SUPPLEMENTAL METERIALS

SUPPLEMENTAL METERIALS	1
SEARCH STRING	3
LIST OF ARTICLES INCLUDED IN THE SYSTEMATIC REVIEW	3
CHR-P	3
SSD	3
TABLE OF INCLUDED ARTICLES	5
ROBINS-E	12
RESULTS TST	13
All studies	13
Forest plot	13
Funnel plot	14
Outliers	15
Meta-regression	19
Subgroup analyses	29
Sensitive analyses	33
SSD studies	37
Forest plot	37
Funnel plot	38
Outliers	39
Meta-regressions	42
Subgroup analyses	51
CHR-P studies	55
Forest Plot	55
Funnel plot	56
Outliers	56
Meta-regressions	58
RESULTS TIB	62
Forest plot – all studies	62
Funnel plot	63
Eggers' test of the intercept	63
Sensitivity analyses	63
SSD studies	63
CHR-P studies	65
Forest plot	65
Outliers and heterogeneity	65
Influence analyses	67
Baujat plot	67
Influence diagnostics	67
RESULTS SLEEP LATENCY	68
Forest plot – all studies	68
Funnel plot	70
Eggers' test of the intercept	70
SSD studies	71
Forest plot	71
CHR-P studies	72

Forest plot	72
Outliers and heterogeneity	72
Influence analyses	74
Baujat plot	74
Influence diagnostics	74
-	
RESULTS SLEEP EFFICIENCY	75
Forest plot – all studies	75
Funnel plot	76
Linear regression test of funnel plot asymmetry	76
Eggers' test of the intercept	77
SSD studies	77
Forest plot	77
CHR-P studies	78
Forest plot	78
Outliers and heterogeneity	79
Influence analyses	79
Baujat plot	79
Influence diagnostics	79
RESULTS WASO	80
	80 80
Forest plot – all studies	
Funnel plot	81
Eggers' test of the intercept	82
Sensitivity analyses	82
SSD studies	82
CHR-P studies	83
Outliers and heterogeneity	84
Influence analyses	85
Baujat plot Influence diagnostics	85 86
midenee diagnostics	00
RESULTS Nighttime Awakenings	87
Forest plot – all studies	87
Funnel plot	88
Eggers' test of the intercept	88
SSD studies	89
Forest plot	89
CHR-P studies	89
Forest plot	89
Outliers and heterogeneity	90
Influence analyses	92
Baujat plot	92
Influence diagnostics	93
QUALITY OF SLEEP - SMD PSQI and AIS	93
Forest plot – all studies	93
Funnel plot	94
Eggers' test	94 95
Baujat Plot	96
Influence analyses	96
SSD studies	96
CHR-P	98
	30
PRISMA 2020 Checklists	98
PRISMA 2020 Main Checklist	98
PRISMA Abstract Checklist	102

ensitivity analyses accounting for RoB (excluding studies with a high risk of bias)		
Total sleep time	103	
Time in bed	105	
Sleep Efficiency	106	
Sleep Latency	108	
Wakefulness After Sleep Onset	109	
Nighttime awakenings	110	

SEARCH STRING

The query string used for the search was based on the combinations of the following terms: ((psychotic disorders[MeSH Terms]) OR (psychosis[MeSH Terms]) OR (schizophrenia[MeSH Terms]) OR high-risk mental stat* OR high-risk psycho* OR high risk psycho* OR ultra-high-risk psychos* OR at-risk mental state OR psychosis proneness OR liability for schizophrenia OR clinical-high-risk psychosis OR CHR-P OR CHR OR UHR OR first-episode psychosis OR FEP OR schizotyp*) AND (sleep* [All Fields] OR insomnia [All Fields]) AND (("actigraph*"[All Fields]) OR ("actimetr*"[All Fields]) OR ("acceleromet*"[All Fields])).

LIST OF ARTICLES INCLUDED IN THE SYSTEMATIC REVIEW CHR-P

- 1. Ullrich Bartsch, Laura J Corbin, Charlotte Hellmich, Michelle Taylor, Kayleigh E Easey, Claire Durant, Hugh M Marston, Nicholas J Timpson, Matthew W Jones, Schizophrenia-associated variation at *ZNF804A* correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults, *Sleep*, Volume 44, Issue 12, December 2021, zsab191, https://doi.org/10.1093/sleep/zsab191
- 2. Hennig T, Schlier B, Lincoln TM. Sleep and psychotic symptoms: An actigraphy and diary study with young adults with low and elevated psychosis proneness. Schizophr Res. 2020 Jul;221:12-19. doi: 10.1016/j.schres.2019.09.012. Epub 2019 Nov 30. PMID: 31796308.
- 3. Lunsford-Avery JR, LeBourgeois MK, Gupta T, Mittal VA. Actigraphic-measured sleep disturbance predicts increased positive symptoms in adolescents at ultra high-risk for psychosis: A longitudinal study. Schizophr Res. 2015 May;164(1-3):15-20. doi: 10.1016/j.schres.2015.03.013. Epub 2015 Mar 26. PMID: 25818627; PMCID: PMC4409558.
- 4. Nordholm D, Jensen MA, Glenthøj LB, Kristensen TD, Wenneberg C, Garde AH, Nordentoft M. Sleep disturbances and the association with attenuated psychotic symptoms in individuals at ultra high-risk of psychosis. J Psychiatr Res. 2023 Feb;158:143-149. doi: 10.1016/j.jpsychires.2022.12.041. Epub 2022 Dec 23. PMID: 36584492.
- Ristanovic I, Haase CM, Lunsford-Avery JR, Mittal VA. The relationship between stress responding in family context and stress sensitivity with sleep dysfunction in individuals at clinical high-risk for psychosis. J Psychiatr Res. 2022 May;149:194-200. doi: 10.1016/j.jpsychires.2022.02.038. Epub 2022 Mar 2. PMID: 35287048; PMCID: PMC9176292.

SSD

6. Afonso P, Figueira ML, Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int J Psychiatry Clin Pract. 2011 Nov;15(4):311-5. doi: 10.3109/13651501.2011.605954. Epub 2011 Aug 28. PMID: 22122006.

- 7. Apiquian, R., Fresán, A., Muñoz-Delgado, J., Kiang, M., Ulloa, R. E., & Kapur, S. (2008). Variations of rest-activity rhythm and sleep-wake in schizophrenic patients versus healthy subjects: An actigraphic comparative study. Biological Rhythm Research, 39(1), 69–78. https://doi.org/10.1080/09291010701318253
- 8. Kammerer MK, Mehl S, Ludwig L, Lincoln TM. Sleep and circadian rhythm disruption predict persecutory symptom severity in day-to-day life: A combined actigraphy and experience sampling study. J Abnorm Psychol. 2021 Jan;130(1):78-88. doi: 10.1037/abn0000645. Epub 2020 Nov 19. PMID: 33211503.
- Lauerma H, Niskanen L, Lehtinen I, Holmström R. Abnormal lateralization of motor activity during sleep in schizophrenia. Schizophr Res. 1994 Dec;14(1):65-71. doi: 10.1016/0920-9964(94)90010-8. PMID: 7893623.
- Martin JL, Jeste DV, Ancoli-Israel S. Older schizophrenia patients have more disrupted sleep and circadian rhythms than age-matched comparison subjects. J Psychiatr Res. 2005 May;39(3):251-9. doi: 10.1016/j.jpsychires.2004.08.011. PMID: 15725423.
- 11. Mayeli A, LaGoy AD, Smagula SF, Wilson JD, Zarbo C, Rocchetti M, Starace F, Zamparini M, Casiraghi L, Calza S, Rota M, D'Agostino A, de Girolamo G; DiAPAson Consortium; Ferrarelli F. Shared and distinct abnormalities in sleep-wake patterns and their relationship with the negative symptoms of Schizophrenia Spectrum Disorder patients. Mol Psychiatry. 2023 May;28(5):2049-2057. doi: 10.1038/s41380-023-02050-x. Epub 2023 Apr 14. PMID: 37055512.
- 12. Robillard R, Hermens DF, Naismith SL, White D, Rogers NL, Ip TK, Mullin SJ, Alvares GA, Guastella AJ, Smith KL, Rong Y, Whitwell B, Southan J, Glozier N, Scott EM, Hickie IB. Ambulatory sleep-wake patterns and variability in young people with emerging mental disorders. J Psychiatry Neurosci. 2015 Jan;40(1):28-37. doi: 10.1503/jpn.130247. PMID: 25203899; PMCID: PMC4275328.
- 13. Skeldon AC, Dijk DJ, Meyer N, Wulff K. Extracting Circadian and Sleep Parameters from Longitudinal Data in Schizophrenia for the Design of Pragmatic Light Interventions. Schizophr Bull. 2022 Mar 1;48(2):447-456. doi: 10.1093/schbul/sbab124. PMID: 34757401; PMCID: PMC8886588.
- 14. Skowerska A, Wichniak A, Skalski M. Zaburzenia snu i rytmu okołodobowego w schizofrenii [Sleep and circadian rhythm disturbances in schizophrenia]. Psychiatr Pol. 2010 Sep-Oct;44(5):621-31. Polish. PMID: 21452499.
- 15. Tous-Espelosin M, de Azua SR, Iriarte-Yoller N, MartínezAguirre-Betolaza A, Sanchez PM, Corres P, Arratibel-Imaz I, Sampedro A, Peña J, Maldonado-Martín S. Clinical, physical, physical, and cardiovascular risk patterns of adults with schizophrenia: CORTEX-SP study: Characterization of adults with schizophrenia. Psychiatry Res. 2021 Jan;295:113580. doi: 10.1016/j.psychres.2020.113580. Epub 2020 Nov 18. PMID: 33246589.
- Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry. 2012 Jan 15;71(2):154-61. doi: 10.1016/j.biopsych.2011.08.008. Epub 2011 Oct 2. PMID: 21967958; PMCID: PMC3561714.
- 17. Waters F, Sinclair C, Rock D, Jablensky A, Foster RG, Wulff K. Daily variations in sleep-wake patterns and severity of psychopathology: a pilot study in community-dwelling individuals with chronic schizophrenia. Psychiatry Res. 2011 May 15;187(1-2):304-6. doi: 10.1016/j.psychres.2011.01.006. Epub 2011 Jan 26. PMID: 21272939.
- 18. Wichniak A, Skowerska A, Chojnacka-Wójtowicz J, Tafliński T, Wierzbicka A, Jernajczyk W, Jarema M. Actigraphic monitoring of activity and rest in schizophrenic patients treated with olanzapine or risperidone. J Psychiatr Res. 2011 Oct;45(10):1381-6. doi: 10.1016/j.jpsychires.2011.05.009. Epub 2011 Jun 15. PMID: 21679968.
- 19. Wulff K, Dijk DJ, Middleton B, Foster RG, Joyce EM. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry. 2012 Apr;200(4):308-16. doi: 10.1192/bjp.bp.111.096321. Epub 2011 Dec 22. PMID: 22194182; PMCID: PMC3317037.

