action Research arm Test (ARAT) [15] 
and Motor Assessment Scale (MAS) [16], and objective tests 
of impairment including dynamometry for strength meas-
urement, pinch and grip strength testing, gross motors tests 
such as the box and block test and fine motor tests like the 
finger tapping test and nine-hole peg test (NHPT). These 
traditional tests are outlined in Table 1.

At present, there is no consensus between specific ques-
tions and the rating system used. The subjective nature of 
these questionnaires has led to the incorporation of addi-
tional objective instruments, as is the case with the ARAT 
and Jebsen Hand Function Test. These hybrid evaluation 
tools include sections on tasks related to fine motor control 
which can be objectively recorded, usually with a stopwatch. 
However, all inherent subjective biases remain, for example, 
a delay in a tester starting a stopwatch. Moreover, there has 
been no cross validation with disease specific scales such as 
the ALSFRS-r. To the authors’ knowledge, only the NHPT 
has seen limited use in ALS-specific studies [40].

Due to the subjective nature of the neurological question-
naires, several performance-based tests have been included 
as part of clinical evaluation (see Table 2). A commonly 
used instrument is the nine-hole peg test (NHPT), which 
measures hand dexterity. This has been validated in all age 
groups, has high interrater validity and is sensitive to patients 
with neuromuscular or musculoskeletal conditions [41]. It is 
commercially available, quick, easy to administer and has a 
minimal ceiling effect. Limitations include the complexity 
of the task, which can be challenging for patients with cog-
nitive impairment, and the early floor effect for moderate to 
severe hand impairment, where some useful function of the 
hand remains but the test cannot be completed.

The Finger Tapping Test (FTT) is one of the most widely 
used measures of motor function in neurological practice 
[50, 51]. It involves tapping the index finger against the 
thumb rapidly while the clinician judges whether the move-
ment is normal or abnormal by visually evaluating ampli-
tude, frequency and accuracy. Visual grading is subjective 
and for non-expert evaluators, is insensitive to small but 
meaningful changes. There are currently two main meth-
ods used to evaluate the FTT; tip of index finger to tip of 
thumb or tip of index finger to distal crease of thumb with 
the distal crease of the thumb suggested as a more sensitive 
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measure [52]. Commercial objective versions of the FTT 
are limited to simple tapping devices, as these are integral to 
the Halstead-Reitan Neuropsychological Battery (HRNB), a 
widely used battery that contains a finger tapping test. This 
instrument uses a tapping lever mounted with a key-driven 
mechanical counter [53]. Other devices include the light 
beam finger tapping test [54, 55], which has limited utility 
as it is cumbersome and has limited benefits when compared 
with the current visual assessment used by expert clinicians.

Technology based solutions for upper limb 
measurement

There has been a substantial increase in the number of novel 
sensor devices available which have been broadly classified 
into 4 categories, direct measurement, indirect measurement, 
keyboard surrogates and mobile applications. These classifi-
cations have been synthesised by the authors to distinguish 
the main differences in measurement methodology. Table 3 
provides a summary of the main devices in these four cat-
egories including mechanical and clinical advantages. Forty-
five papers were found that evaluate these different technol-
ogy categories. Figure 1 displays a selection of images of a 
selection of the technology-based sensors. 

Direct measurement devices encompass accelerometers, 
gyroscopes, magnetometers, and inertial measurement 
units (IMUs). Accelerometer devices which are placed on 
the index finger and record the acceleration as a finger tap 
have been developed [59, 60, 81]. Gyroscopes have been 
used to measure bradykinesia or tremors in Parkinson’s dis-
ease (PD) patients [63, 78, 82]. Inertial measurement units 
(IMUs) combine the input from several different sensors to 
give a more accurate output of movement. A range of stud-
ies [66–68, 83, 84] have examined different IMUs for use 
in hand and finger tracking, most associated with the finger 
tapping test.

Glove-based systems provide quantitative analysis of 
hand function, which can be used to guide rehabilitation and 
improve the patient’s recovery, [57, 85–88]. However, these 
devices interfere with normal movement as they cover the 
hand and pose difficulties with respect to hygiene. Although 
each sensor has strengths (Table 3), a common issue most 
with most direct measurement devices is noise, and sensor 
placement can be extremely varied which limits consensus 
between researchers.

