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Abstract

The endostyle is the first component of the ascidian digestive tract, it is shaped like a

through and is located in the pharynx's ventral wall. This organ is divided longitudi-

nally into nine zones that are parallel to each other. Each zone's cells are physically

and functionally distinct. Support elements are found in zones 1, 3, and 5, while

mucoproteins secreting elements related to the filtering function are found in zones

2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the

endostyle, include cells with high iodine and peroxidase concentrations. Immunohis-

tochemical technique using the following antibodies, Toll-like receptor 2 (TLR-2) and

vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA—wheat-

germagglutinin), were used in this investigation to define immune cells in the endo-

style of Styela plicata (Lesueur, 1823). Our results demonstrate the presence of

immune cells in the endostyle of S. plicata, highlighting that innate immune mecha-

nisms are highly conserved in the phylogeny of the chordates.

Research highlights

• Immune cells positive to TLR-2 and VIP in the endostyle of Styela plicata.

• Expression of WGA in several zones of endostyle.

• Use of comparative biology to improve the knowledge about immunology in

ascidians.
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1 | INTRODUCTION

The ascidians, also known as tunicates because of the characteris-

tic tunic covering the whole organism, are marine invertebrates

classified among the urochordates. These animals may be pelagic

or sessile. Styela plicata (Lesueur, 1823) is a solitary benthic

ascidian that represents a valid model of evolutionary study

(Lauriano et al., 2021).

The endostyle, the initial part of the ascidian digestive tract, has a

trough shape and is placed in the ventral wall of the pharynx. This

organ plays an important immune function (Giacomelli et al., 2012)

and is subdivided into nine different zones longitudinally parallel to
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each other (Hiruta et al., 2006). The cells of each zone are morphologi-

cally and functionally specialized (Aros & Viragh, 1969; Fujita &

Nanba, 1971; Osugi et al., 2020) (Figure 1).

Zones 1, 3, and 5 contain support elements, zones 2, 4, and 6 pre-

sent mucoproteins secreting elements associated with the filtering

function. Zones 7, 8, and 9, located in the lateral dorsal portion of the

endostyle, show cells with high concentrations of iodine and peroxi-

dase (Fujita & Sawano, 1979; Thorpe et al., 1972) and are considered

to be homologous to thyroid follicles (Fujita & Sawano, 1979). The

expression of several thyroid-associated genes in these areas supports

this homology (Ogasawara et al., 1999; Ogasawara & Satou, 2003;

Ristoratore et al., 1999). The endostyle represents a key structure in

the chordates evolution (Bone et al., 2003; Petersen, 2007). The

mucus produced by zones 1 and 4 together with the galactins pro-

duced by zones 2 and 4 (Vizzini et al., 2015), creates a mesh that plays

the role of filtering food and furthermore acts as a first barrier against

microbes and pathogens, such as mammalian mucus produced by gob-

let cells in the gut (Flood & Fiala-Medioni, 1981; Petersen, 2007). In

addition, the endostyle shows a defense immune function against for-

eign agents using the oral and atrial (cloacal) siphon as preferential

entry routes of microorganisms. In zone 8 a population of phagocytes

is exposed to seawater. These sentinel cells can recognize and ingest

foreign cells, preventing them from entering the pharynx. (Sasaki

et al., 2009).

This study aimed to characterize immune cells in the endostyle

using Toll like receptor 2 (TLR-2) and vasoactive intestinal peptide

(VIP) antibodies, and lectin histochemistry (WGA).

TLR-2 is an evolutionarily conserved recognition receptor (PRR)

(Alesci et al., 2020; Alesci, Pergolizzi, et al., 2021), this receptor has

been characterized in vertebrate several immune cells (Alesci, Per-

golizzi, Capillo, et al., 2022; Alesci, Pergolizzi, Fumia, et al., 2022;

Lauriano et al., 2014; Lauriano et al., 2018; Lauriano et al., 2019;

Lauriano et al., 2020; Lauriano, Pergolizzi, et al., 2016; Marino

et al., 2015; Marino et al., 2019) and also in the tunic of S. plicata

(Lauriano et al., 2021).

VIP is a neuroimmune peptide present in different regions of the

vertebrate intestine (Lauriano et al., 2017) and is also expressed in

immune cells such as T and B cells, mast cells, and eosinophilic

granulocytes (Alessio et al., 2020; Iwasaki et al., 2019). Neuropeptides

are normally expressed in the mammalian digestive system, under physi-

ological and pathological conditions (Pergolizzi et al., 2021). Several stud-

ies have shown the presence of neuropeptides, such as Neuropeptide Y,

in S. plicata, produced by the hemocytes (Pestarino, 1992).