TABLE OF INCLUDED ARTICLES

Table 1. Table of the included studies, organised by diagnostic subgroups.

Study ID	Diagnosis	Study sample, N (Men/Women, age ± SD)	Symptoms severity (Scale used, mean score ± SD)	Medications for individuals with exposure	Actigraphic device	Epochs	Follow-up time (max)	Main results
Alfonso et al., 2014	SSD	Individuals with exposure: 34 (22/12, 33.88 ± 8.6); HC: 34(19/15, 34.7 ± 8.3).	PANSS General, 66.9 ± 17.1; PANSS Positive subscale, 13.6 ± 5; PANSS Negative subscale, 17.2 ± 6.2.	100% on antipsychotics	SOMNOwatch	1 second	7 days	SSD patients have increased total sleep time (mean 09:57h, SD 01:43h) compared to HC (07:26 h, SD 00:43 min); SSD patients have increased sleep latency (mean 47 min, SD 42 min) compared to HC (mean 15 mins, SD 9 mins); SSD patients have decreased sleep efficiency (92.8%, SD 6.01%), compared to HC (96.3%, SD 3); SSD patients have increased nighttime awakenings (mean 1.28, SD 0.86) compared to HC (mean 0.69, SD 0.41).
Apiquian et al., 2008	SSD	Individuals with exposure: 20 (10/10, 28.5 ± 7.2); HC: 20 (6/14, 30.3±5.8).	NR	75% (9) on atypical antipsychotics; 25% (3) on typical antipsychotics.	Actiwatch-16, Mini Mitter Company, Bend, OR	60 seconds	6 days	SSD patients have increased total sleep time (mean 06:40 h, SD 01:41h) compared to HC (05:57 h, SD 02:09h); No difference in nighttime awakenings the two groups.

Kammerer et al., 2021	SSD	Individuals with exposure: 67(38/29, 38.0 ±12.3); HC: 39(21/18 37.9±13.8).	PANSS Total, 33.87 ± 6.79; PANSS Positive, 16.66 ± 3.96; PANSS Negative, 15.78 ± 4.73.	84% on antipsychotics	NR	NR	6 days	SSD patients have increased total sleep time (mean 08:22h, SD 02:35h) compared to HC (06:55h, SD 01:42h); SSD patients have decreased sleep latency (36.16mins, SD 49.17mins) compared to HC (42.03mins, SD 70.2mins); SSD patients have increased wake after sleep onset (49.53mins, SD 44.06mins) compared to HC (42.48mins, SD 36.97mins); SSD patients have increased sleep efficiency (82.82%, SD 11.34%) compared to HC (79.86%, SD 11.96%).
Lauerma et al., 1994	SSD	Individuals with exposure: 13(5/8, 41.5±10.5); HC: 17 (10/7, 29.5 ±8.0).	NR	100% on antipsychotics	Gaehwiler Electronics, Switzerland	NR	1 day	SSD patients have increased total sleep time (mean 08:42h, SD 00:38h) compared to HC (06:52h, SD 00:26h); No difference in nighttime awakenings between the two groups.
Martin et al., 2005	SSD: Chronic Schizophr enia	Individuals with exposure: 28(14/14,58.3 ±9.8); HC:28(14/14,57.3 ±9.2).	NR	NR	Actillume wrist actigraph	60 seconds	3 days	No difference in total sleep time between the two groups; SSD patients spent more time in bed (mean 09:46h, SD 00:96h) compared to HC (07:53h, SD 00:55h); SSD patients have increased wake after sleep onset (80mins, SD 60mins) compared to HC (22mins, SD 18mins);

								SSD patients have a increased number of nighttime awakenings (8.00, SD 5.00) compared to HC (3.00, SD 4.00).
Mayeli et al. 2023	SSD	Individuals with exposure: 122 (77/45); HC: 108 (66/42, 41.5 ± 10.1).	BNSS (Inpatient), 24.1 ± 14.9; BNSS (Outpatient), 17.2 ± 13.9	Inpatients: 100% on antipsychotics, 27.9% on mood stabilizers, 32.3% on antidepressants , 69.1% on benzodiazepine s; Outpatients: 98.1% on antipsychotics, 9.3% on mood stabilizers, 40.7% on antidepressants , 35.2% on benzodiazepine s.	ActiGraph GT9X- Pensacola	NR	7 days	SSD patients have increased total sleep time (494.38 min, SD 87.89 min) compared to HC (369.3 min, 60.07 min); No difference in nighttime awakenings between the two groups.
Robillard et al., 2015	SSD	Individuals with exposure: 30(22.5±5.1); HC: 41(25.3±5.8).	NR	70% on antipsychotics	Actiwatch- 64/L/2, Philips Respironics	60 Seconds	22 days	SSD patients have increased total sleep time (08:07h, SD 01:31h) compared to HC HC (07:21h, SD 00:53h)
Skeldon et al., 2021	SSD	Individuals with exposure:	NR	100% on antipsychotics	Actiwatch-L (Cambridge Neurotechnol	120 seconds	42 days	SSD patients have increased total sleep time (mean 07:30h SD 01:18h) compared to HC (5:06h, SD 1:40h).

		20(15/5, 38.8 ±8.6); HC: 21(13/8, 37.5±9.6).			ogy Ltd, Cambridge, UK			
Skowerska et al., 2010	SSD	Individuals with exposure: 23 (40.5 ±13.7); HC: 23 (40.5 ± 13.7).	PANSS Total, 24.2 ± 5.4	100% on antipsychotics	NR	NR	NR	SSD patients have increased total sleep time (mean 07:49h, SD 01:09h) compared to HC (06:31h, SD 00:55h); SSD patients spent more time in bed (09:11, SD 01:24) compared to HC (07:40 SD 00:56h); SSD have increased sleep latency (32.95mins, SD 22.09mins) compared to HC (22.26mins, SD 11.41mins); No difference in efficiency between the two groups.
Tous- Espelosin et al., 2021	SSD	Individuals with exposure: 126(105/21,41.6± 10.3); HC: 30(12/18, 40.00±9.0).	NR	100% on antipsychotics	ActiGraph GT3X+, Pensacola, Florida, USA	60 seconds	8 days	No difference in total sleep time, wake after sleep onset and efficiency between the two groups.
Wamsley et al., 2012	SSD: chronic schizophr enia	Individuals with exposure: 21(17/4, 34±9); HC: 17(14/3, 36±7).	PANSS Total, 28 ± 10	100% on antipsychotics	The Mini- Mitter Actiwatch	15 seconds	5 days	No difference in total sleep time, time in bed and efficiency between the two groups.

Waters et al., 2011	SSD: chronic schizophr enia	Individuals with exposure: 6 (5/1, 44.33± 4.96); HC: 7(4/3, 42.71±7.52).	BPRS, 38.33 ± 8.04	100% on antipsychotics (Clozapine)	Actiwatch 2 (Philips Respironics)	60 seconds	28 days	SSD patients have increased total sleep time (mean 09:46h, SD 02:07h) compared to HC (07:50h, SD 01:11h)
Wichniak et al., 2011	SSD	Individuals with exposure: 54(32/22, 30.2±11.0); HC: 19(21/15, 30.1 ± 10.4).	PANSS Total, 42.2 ±10.4	100% on antipsychotics (Olanzapine or Risperidone)	Actiwatch AW4, (Cambridge Neurotechnol ogy Inc., UK)	30 seconds	7 days	SSD patients have increased total sleep time (mean 502.45min, SD 59.5min) compared to HC (381.6min, SD 42.3min); SSD patients spend more time in bed (mean 590.30min, SD 66.30min) compared to HC (454.4min, SD 48.2min); SSD participants have increased sleep latency (mean 29.45min, SD 17.75) compared to HC (mean 22.3min, SD 22.3min); SSD participants have increased sleep efficiency (mean 85.25%, SD 5.35%) compared to HC (mean 84.1%, SD 6.1%).
Wulff et al., 2012	SSD	Individuals with exposure: 20(15/5, 38.8 ±8.6); HC: 21(13/8, 37.5±9.6).	NR	60% on antipsychotics	Actiwatch-L (Cambridge Neurotechnol ogy Ltd, Cambridge, UK)	120 seconds	42 days	SSD patients have increased total sleep time (493.20±451.2–535.2 (95% CI)) compared to HC (364.80 ±346.8-381.6 (95% CI)); SSD patients have increased sleep latency (34mins, 26-42 (CI)) compared to HC (19mins, 15-24 (CI)); No difference in sleep efficiency between the two groups.