Indirect measurement devices focus on optical sen-
sor systems that offer an alternative to physical devices 
placed on a subject’s hand or fingers. There are a number 
of commercially available systems, such as Vicon (Vicon, 
Oxford, UK), which use a high-resolution camera setup 
and strategically placed reflective markers placed on the 
body. Motion capture systems are more accurate when Ta

bl
e 
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markers are placed on the participant’s body and used for 
positioning. Most other marker-based optical systems use 
either passive or active markers to determine position, but 
some used a combined camera-based approach with IMUs 
used as the markers substitute [70]. Systems that record 
motion capture without the use of markers based on algo-
rithms and pattern recognition. Most systems are expen-
sive and unvalidated in a clinical setting. The Microsoft 
Kinect and Leap Motion Controller (Leap Motion Inc., 
San Francisco, USA)) are relatively inexpensive motion 
capture-based systems. The Kinect has been used [89, 90] 
to examine reachable workspace as a potential outcome 
measure in neurological conditions. This system correlated 
findings with gross motor sub scores of the ALSFRS-r; 
however, currently available systems are limited in resolu-
tion when measuring fine motor movements [91]. The size 
and space needed for most of the systems also render them 
unsuitable to clinical settings.

Keyboard typing negates the need for additional sensors 
and the equipment is readily available. Combinations of 
keyboard and sensors have been used to quantify upper 
limb impairment in ALS patients, and to determining a 
sensitive marker that could be used to monitor disease 
progression. Other methods such as tapping specific keys 
[92], calculating an interkeystroke interval (IKI) parameter 
[75], and determining motor speed from tapping a gaming 
mouse [93] have also been developed. Although this type 
of measurement is easy to set up, it is limited as data can 
only be gathered when tapping the key.

Mobile applications allow for remote monitoring and 
provide feedback on disease progression. These offer 
remote monitoring combined with objective testing. Due 
to the advances in smartphone technology, most phones 
are now equipped with accelerometers and gyroscopes that 
can be utilised to provide an accuracy similar to laboratory 
settings, depending on the measurement aims. Smartphone 
screens are sensitive to touch and also offer an alternative 
to the keyboard systems. Most mobile applications use a 
modified version of the Finger Tapping Test but similar to 
the keyboard devices, they are limited in their ability to 
record with data gathered mostly surrounding index finger 
amplitude and velocity [94–101]. Berry et al. [102] have 
reported on the benefits of using a mobile app for a self-
administered ALSFRS-r, PD applications have been devel-
oped that gather hand function information in PD. There is 
a further additional to this category with the development 
of other novel tools such as digital pens, for example, the 
NeuroMotor Pen (Manus Neurodynamica Ltd), that aim to 
quantify handwriting ability. These are used in conjunction 
with mobile platforms with the aim of easily integrating 
them into current commercially available devices (i.e., 
iPad (Apple Inc.)).
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Discussion and conclusion

This review summarised the current literature in relation 
to the measurement of upper limb function in ALS and 
included forty-three papers on traditional and forty-five 
on novel technology-based assessment solutions. There 
is a paucity of ALS-specific research in this area and the 
majority of the studies discussed are not ALS specific, as 
most of the scales and measurement devices developed 
have focused on other neurological conditions such as 
PD. Nonetheless, the identified strengths and limitatio ns 
of these scales and devices and the learnings from these 
studies are applicable to ALS. The advantages and dis-
advantages outlined in Tables 1, 2, 3 are universal across 
neurological conditions and highlight an unmet need for 

novel, technology-based solutions for assessment of upper 
limb function.

Sensors such as accelerometers or motion capture sys-
tems are cheap, and available with software that supports 
their use in clinical settings. However, all current systems 
have limitations, and there is no clear leader in the field. 
While integration with currently validated questionnaires 
is important, care must be taken not to limit the potential of 
an objective sensor by tying it too closely to the subjective 
questionnaires.