WGA is a haemagglutinating lectin present on phagocytic hemo-

cytes (Cima et al., 2001), and morula cells (MCs), the predominant

type of hemocytes (Ballarin & Cima, 2005). WGA lectin also stains

modestly mucous cells and a brush-like boundary (Lauriano

et al., 2017; Lauriano et al., 2019). Moreover, WGA is involved in

innate immune response (Hillyer & Christensen, 2002; Jeong

et al., 2002), collaborating with epithelial barriers in cellular defense,

and cooperates with pattern-recognition receptors to stimulate pro-

inflammatory signaling cascades in the innate immune system, playing

a key role in the interaction with Toll-like receptors (TLRs) (Unitt &

Hornigold, 2011).

2 | MATERIALS AND METHODS

2.1 | Animals

Samples of adult specimens of S. plicata used in this study were col-

lected from the natural oriented reserve of “Capo Peloro”
(Autorizzazione n.1138/A del March 15, 2021), precisely from Faro

coastal lagoon (Messina, Italy) (D'Iglio et al., 2021; Sanfilippo

et al., 2022; Savoca et al., 2020) and were subjected to usual proce-

dures for preparation of durable samples for optical microscopy.

F IGURE 1 Scheme of longitudinal section of Styela plicata endostyle. Each number represents a different zone of the endostyle

2652 ALESCI ET AL.



2.2 | Tissue preparation

Samples were fixed in 4% paraformaldehyde in phosphate-buffered

saline (PBS) 0.1 M (pH 7.4) for 12–18 h, dehydrated in graded ethanol,

cleared in xylene, embedded in Paraplast® (McCormick Scientific LLC,

St. Louis, MO). Finally, serial sections (3–5 μm thick) were obtained by

a rotary microtome (LEICA 2065 Supercut) (Alesci et al., 2014; Icardo

et al., 2015; Lauriano, _Zuwała, et al., 2016; Zaccone et al., 2015;

Zaccone, Lauriano, et al., 2017).

2.3 | Histology and histochemistry

For light microscopic examination, serial sections were stained with

May-Grünvald-Giemsa (04-081802 Bio-Optica Milano S.p.A.) and Alcian

Blue pH 2.5-PAS (04-163802 Bio-Optica Milano S.p.A) methods (Alesci

et al., 2015; Simona Pergolizzi et al., 2022). The Lectin used was WGA

HRP-conjugated (Sigma Chemicals Co. St. Louis, MO). Deparaffinized

and rehydrated tissue sections were immersed in 3% H2O2 for 10 min to

suppress the endogenous peroxidase activity, rinsed in 0.05 mol/L Tris–

HCl buffered saline (TBS) pH 7.4, and incubated in lectin solution for 1 h

at room temperature (RT). After rinsing thrice in TBS, the peroxidase

activity was visualized by incubation in a solution containing 0.05%

3,30-diaminobenzidine (DAB) and 0.003% H2O2 in 0.05 mol/L TBS

(pH 7.6) for 10 min at RT before dehydration and mounting.

2.4 | Immunoperoxidase method

Immunohistochemical techniques, testing TLR-2, VIP with a light

microscope for observation. Sections were incubated overnight in a

humid chamber with the following antibodies: TLR2 (Toll-like Recep-

tor 2 Antibody, product in rabbit by Active Motif, La Hulpe, Belgium,

Europe, 1:125) and VIP (Vasoactive intestinal polypeptide, product in

rabbit by Sigma-Aldrich, St. Louis, MO, 1:4000). Then, the sections

were washed in phosphate-buffered saline (PBS) and incubated for

60 min with a goat anti-rabbit IgG-peroxidase conjugate. Peroxidase

activity was determined by incubating the sections in a solution of

0.02% diaminobenzidine (DAB) and 0.015% hydrogen peroxide for 1–

5 min at room temperature (Lauriano et al., 2015; Zaccone, Icardo,

et al., 2017). After rinsing in PBS, sections were dehydrated, mounted,

and examined under a Zeiss Axioskop 2 plus microscope equipped

with a Sony Digital Camera DSC-85. Control experiments excluding

primary antibody were performed (data not showed).