Bartsh et al., 2021	CHR-P: genetic vulnerabili ty	Individuals with exposure: 25 (25/0, age 21-23); HC: 22 (22/0, age 21-23).	NR	NR	MotionWatch 8, CamNtech, UK	NR	14 days	No difference in total sleep time, time in bed, sleep latency and sleep efficiency between the two groups.
Henning et al., 2020	CHR-P	Individuals with exposure: 41(15/26 21.15±1.54); HC: 41(14/27, 21.34±1.56).	CAPE total, 44.98 ± 9.55 CAPE positive, 3.17 ± 1.07 CAPE negative, 17.21 ± 6.2	NR	Actiwatch 2 (Philips Respironic)	30 seconds	14 days	No difference in total sleep time, sleep efficiency and wake after sleep onset
Lunsford- Avery et al., 2015	CHR-P: ultra-high risk	Individuals with exposure: 38 (19/19, 18.7 ±1.9); HC: 31(16/15, 17.9 ±2.6).	SIPS positive exposure, 11.81 ± 4.67 SIPS negative exposure, 9.28 ± 6.72	6% on antipsychotics	ActiSleep monitors (ActiGraph; Pensacola, FL)	60 seconds	5 days	No difference in total sleep time between the two groups. Ultra-high-risk participants have increased wake after sleep onset (72.05mins, SD 52.1mins) compared to HC (55.78mins, SD 23.07mins); Ultra-high-risk participants have reduced sleep efficiency (mean 84.78%, SD 8.82%) compared to HC (87.99%±4.20%); No difference in nighttime awakenings time between the two groups.
Nordholm et al., 2023	CHR-P: ultra-high risk	Individuals with exposure: 72 (30/42, 23.9± 3.9); HC: 36 (19/17,23.8 ± 2.5).	CAARMS, 49.5 ± 15.7	33% on antipsychotics	ActiGraph wGT3X-BT	60 seconds	1 day	No difference in total sleep time, time in bed, wake after sleep onset, sleep efficiency and nighttime awakenings between the two groups.

Ristanovic	CHR-P	Individuals with	NR	NR	ActiSleep	60	5 days	No difference in total sleep time between
et al., 2022		exposure:			monitors	Seconds		the two groups.
		57(23/34,18.89±1.			(ActiGraph;			
		82);			Pensacola, FL)			CHR-P patients have decreased sleep
								efficiency (mean 84.7%, SD 8.79%)
		HC: 61(33/28,						compared to HC (88.1%, SD 4.61);
		18.34 ±2.41).						
								CHR-P patients have increased wake after
								sleep onset (71.3mins, SD 51.35mins)
								compared to HC (54.21mins, SD
								23.68mins);

ROBINS-E

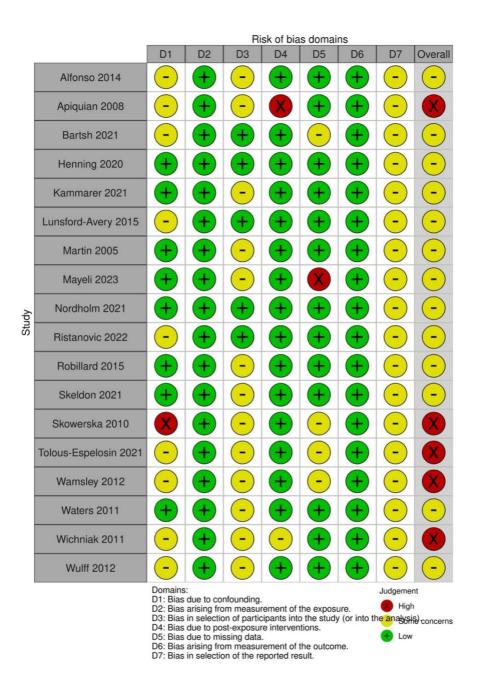


Figure 1

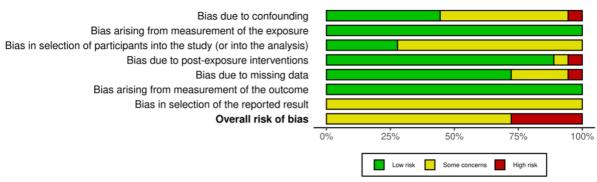


Figure 2

RESULTS TST

All studies

Forest plot

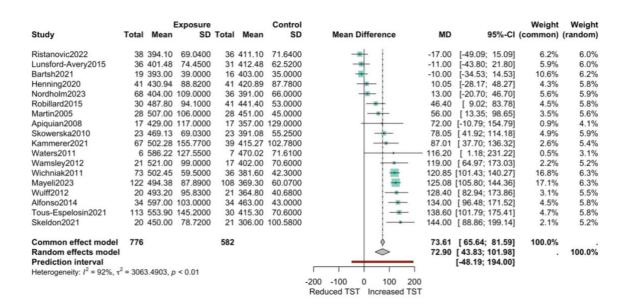


Figure 3

	MD	95%-CI %.	W(commor) %W(random)
Alfonso2014 13	4.0000 [96.4	1826; 171.517	'4] 4.5	5.8
Apiquian2008 7	2.0000 [-10.7	7866; 154.786	6.9	4.1
Bartsh2021 -10	.0000 [-34.5	282; 14.5282] 10.6	6.2
Henning2020 1	0.0500 [-28. ⁻	1743; 48.274	3] 4.3	5.8
Kammerer2021	87.0100 [37	.6976; 136.32	224] 2.6	5.4
Lunsford-Avery201	5 -11.0000 [-	43.7997; 21.	7997] 5.9	6.0
Mayeli2023 125	5.0800 [105.8	3037; 144.356	3] 17.1	6.3
Martin2005 56.	.0000 [13.34	63; 98.6537]	3.5 5	.6
Nordholm2023	13.0000 [-20	.7046; 46.70	46] 5.6	5.9
Ristanovic2022 -	17.0000 [-49.	.0859; 15.085	59] 6.2	6.0

Robillard2015 46.4000 [9.0231; 83.7769] 4.5 5.8 Skeldon2021 144.0000 [88.8566; 199.1434] 2.1 5.2 Skowerska2010 78.0500 [41.9154; 114.1846] 4.9 5.9 Tous-Espelosin2021 138.6000 [101.7902; 175.4098] 4.7 5.8 Wamsley2012 119.0000 [64.9707; 173.0293] 2.2 5.2 Waters2011 116.2000 [1.1772; 231.2228] 0.5 3.1 Wichniak2011 120.8500 [101.4276; 140.2724] 16.8 6.3 128.4000 [82.9401; 173.8599] Wulff2012 5.5 3.1

Number of studies: k = 18

Number of observations: o = 1358 (o.e = 776, o.c = 582)

MD 95%-CI z|t p-value Common effect model 73.6149 [65.6436; 81.5862] 18.10 < 0.0001 Random effects model 72.9037 [43.8311; 101.9762] 5.29 < 0.0001 Prediction interval [-48.1910; 193.9983]

Quantifying heterogeneity:

tau^2 = 3063.4903 [1482.4852; 6976.0096]; tau = 55.3488 [38.5031; 83.5225] I^2 = 92.1% [88.9%; 94.3%]; H = 3.55 [3.01; 4.19]

Test of heterogeneity:

Q d.f. p-value 214.03 17 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 16)

Funnel plot

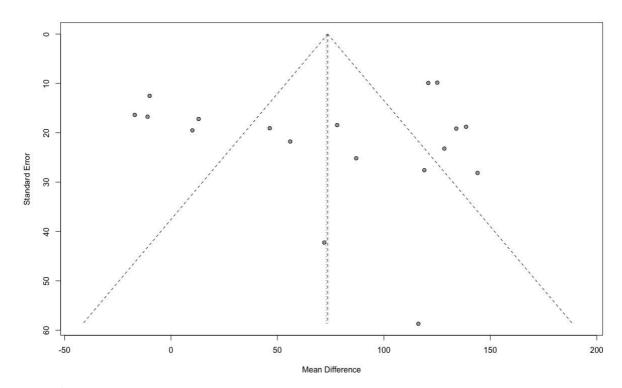


Figure 4
Linear regression test of funnel plot asymmetry

Test result: t = -0.29, df = 16, p-value = 0.7733

Bias estimate: -0.6685 (SE = 2.2816)

Details:

- multiplicative residual heterogeneity variance (tau^2 = 13.3054)

predictor: standard errorweight: inverse variance

- reference: Egger et al. (1997), BMJ

Eggers' test of the intercept

intercept	95% CI	t	р
-0.669	-5.14 - 3.8	-0.293	0.7732816

Eggers' test does not indicate the presence of funnel plot asymmetry.