For technology to be effectively used for measurement 
of hand function or dexterity, it must provide an objective 
measure of hand function, which is clinically meaningful 
and sensitive to small but meaningful changes and designed 
with the patient and clinician in mind (Fig. 2). The rapidly 

Table 3  Technology-based sensors that have been used to objectively measure upper limb function

Device Category Examples Mechanical Clinical

(+) (−) (+) (−)

Glove based Direct measurement [56–58] Quick setup, 
detailed measure-
ment of joints 
possible

Obtrusive Easy setup Hygiene issues, not 
suitable for all 
patients

Accelerometer Direct measurement [59–61] Measures linear 
acceleration, 
small, cheap

Only measures 
linear movement, 
noise, gravita-
tional artefacts

Easy setup, 
hygienic, potential 
for remote moni-
toring,

Interfere with normal 
finger tapping 
motion, placement, 
requires training

Gyroscope Direct measurement [62–64] Measures orienta-
tion and angular 
velocity

Lightweight

Artifacts

Magnetometer Direct measurement [65] Measures magnetic 
field change in x, 
y, z directions 

Lightweight, accu-
rate

No artifacts

Errors when coil 
orientation 
changed, possibly 
sensitive to pres-
ence of magnetic/
ferromagnetic 
objects

IMU Direct measurement [66–68] Detailed measure-
ment of joints  

Accumulated error, 
noise, gravita-
tional artefacts

Optical w. markers Indirect measure-
ment

[69–71] Accurate–mark-
ers provide exact 
position

Occlusion, expen-
sive, stationary

Hygienic–no patient 
contact

Not bedside friendly

Optical n. markers Indirect measure-
ment

[72] Contactless, cheap Occlusion, limited 
accuracy

No patient contact Not bedside friendly

Mobile apps Mobile Applications [73, 74] May include addi-
tional tools such 
as tablet stylus/
digital pen outside 
phone,

Remote monitoring

Software limitation, 
unable to monitor 
finger movement

Remote monitoring Require technology

Keyboard surrogate Keyboard surrogate [75–77] Cheap, easy to use Can only record 
finger motion 
when touching 
key, limited

Easy to use Problematic to clean
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Fig. 1  A Typical example of a glove-based device [56], B acceler-
ometers can be attached to various positions on the hand and wrist 
to capture movement in terms of acceleration, seen here placed on 
index finger [59], C gyroscope sensors measure orientation and angu-
lar velocity, can be positioned anywhere, seen here with device that 
fits on thumb and index finger [78], D image of the inertial measure-
ment unit (IMU) developed PD-Monitor, a commercial PD device 
that focuses on a finger tapping test [66], E magnetometers offer a 
counterpoint to accelerometer and gyroscopes but are not used much 

on their own, image shows a device that relies on two magnetometers 
[65], F Leap Motion Controller (Leap Motion Inc., San Francisco, 
USA.), a commercial system that detects the motion and portion of 
the hand using infrared (IR) sensors, G A 3D Marker-based cam-
era setup where position is determined through the use of reflective 
markers [71], H a digital pen (Manus Neurodynamica Ltd.) that aims 
to quantify handwriting, along with tablet stylus’ they are bracketed 
into mobile application devices [79], I example of a mobile app inter-
face designed to measure a tapping test [80]
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progressive nature of symptoms in ALS provides an addi-
tional challenge as assessment tools must be suitable for 
frequent use and ideally for remote monitoring. Many cur-
rently available novel measurements are limited by issues 
such as cost or complexity of assessment setup and are not 
amenable to frequent use or suitable for remote monitoring. 
Simple and widely used measurement tools such as hand 
grip dynamometry are limited in ALS by rapidly progres-
sive weakness and presence of a floor effect, while some 
meaningful hand function (e.g., tapping a tablet screen) is 
preserved.

Data privacy and CE marking of novel devices or algo-
rithms must also be taken into consideration [103]. Adoption 
of any new device is dependent on the strategies surrounding 
the CE mark and operational aspects, which reflect decisions 
that need to be taken early in the development of a device. 
Clinicians must be satisfied a novel device will give precise, 
reliable and continuous information about patient limb posi-
tion and function [104] especially if the information will be 
used to inform clinical decisions. A thoughtf ully designed 
sensitive device has the potential to provide enhanced infor-
mation, which in turn improves the efficiency of clinical trial 
evaluations [105].

The benefits of technology are clearly recognized. In 
ALS, the challenge is to develop assessment devices that will 
adequately address the current limitations of current meas-
urement instruments such as the ALSFRS-R in a reproduc-
ible, user-friendly and inexpensive manner. While no cur-
rently available device has met all of the necessary criteria 
to ensure universal acceptance in clinical practice (Fig. 2), 
there is clearly a demand for technological innovation which 

will be best achieved by ongoing collaboration between bio-
engineers and expert clinical professionals.
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