2.5 | Statistical analysis

For each sample, 5 sections and 10 fields were investigated to gener-

ate data for statistical analysis. Subjectively, the fields were chosen

based on the cell's positivity reaction. The ImageJ software was used

to examine each field (Schneider et al., 2012). After converting the

acquired image to 8 bits, a “Threshold” filter and a mask were used to

pick cells and remove the background. The cells were then counted

using the “Analyze particles” plug-in. ANOVA was used to determine

the statistical significance of the positive cells number respectively for

TLR2, VIP, and WGA. SigmaPlot version 14.0 was used to perform

statistical analyses (Systat Software, San Jose, CA). The information

gathered was reported as median values with a SD (Δs). To compare

regularly distributed data, two-tailed t tests were utilized, and Mann–

Whitney rank-sum tests were used to analyze non-normally distrib-

uted data. Values of p below .05 were judged statistically significant in

this order: *p ≤ .01, **p ≤ .02, ***p ≤ .03, ****p ≤ .04, *****p ≤ .05.

3 | RESULTS

The transverse histological sections by May-Grünwald-Giemsa

showed endostyle zone from 1 to 9 (Figure 2a). Alcian Blue/PAS

pH 2.5 stained Goblet cells in the 2,4 and 6 endostyle zone. These

cells showed a positive reaction to different types of neutral

(magenta) and acid (blue) mucopolysaccharides (Alesci et al., 2015).

The Alcian-blue reaction strongly labeled the apical membrane of the

goblet cells (Figure 2b). We have previously documented the presence

of TLR-2 in the tunica of S. plicata (Lauriano et al., 2021). The TLR2

immunohistochemistry demonstrated, labeled scattered immunocytes,

in the tissues surrounding the endostyle; furthermore, TLR-2 marked

numerous cells of some zones of endostyle with thyroidal and peroxi-

dase activities (zone 5 and 8); the immune cells are often organized in

strongly reactive clusters (Figure 3a). The antibody VIP showed many

marked immune cells in zones 3, 6, 7, 8, and 9 (Figure 3b). WGA Lectin

histochemistry stained intensely a lot of positive cells localized in

endostyle zone 8 and 9, and slightly marked mucous cells in zones

5 and 6 (Figure 3c). Our results showed that cells of 5, 7, and 8 endo-

style zone, together with the hemocytes, playing a role in the immune

response of ascidians (Table 1).

Statistical analysis confirms a significant number of positive cells

for TLR2, VIP, and WGA in the endostyle zones, especially in the

6 and 8 zones (Table 2, Figure 4).

4 | DISCUSSION

The immune response is mediated by circulating effector cells. Hemo-

cytes, or immunocytes, include professional phagocytes (Franchi

et al., 2011; Jimenez-Merino et al., 2019) and cytotoxic hemocytes,

able to induce oxidative stress (Ballarin & Cima, 2005). These cyto-

toxic cells contain phenoloxidase (PO) (POCCs) and have a berry-like

morphology, called morula cells (MCs), and account for more than

50% of circulating hemocytes (Cammarata et al., 2008; Parrinello

et al., 2003). Cytochemical analyses have shown high levels of poly-

phenols in the vacuoles of these cells. These phenolic compounds play

a key role in the cytotoxicity of these hemocytes and act as substrates

for POs. Polyphenols are compounds with antibacterial, anti-inflam-

matory, antioxidant, and immunostimulant activity (Alesci, Aragona,

et al., 2021; Alesci, Fumia, et al., 2021; Alesci, Lauriano, Fumia,
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et al., 2022; Alesci, Miller, et al., 2021; Alesci, Nicosia, Fumia,

et al., 2022; Capillo et al., 2018; Fumia et al., 2021). Several studies

have shown that an ethanol or methanol extract of ascidian has

antibacterial, antimicrobial, anti-inflammatory, and antioxidant activity,

assuming that these phenolic compounds are involved in the immune

response of tunicates (Asayesh et al., 2021; Carletti et al., 2020;

Elya & Edawati, 2018).

In the present study, we have marked endostyle zones cells of

S. plicata with anti-TLR2 and anti-VIP polyclonal antibodies; furthermore,

we have stained the Goblet cells withWGA lectin histochemistry.

The endostyle of the tunicates is a long glandular grooving exten-

ding medially to the ventral surface of the gill sac along its anterior

and posterior axis formed by nine distinct anatomical zones, immersed

in the blood flow through the subendostylar and endostylar sinuses

F IGURE 3 (a) TLR2, magnification �40, scale bar 50 μm. Immunohistochemistry showed TLR2 positive hemocytes (he) and endostyle cells in
zone 5 and 8 (arrows). (b) VIP, magnification �40, scale bar 50 μm. Immunohistochemistry showed VIP positive cells in zone 3, 6, 7, 8, and
9 (arrows). (c) WGA, magnification �40, scale bar 50 μm. Lectin histochemistry showed WGA strongly positive cells in zone 8 and 9, and slightly
positive cells in zones 5 and 6 (arrows)

F IGURE 2 (a) May-Grünwald-Giemsa, magnification �40, scale bar 50 μm. Endostyle is bathed by cells flowing through its breasts, with
macrophages organized into islands next to it. The digestive system and heart are located near its rear end. Endostyle is outlined at the front end.