Outliers

Identified outliers (fixed-effect model)

"Alfonso2014", "Bartsh2021", "Henning2020", "Lunsford-Avery2015", "Mayeli2023",

"Nordholm2023", "Ristanovic2022", "Skeldon2021", "Tous-Espelosin2021",

"Wichniak2011", "Wulff2012"

Results with outliers removed

Review: Total Sleep time (TST)

Number of studies: k = 7

Number of observations: o = 364 (o.e = 192, o.c = 172)

MD 95%-CI z|t p-value

Common effect model 73.0405 [54.8032; 91.2779] 7.85 < 0.0001 Random effects model 73.9256 [50.2659; 97.5854] 7.65 0.0003

Prediction interval [37.0142; 110.8371]

Quantifying heterogeneity:

 $tau^2 = 100.9057 [0.0000; >1009.0565]; tau = 10.0452 [0.0000; >31.7656]$ $I^2 = 4.3\% [0.0\%; 72.1\%]; H = 1.02 [1.00; 1.89]$

Test of heterogeneity:

Q d.f. p-value

6.27 6 0.3939

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 6)
- Prediction interval based on t-distribution (df = 5)

Identified outliers (random-effects model)

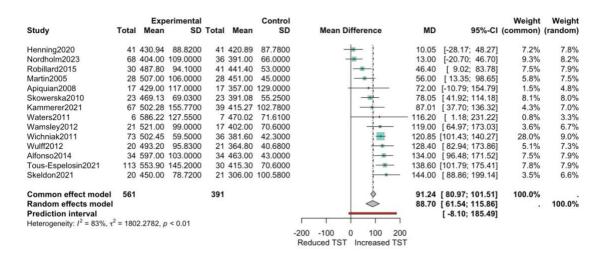


Figure 5

"Bartsh2021", "Lunsford-Avery2015", "Mayeli2023", "Ristanovic2022"

Results with outliers removed

Review: Total Sleep time (TST)

Number of studies: k = 14

Number of observations: o = 952 (o.e = 561, o.c = 391)

MD 95%-CI z|t p-value

Common effect model 91.2398 [80.9710; 101.5085] 17.41 < 0.0001 Random effects model 88.6958 [61.5357; 115.8559] 7.06 < 0.0001

Prediction interval [-8.0982; 185.4899]

Quantifying heterogeneity:

tau^2 = 1802.2782 [668.2415; 4918.8877]; tau = 42.4532 [25.8504; 70.1348] I^2 = 82.5% [71.9%; 89.1%]; H = 2.39 [1.89; 3.04]

Test of heterogeneity:

Q d.f. p-value 74.49 13 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 13)
- Prediction interval based on t-distribution (df = 12)

Influence analyses

Baujat plot

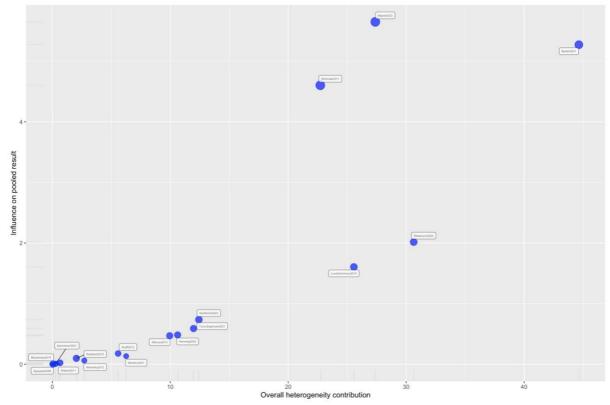


Figure 6

Influence diagnostics

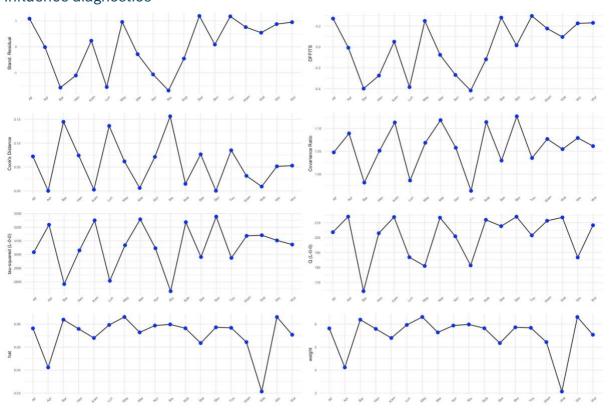


Figure 7

Meta-regression

Year

Mixed-Effects Model (k = 18; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 3101.2172 (SE = 1273.8088)

tau (square root of estimated tau^2 value): 55.6886
I^2 (residual heterogeneity / unaccounted variability): 90.46%
H^2 (unaccounted variability / sampling variability): 10.48
R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 16) = 203.6156, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 16) = 0.7894, p-val = 0.3874

Model Results:

estimate tval ci.lb ci.ub se df pval -6138.4343 15247.6721 intrcpt 4554.6189 5044.1183 0.9030 16 0.3799 -0.8885 16 0.3874 -7.5266 3.0808 vear -2.2229 2.5019

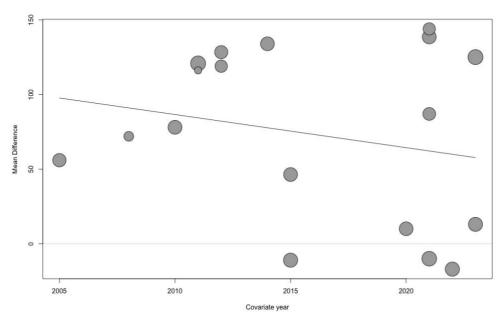


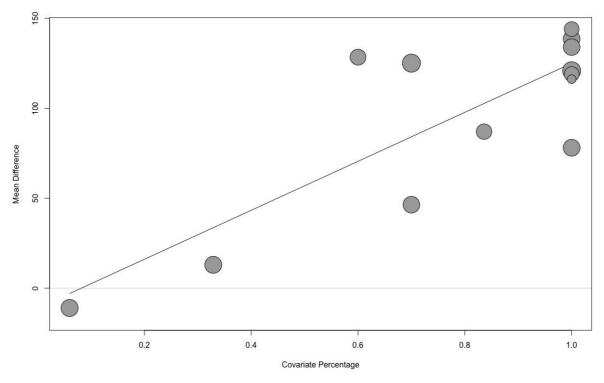
Figure 8

Percentage of treatment with antipsychotics

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 273.9015 (SE = 267.1576) tau (square root of estimated tau^2 value): 16.5500 I^2 (residual heterogeneity / unaccounted variability): 46.29% H^2 (unaccounted variability / sampling variability): 1.86

R^2 (amount of heterogeneity accounted for): 88.14%


Test for Residual Heterogeneity: QE(df = 11) = 18.9248, p-val = 0.0625

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 11) = 37.2345, p-val < .0001

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt -20.3243 19.8486 -1.0240 11 0.3278 -64.0106 23.3621 Percentage 141.6507 23.2138 6.1020 11 <.0001 90.5575 192.7438 ***

 $Figure\ 9$

Age

Mixed-Effects Model (k = 17; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 1714.0963 (SE = 803.2642) tau (square root of estimated tau^2 value): 41.4016

I^2 (residual heterogeneity / unaccounted variability): 83.55%

H^2 (unaccounted variability / sampling variability): 6.08

R^2 (amount of heterogeneity accounted for): 38.39%

Test for Residual Heterogeneity: QE(df = 15) = 94.6219, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 15) = 9.4568, p-val = 0.0077

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt -30.4437 36.8891 -0.8253 15 0.4221 -109.0709 48.1835 age_mean_e 3.2613 1.0605 3.0752 15 0.0077 **1.0009 5.5217** **

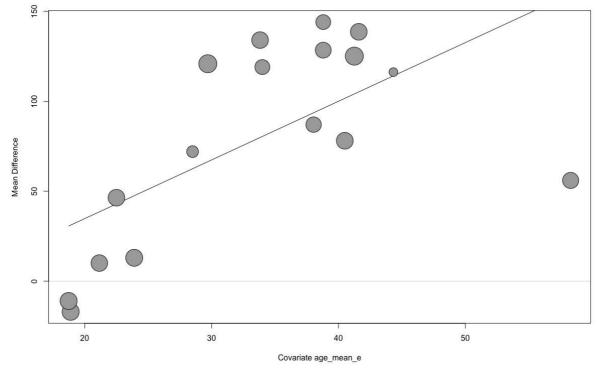


Figure 10

Gender_female

Mixed-Effects Model (k = 17; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 2050.6898 (SE = 928.3807) tau (square root of estimated tau^2 value): 45.2845
I^2 (residual heterogeneity / unaccounted variability): 86.22%
H^2 (unaccounted variability / sampling variability): 7.26

Test for Residual Heterogeneity: QE(df = 15) = 116.8958, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 15) = 6.0850, p-val = 0.0262

R² (amount of heterogeneity accounted for):

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 166.7873 37.9309 4.3971 15 0.0005 85.9394 247.6352 *** female_percentage_e -217.4858 88.1660 -2.4668 15 0.0262 **-405.4073 -29.5644** *

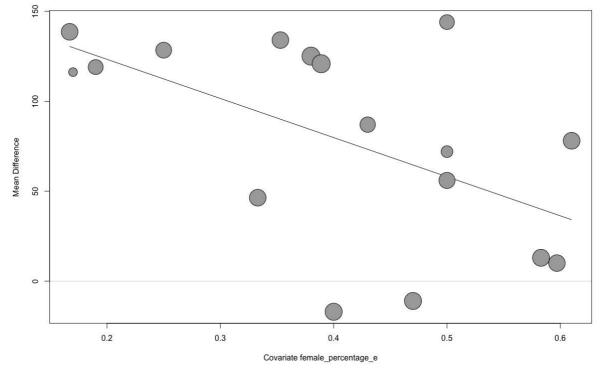


Figure 11

PANSS Total score

Mixed-Effects Model (k = 5; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 217.8419)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R^2 (amount of heterogeneity accounted for): 100.00%

Test for Residual Heterogeneity: QE(df = 3) = 2.4951, p-val = 0.4762

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 3) = 4.8623, p-val = 0.1146

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 65.1629 22.7228 2.8677 3 0.0642 -7.1510 137.4769 . PANSS_mean 1.1668 0.5292 2.2051 3 0.1146 -0.5172 2.8509

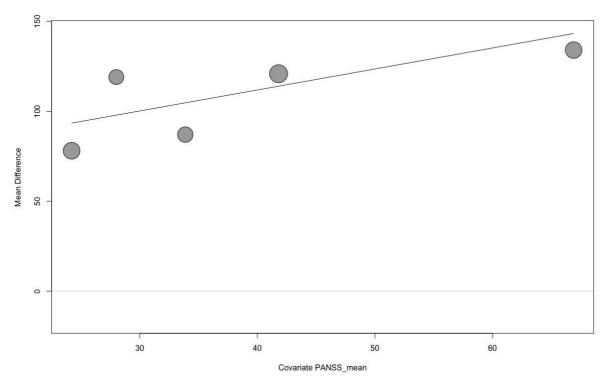


Figure 12

Study sample

Mixed-Effects Model (k = 18; tau^2 estimator: REML)

```
tau^2 (estimated amount of residual heterogeneity): 2951.6572 (SE = 1222.7229) tau (square root of estimated tau^2 value): 54.3292
```

I^2 (residual heterogeneity / unaccounted variability): 89.82%

H^2 (unaccounted variability / sampling variability): 9.83 R^2 (amount of heterogeneity accounted for): 3.65%

Test for Residual Heterogeneity: QE(df = 16) = 146.9108, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 16) = 1.1975, p-val = 0.2900

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 51.7839 23.6324 2.1912 16 0.0436 1.6854 101.8824 * n_e 0.4644 0.4243 1.0943 16 0.2900 -0.4352 1.3639

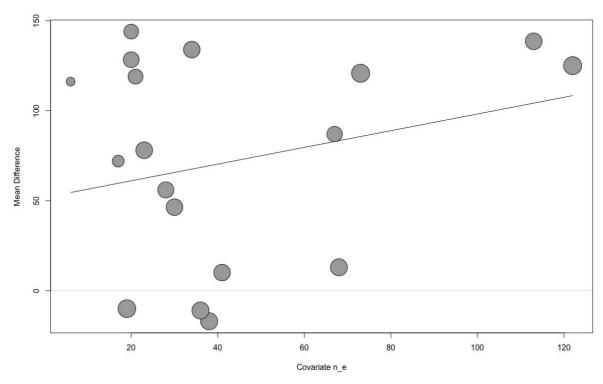


Figure 13

Geography

Mixed-Effects Model (k = 18; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 2934.4425 (SE = 1247.9344)

tau (square root of estimated tau^2 value): 54.1705

I^2 (residual heterogeneity / unaccounted variability): 90.46%

H^2 (unaccounted variability / sampling variability): 10.48

R² (amount of heterogeneity accounted for): 4.21%

Test for Residual Heterogeneity: QE(df = 15) = 168.7911, p-val < .0001

Test of Moderators (coefficients 2:3):

F(df1 = 2, df2 = 15) = 1.1614, p-val = 0.3397

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 70.1901 45.9358 1.5280 15 0.1473 -27.7197 168.1000 ContinentEurope 17.0032 48.9937 0.3470 15 0.7334 -87.4243 121.4308 ContinentNorth_America -30.7647 52.9499 -0.5810 15 0.5699 -143.6248 82.0953

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Epochs

```
Mixed-Effects Model (k = 15; tau^2 estimator: REML)
```

tau^2 (estimated amount of residual heterogeneity): 3301.7466 (SE = 1521.3485) tau (square root of estimated tau^2 value): 57.4608
I^2 (residual heterogeneity / unaccounted variability): 89.45%
H^2 (unaccounted variability / sampling variability): 9.48

0.00%

R^2 (amount of heterogeneity accounted for):

Test for Residual Heterogeneity: QE(df = 13) = 137.8708, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 13) = 0.0399, p-val = 0.8447

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 69.7987 29.9964 2.3269 13 0.0368 4.9955 134.6019 * Epochs_seconds 0.0957 0.4787 0.1999 13 0.8447 -0.9385 1.1298

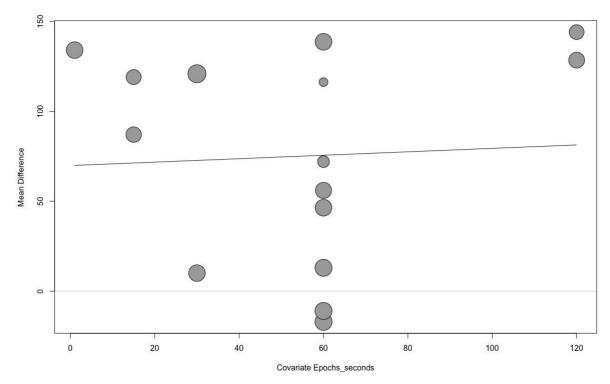


Figure 14

Follow-up_mean

Mixed-Effects Model (k = 17; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 3141.2595 (SE = 1330.3453) tau (square root of estimated tau^2 value): 56.0469

I^2 (residual heterogeneity / unaccounted variability): 91.18%

H^2 (unaccounted variability / sampling variability): 11.34

R^2 (amount of heterogeneity accounted for): 4.15%

Test for Residual Heterogeneity: QE(df = 15) = 211.6633, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 15) = 1.9130, p-val = 0.1869

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 54.3284 19.4271 2.7965 15 0.0136 12.9206 95.7363 * Follow_up_actigraphy_days_mean 1.6194 1.1709 1.3831 15 0.1869 -0.8762 4.1151 ---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

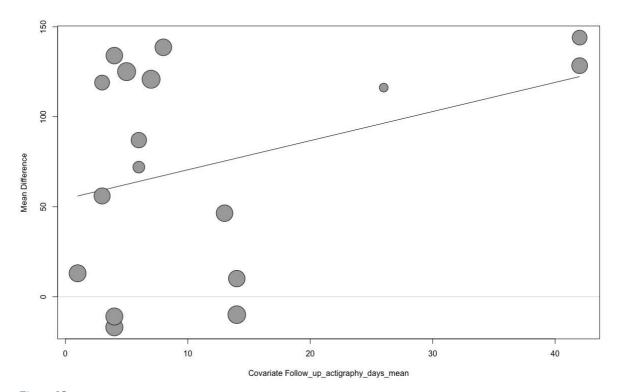


Figure 15

Follow-up_max

Mixed-Effects Model (k = 17; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 3139.3833 (SE = 1329.8440)

tau (square root of estimated tau^2 value): 56.0302
I^2 (residual heterogeneity / unaccounted variability): 91.18%
H^2 (unaccounted variability / sampling variability): 11.33
R^2 (amount of heterogeneity accounted for): 4.21%

Test for Residual Heterogeneity: QE(df = 15) = 211.1214, p-val < .0001

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 15) = 1.9181, p-val = 0.1863

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 52.4401 20.3653 2.5750 15 0.0211 9.0326 95.8476 * Follow_up_actigraphy_days_max 1.6177 1.1681 1.3850 15 0.1863 -0.8720 4.1074 ---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1

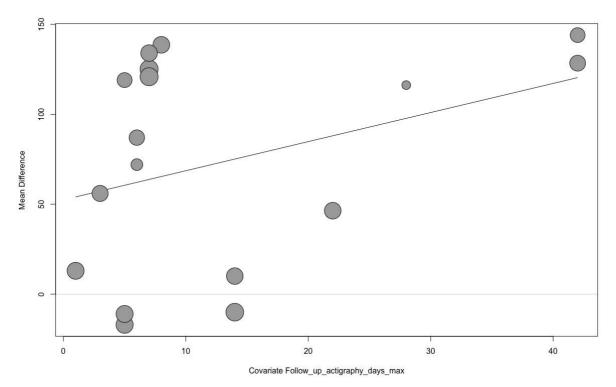


Figure 16

Subgroup analyses

Epochs < 60 seconds

Forest Plot

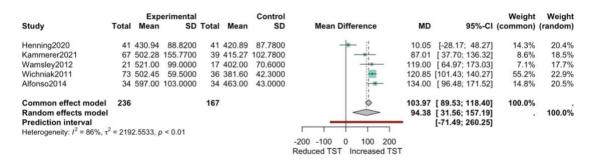


Figure 17

Number of studies: k = 5

Number of observations: o = 403 (o.e = 236, o.c = 167)

MD 95%-CI z|t p-value

Common effect model 103.9650 [89.5306; 118.3994] 14.12 < 0.0001

Random effects model 94.3759 [31.5600; 157.1919] 4.17 0.0140

Prediction interval [-71.4933; 260.2451]

Quantifying heterogeneity:

tau^2 = 2192.5533 [533.4927; 20348.4291]; tau = 46.8247 [23.0975; 142.6479] I^2 = 86.4% [70.3%; 93.7%]; H = 2.71 [1.83; 4.00]

Test of heterogeneity:

Q d.f. p-value 29.31 4 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Epochs > = 60 seconds

Forest Plot

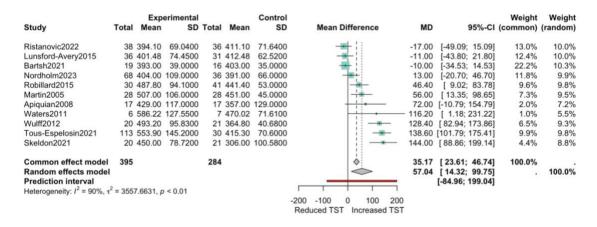


Figure 18

Number of studies: k = 11

Number of observations: o = 679 (o.e = 395, o.c = 284)

MD 95%-CI z|t p-value

Common effect model 35.1749 [23.6133; 46.7366] 5.96 < 0.0001 Random effects model 57.0372 [14.3196; 99.7547] 2.98 0.0139

Prediction interval [-84.9620; 199.0364]

Quantifying heterogeneity:

tau^2 = 3557.6631 [1422.0318; 11557.2306]; tau = 59.6461 [37.7098; 107.5046] I^2 = 89.8% [83.7%; 93.6%]; H = 3.13 [2.48; 3.95]

Test of heterogeneity:

Q d.f. p-value 97.84 10 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 10)
- Prediction interval based on t-distribution (df = 9)