A longitudinal section of the endostyle, lymphocyte cells, and macrophages can be seen in the breast. (b) AB/pas 2.5, magnification �40, scale bar
50 μm. Histochemical stain shows positive mucosal cells in zone 2, 4, and 6 (arrows), confirming that these zones are responsible for mucous
secretion
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(Rosental et al., 2020). Zones 2, 4, and 6 within it produce mucus, as

shown by our data with AB/PAS staining.

The ascidian hemocytes involved in immune responses

(immunocytes) represent the largest fraction of circulating hemocytes

(Franchi & Ballarin, 2017). They include phagocytes and cytotoxic cells.

At the molecular level TLR1 is expressed in both phagocytes and MCs as

a member of the TLR receptor family, actively involved in self/nonself

recognition (Goldstein et al., 2021; Peronato et al., 2020). The oral and

atrial (cloacal) siphon are preferential entry routes for microorganisms. In

zone 8 a population of phagocytes is exposed to seawater. These senti-

nel cells can recognize and ingest foreign cells, preventing them from

entering the pharynx (Sasaki et al., 2009). In the endostyle, as well as in

the immunocytes, genes for the Toll-like and mannose-binding lectin

receptors (MBLs) are transcribed, following the important role of

immunosurveillance of the food tract (Franchi & Ballarin, 2017).

Our results show a marked positivity to TLR-2 in zones 5 and

8 and in circulating immune cells. Ascidia immunocytes can synthesize

and secrete humoral lectins involved in the recognition of foreign mol-

ecules and modulation of immune responses (Vasta et al., 2001). They

improve the phagocytosis of microorganisms and modulate the behav-

ior of other immune cells. WGA interacts with immune cells by acti-

vating their cytotoxic properties and inducing humoral response

(Balči�unaitė-Murzienė & Dzikaras, 2021). In addition, WGA induces an

inflammatory response in vertebrates by stimulating the secretion of

pro-inflammatory cytokines, TNF-α, IL-1β, IL-12, and IFN-γ

(de Punder & Pruimboom, 2013). Our results show WGA-positive cells

in 5, 6, 8, and 9 zone and cells of the endostyle lining epithelium, con-

firming its involvement in immunity. VIP, in addition to being a neuro-

transmitter/neuromodulator of the central and peripheral nervous

system, is also found to play a role in the immune system in lymphoid

tissues associated with the mucosa of the gastrointestinal tract (Bains

et al., 2019). This neuropeptide regulates gastric acid secretion, intes-

tinal peristalsis, and mucus secretion by mucous cells (Lelievre

et al., 2007). VIP was found in several portions of the digestive tract

TABLE 1 Summary scheme of the
obtained results

Endostyle zone Mucosal cells TLR2-positive cells VIP-positive cells WGA-positive cells

1

2 ✓

3 ✓

4 ✓

5 ✓ ✓

6 ✓ ✓ ✓

7 ✓

8 ✓ ✓ ✓

9 ✓ ✓

Note: Zone 8, showing positivity for all the antibodies and lectin, confirms endostyle role in immunity

defense of ascidians.

TABLE 2 Statistical analysis results TLR2-positive cells VIP-positive cells WGA-positive cells

Number of positive cells (±Δs) 133 ± 40,06* 287 ± 34,68** 230 ± 33,00*

Note: Δs = SD. *p ≤ .01, **p ≤ .02.

F IGURE 4 Graphic of statistical data

ALESCI ET AL. 2655



of S. plicata (esophagus, stomach, and intestine) (Pestarino, 1982) but

not in the pharynx. We have characterized VIP in ascidian endostyle

for the first time, showing labeled immune cells in zones 3, 6, 7, 8, and

9. Zone 8 of the endostyle contains TLR-positive, VIP-positive, and

WGA-positive cells, confirming that cell populations of this zone do

play a role in the innate immunity of these animals.

5 | CONCLUSIONS

In conclusion, our results demonstrating the presence of immune cells

in the endostyle of S. plicata, highlighting that innate immune mecha-

nisms are highly conserved in the phylogeny of the chordates. TLR2

and VIP play in ascidians a key role in adaptive immune response, as

in mammals. Therefore, this animal model allows the study of the cel-

lular and molecular processes that orchestrate innate immune

responses. This information can be translated into human immunity,

with a particular impact on improving therapeutic strategies for stem

cells, tissues, and organ transplantation. In addition, the immune

defenses of tunicates have made them a potential source of natural

drug resources with great potential for pharmacological applications.
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