Follow-up >= 7 days

Forest Plot

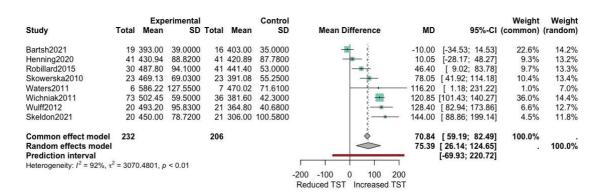


Figure 19

Number of studies: k = 8

Number of observations: o = 438 (o.e = 232, o.c = 206)

MD 95%-CI z|t p-value

Common effect model 70.8355 [59.1851; 82.4859] 11.92 < 0.0001 Random effects model 75.3946 [26.1405; 124.6488] 3.62 0.0085

Prediction interval [-69.9293; 220.7186]

Quantifying heterogeneity:

tau^2 = 3070.4801 [1055.5061; 13406.7611]; tau = 55.4119 [32.4886; 115.7876] I^2 = 92.4% [87.4%; 95.4%]; H = 3.63 [2.82; 4.68]

Test of heterogeneity:

Q d.f. p-value 92.22 7 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2

- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 7)
- Prediction interval based on t-distribution (df = 6)

Follow-up < 7 days

Forest Plot

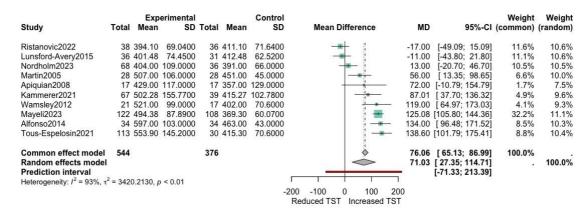


Figure 20

Number of studies: k = 10

Number of observations: o = 920 (o.e = 544, o.c = 376)

MD 95%-CI z|t p-value

Common effect model 76.0613 [65.1310; 86.9916] 13.64 < 0.0001 Random effects model 71.0295 [27.3519; 114.7071] 3.68 0.0051

Prediction interval [-71.3279; 213.3869]

Quantifying heterogeneity:

 $tau^2 = 3420.2130 [1375.4626; 11559.5847]; tau = 58.4826 [37.0872; 107.5155]$ $I^2 = 92.6\% [88.4\%; 95.2\%]; H = 3.67 [2.94; 4.59]$

Test of heterogeneity:

Q d.f. p-value 121.39 9 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 9)
- Prediction interval based on t-distribution (df = 8)

Sensitive analyses

Three-arms study (Wichniak2011), only Olanzapine arm

Forest Plot, all studies

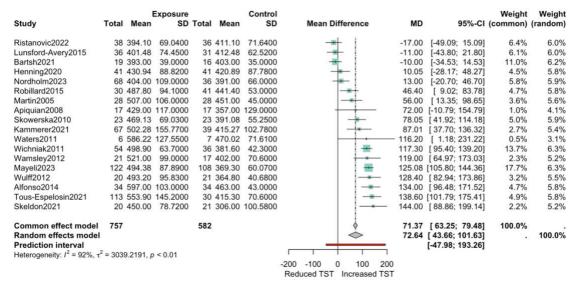


Figure 21

Review: Total Sleep time (TST)

```
95%-CI %W(common) %W(random)
Alfonso2014
               134.0000 [ 96.4826; 171.5174]
                                                4.7
                                                       5.8
                 72.0000 [-10.7866; 154.7866]
Apiquian2008
                                                1.0
                                                       4.1
Bartsh2021
               -10.0000 [-34.5282; 14.5282]
                                              11.0
                                                      6.2
                 10.0500 [-28.1743; 48.2743]
                                                4.5
Henning2020
                                                      5.8
                  87.0100 [ 37.6976; 136.3224]
                                                        5.4
Kammerer2021
                                                  2.7
Lunsford-Avery2015 -11.0000 [-43.7997; 21.7997]
                                                   6.1
                                                          6.0
Mayeli2023
               125.0800 [105.8037; 144.3563]
                                                17.7
                                                        6.3
Martin2005
               56.0000 [ 13.3463; 98.6537]
                                              3.6
                                                    5.6
Nordholm2023
                  13.0000 [-20.7046; 46.7046]
                                                 5.8
                                                        5.9
Ristanovic2022
                -17.0000 [-49.0859; 15.0859]
                                                6.4
                                                       6.0
Robillard2015
                46.4000 [ 9.0231; 83.7769]
                                              4.7
                                                     5.8
                144.0000 [88.8566; 199.1434]
Skeldon2021
                                                 2.2
                                                       5.2
                  78.0500 [ 41.9154; 114.1846]
Skowerska2010
                                                 5.0
                                                        5.9
Tous-Espelosin2021 138.6000 [101.7902; 175.4098]
                                                     4.9
                                                            5.8
                 119.0000 [ 64.9707; 173.0293]
Wamsley2012
                                                  2.3
                                                        5.2
Waters2011
               116.2000 [ 1.1772; 231.2228]
                                               0.5
                                                      3.1
Wichniak2011
                 117.3000 [ 95.4005; 139.1995]
                                                 13.7
                                                        6.3
              128.4000 [ 82.9401; 173.8599]
Wulff2012
                                               3.2
                                                      5.5
```

Number of studies: k = 18

Number of observations: o = 1339 (o.e = 757, o.c = 582)

MD 95%-CI z|t p-value

Common effect model 71.3655 [63.2469; 79.4841] 17.23 < 0.0001 Random effects model 72.6445 [43.6597; 101.6293] 5.29 < 0.0001 Prediction interval [-47.9753; 193.2643]

Quantifying heterogeneity:

tau^2 = 3039.2191 [1468.3390; 6930.7238]; tau = 55.1291 [38.3189; 83.2510] I^2 = 91.8% [88.5%; 94.1%]; H = 3.48 [2.95; 4.12]

Test of heterogeneity:

Q d.f. p-value 206.30 17 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 16)

Forest Plot, SSD studies

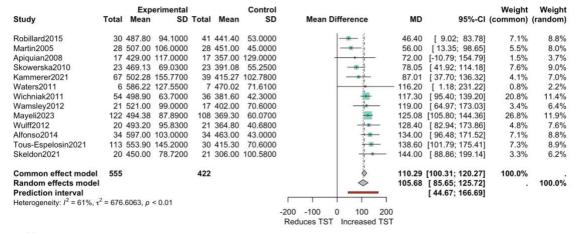


Figure 22

Review: CHR TST

Number of studies: k = 13

Number of observations: o = 977 (o.e = 555, o.c = 422)

MD 95%-CI z|t p-value

Common effect model 110.2913 [100.3133; 120.2693] 21.66 < 0.0001 Random effects model 105.6846 [85.6532; 125.7159] 11.50 < 0.0001

Prediction interval [44.6748; 166.6943]

Quantifying heterogeneity:

tau^2 = 676.6063 [110.7701; 2392.3155]; tau = 26.0117 [10.5247; 48.9113] I^2 = 61.0% [28.6%; 78.7%]; H = 1.60 [1.18; 2.17]

Test of heterogeneity:

Q d.f. p-value 30.80 12 0.0021

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 12)
- Prediction interval based on t-distribution (df = 11)

Three-arms study (Wichniak2011), only Risperidone arm

Forest Plot, all studies

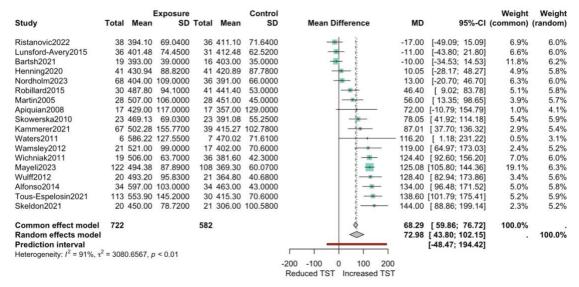


Figure 23

MD	95%-CI %W(common) %W(random)	
Alfonso2014	134.0000 [96.4826; 171.5174] 5.0 5	.8
Apiquian2008	72.0000 [-10.7866; 154.7866] 1.0 4	l.1
Bartsh2021	-10.0000 [-34.5282; 14.5282] 11.8 6.	2
Henning2020	10.0500 [-28.1743; 48.2743] 4.9 5.	.8
Kammerer2021	87.0100 [37.6976; 136.3224] 2.9	5.4
Lunsford-Avery	2015 -11.0000 [-43.7997; 21.7997] 6.6	6.0
Mayeli2023	125.0800 [105.8037; 144.3563] 19.1	6.3
Martin2005	56.0000 [13.3463; 98.6537] 3.9 5.7	
Nordholm2023	13.0000 [-20.7046; 46.7046] 6.3	6.0
Ristanovic2022	2 -17.0000 [-49.0859; 15.0859] 6.9 6	6.0
Robillard2015	46.4000 [9.0231; 83.7769] 5.1 5.8	į

Skeldon2021 144.0000 [88.8566; 199.1434] 2.3 5.2 Skowerska2010 78.0500 [41.9154; 114.1846] 5.4 5.9 Tous-Espelosin2021 138.6000 [101.7902; 175.4098] 5.2 5.9 Wamsley2012 119.0000 [64.9707; 173.0293] Waters2011 116.2000 [1.1772; 231.2228] 0.5 3.1 124.4000 [92.5987; 156.2013] Wichniak2011 7.0 6.0 128.4000 [82.9401; 173.8599] Wulff2012 3.4 5.6

Number of studies: k = 18

Number of observations: o = 1304 (o.e = 722, o.c = 582)

MD 95%-CI zlt p-value

Common effect model 68.2865 [59.8577; 76.7153] 15.88 < 0.0001 Random effects model 72.9753 [43.7963; 102.1542] 5.28 < 0.0001 Prediction interval [-48.4671; 194.4176]

Quantifying heterogeneity:

tau^2 = 3080.6567 [1486.2668; 7015.6245]; tau = 55.5037 [38.5521; 83.7593] I^2 = 91.5% [88.0%; 93.9%]; H = 3.43 [2.89; 4.06]

Test of heterogeneity:

Q d.f. p-value 199.57 17 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 16)

Forest Plot, SSD studies

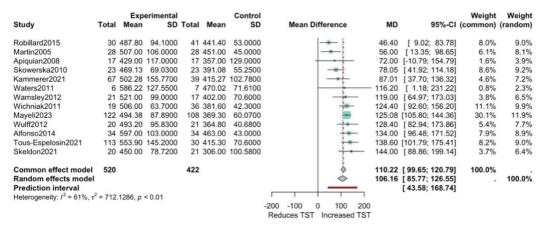


Figure 24

Number of studies: k = 13

Number of observations: o = 942 (o.e = 520, o.c = 422)

MD 95%-CI zlt p-value

Common effect model 110.2172 [99.6456; 120.7888] 20.43 < 0.0001 Random effects model 106.1570 [85.7684; 126.5456] 11.34 < 0.0001

Prediction interval [43.5752; 168.7388]

Quantifying heterogeneity:

tau^2 = 712.1286 [118.0713; 2444.7301]; tau = 26.6857 [10.8661; 49.4442] I^2 = 61.5% [29.6%; 78.9%]; H = 1.61 [1.19; 2.18]

Test of heterogeneity:

Q d.f. p-value 31.16 12 0.0019

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 12)
- Prediction interval based on t-distribution (df = 11)

SSD studies

Forest plot

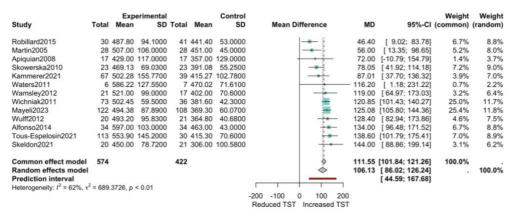


Figure 25

Number of studies: k = 13

Number of observations: o = 996 (o.e = 574, o.c = 422)

MD 95%-CI z|t p-value Common effect model 111.5520 [101.8437; 121.2603] 22.52 < 0.0001

Random effects model 106.1319 [86.0219; 126.2420] 1 1.50 < 0.0001 Prediction interval [44.5885; 167.6754]

Quantifying heterogeneity:

tau^2 = 689.3726 [119.0859; 2418.5656]; tau = 26.2559 [10.9127; 49.1789] I^2 = 61.9% [30.4%; 79.1%]; H = 1.62 [1.20; 2.19]

Test of heterogeneity:

Q d.f. p-value 31.48 12 0.0017

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 12)
- Prediction interval based on t-distribution (df = 11)

Funnel plot

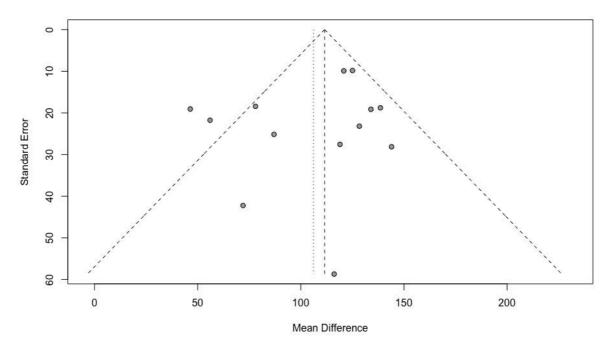


Figure 26
Linear regression test of funnel plot asymmetry

Test result: t = -1.01, df = 11, p-value = 0.3362

Bias estimate: -1.0426 (SE = 1.0367)

Details:

- multiplicative residual heterogeneity variance (tau^2 = 2.6206)

predictor: standard errorweight: inverse variance

- reference: Egger et al. (1997), BMJ

Eggers' test of the intercept

intercept 95% CI t p

-1.043 -3.07 - 0.99 -1.006 0.336159

Eggers' test does not indicate the presence of funnel plot asymmetry.

Outliers

Identified outliers (fixed-effect model)

"Martin2005", "Robillard2015"

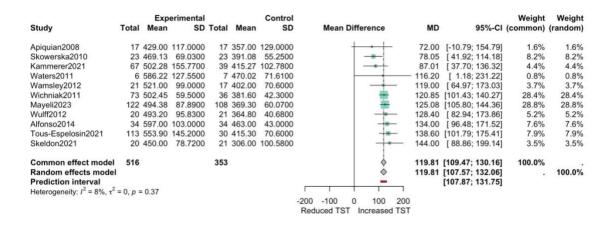


Figure 27

Results with outliers removed

Review: SSD TST

Number of studies: k = 11

Number of observations: o = 869 (o.e = 516, o.c = 353)

MD 95%-CI z|t p-value

Common effect model 119.8103 [109.4656; 130.1551] 22.70 < 0.0001 Random effects model 119.8103 [107.5656; 132.0551] 21.80 < 0.0001

Prediction interval [107.8706; 131.7501]

Quantifying heterogeneity:

tau² = 0 [0.0000; >100.0000]; tau = 0 [0.0000; >10.0000] $I^2 = 7.8\%$ [0.0%; 63.3%]; H = 1.04 [1.00; 1.65]

Test of heterogeneity:

Q d.f. p-value 10.84 10 0.3700

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 10)
- Prediction interval based on t-distribution (df = 9)

Identified outliers (random-effects model)

"Robillard2015"

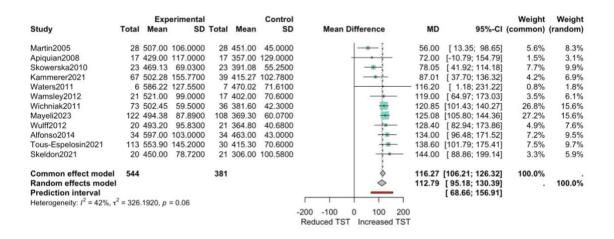


Figure 28

Results with outliers removed

Review: SSD TST

Number of studies: k = 12

Number of observations: o = 925 (o.e = 544, o.c = 381)

MD 95%-CI z|t p-value

Common effect model 116.2655 [106.2122; 126.3188] 22.67 < 0.0001 Random effects model 112.7857 [95.1798; 130.3915] 14.10 < 0.0001

Prediction interval [68.6580; 156.9133]

Quantifying heterogeneity:

 $tau^2 = 326.1920 [0.0000; 1810.2295]; tau = 18.0608 [0.0000; 42.5468]$ $I^2 = 42.0\% [0.0\%; 70.5\%]; H = 1.31 [1.00; 1.84]$

Test of heterogeneity:

Q d.f. p-value

18.96 11 0.0618

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 11)
- Prediction interval based on t-distribution (df = 10)

Baujat Plot

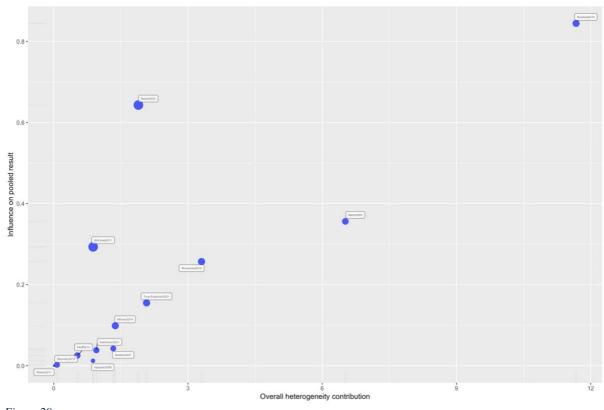


Figure 29

Influence Analyses

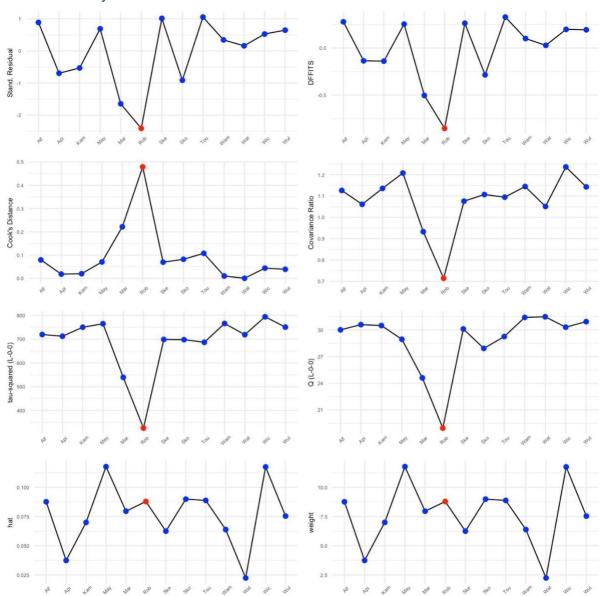


Figure 30

Meta-regressions

Year

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 555.4561 (SE = 435.3325)

tau (square root of estimated tau^2 value): 23.5681
I^2 (residual heterogeneity / unaccounted variability): 58.27%
H^2 (unaccounted variability / sampling variability): 2.40
R^2 (amount of heterogeneity accounted for): 19.43%

Test for Residual Heterogeneity: QE(df = 11) = 25.5465, p-val = 0.0076 Test of Moderators (coefficient 2): F(df1 = 1, df2 = 11) = 3.2111, p-val = 0.1007

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt -5367.1163 3054.4692 -1.7571 11 0.1067 -12089.9578 1355.7251 year 2.7167 1.5161 1.7920 11 0.1007 -0.6201 6.0535

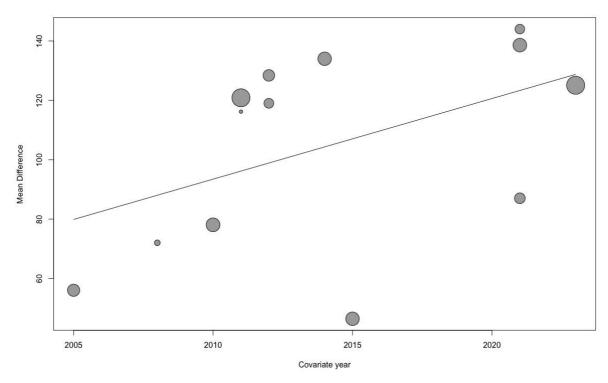


Figure 31

Percentage treated with antipsychotics

Mixed-Effects Model (k = 11; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 418.8128 (SE = 379.3428)

tau (square root of estimated tau^2 value): 20.4649 I^2 (residual heterogeneity / unaccounted variability): 57.04%

H^2 (unaccounted variability / sampling variability): 2.33 R^2 (amount of heterogeneity accounted for): 24.06%

Test for Residual Heterogeneity: QE(df = 9) = 17.7691, p-val = 0.0379

Test of Moderators (coefficient 2):

```
F(df1 = 1, df2 = 9) = 2.1765, p-val = 0.1742
```

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 24.7289 59.9494 0.4125 9 0.6896 -110.8861 160.3439 Percentage 94.6196 64.1360 1.4753 9 0.1742 -50.4660 239.7053

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

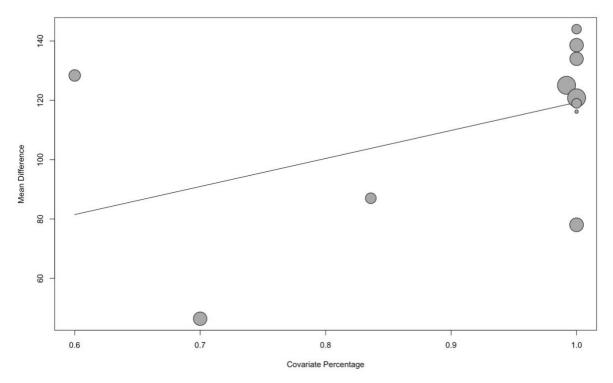


Figure 32

Age

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 797.2596 (SE = 546.9101)

tau (square root of estimated tau^2 value): 28.2358

I^2 (residual heterogeneity / unaccounted variability): 68.40%

H^2 (unaccounted variability / sampling variability): 3.16

R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:

QE(df = 11) = 31.4750, p-val = 0.0009

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 11) = 0.0001, p-val = 0.9924

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 105.5906 43.8417 2.4084 11 0.0347 9.0956 202.0856 * age_mean_e 0.0111 1.1404 0.0097 11 0.9924 -2.4988 2.5210

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

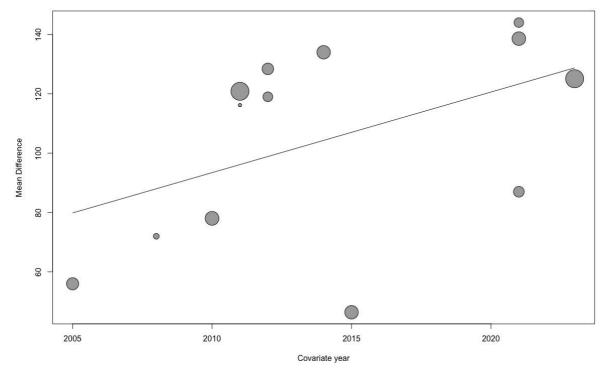


Figure 33

Gender_female

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 551.9245 (SE = 424.7593)

tau (square root of estimated tau^2 value): 23.4931 I^2 (residual heterogeneity / unaccounted variability): 61.66%

H^2 (unaccounted variability / sampling variability): 2.61

R^2 (amount of heterogeneity accounted for): 19.94%

Test for Residual Heterogeneity: QE(df = 11) = 25.5560, p-val = 0.0076

Test of Moderators (coefficient 2):

```
F(df1 = 1, df2 = 11) = 2.7746, p-val = 0.1240
```

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 148.6589 26.8141 5.5441 11 0.0002 89.6414 207.6764 *** female_percentage_e -112.8103 67.7246 -1.6657 11 0.1240 -261.8712 36.2506

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

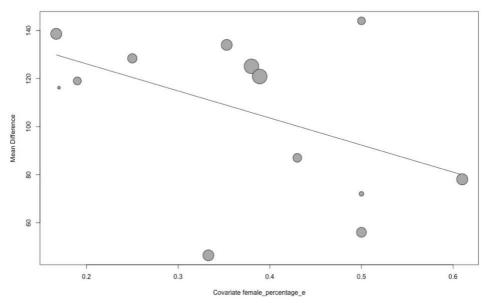


Figure 34

PANSS score

Mixed-Effects Model (k = 5; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 217.8419)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00%

H^2 (unaccounted variability / sampling variability): 1.00

R^2 (amount of heterogeneity accounted for): 100.00%

Test for Residual Heterogeneity:

QE(df = 3) = 2.4951, p-val = 0.4762

Test of Moderators (coefficient 2):

F(df1 = 1, df2 = 3) = 4.8623, p-val = 0.1146

estimate se tval df pval ci.lb ci.ub intrcpt 65.1629 22.7228 2.8677 3 0.0642 -7.1510 137.4769 . PANSS_mean 1.1668 0.5292 2.2051 3 0.1146 -0.5172 2.8509

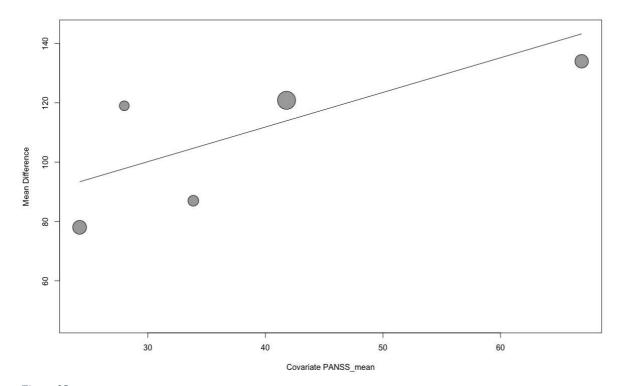


Figure 35

Study sample

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 559.5066 (SE = 439.7281)

tau (square root of estimated tau^2 value): 23.6539 I^2 (residual heterogeneity / unaccounted variability): 59.35%

H^2 (unaccounted variability / sampling variability): 2.46

R^2 (amount of heterogeneity accounted for): 18.84%

Test for Residual Heterogeneity: QE(df = 11) = 23.7226, p-val = 0.0140

Test of Moderators (coefficient 2):

F(df1 = 1, df2 = 11) = 1.9947, p-val = 0.1855

estimate se tval df pval ci.lb ci.ub intrcpt 89.0138 15.1199 5.8872 11 0.0001 55.7351 122.2925 *** n e 0.3247 0.2299 1.4123 11 0.1855 -0.1813 0.8306

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

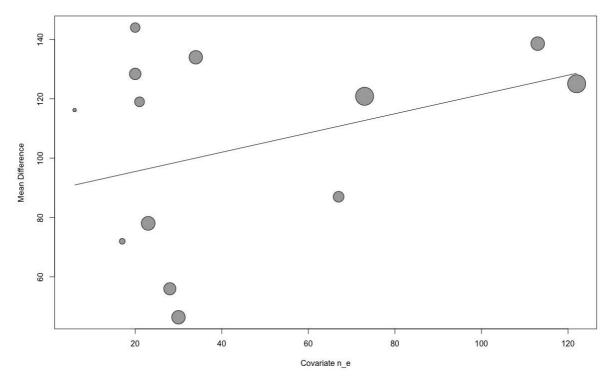


Figure 36

Epochs

Mixed-Effects Model (k = 11; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 950.3904 (SE = 719.5626)

tau (square root of estimated tau^2 value): 30.8284

I^2 (residual heterogeneity / unaccounted variability): 67.68%

H^2 (unaccounted variability / sampling variability): 3.09

R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:

QE(df = 9) = 26.1523, p-val = 0.0019

Test of Moderators (coefficient 2):

F(df1 = 1, df2 = 9) = 0.0630, p-val = 0.8075

estimate se tval df pval ci.lb ci.ub intrcpt 102.4333 19.1843 5.3394 9 0.0005 59.0353 145.8312 *** Epochs seconds 0.0745 0.2968 0.2509 9 0.8075 -0.5970 0.7459

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

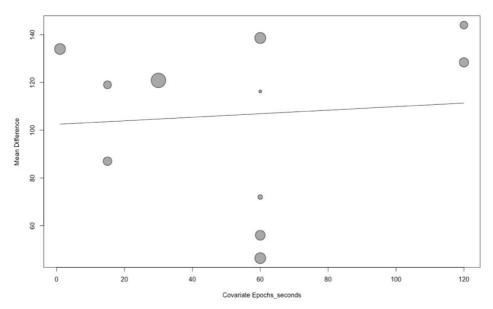


Figure 37

Follow-up time - mean

Mixed-Effects Model (k = 12; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 759.4413 (SE = 553.5469) tau (square root of estimated tau^2 value): 27.5580 I^2 (residual heterogeneity / unaccounted variability): 68.83% H^2 (unaccounted variability / sampling variability): 3.21 R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 10) = 27.4541, p-val = 0.0022

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 10) = 0.8639, p-val = 0.3745

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 100.4468 13.2884 7.5590 10 <.0001 70.8385 130.0552 Follow_up_actigraphy_days_mean 0.6834 0.7353 0.9295 10 0.3745 -0.9549 2.3218 intrcpt ***
Follow_up_actigraphy_days_mean

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

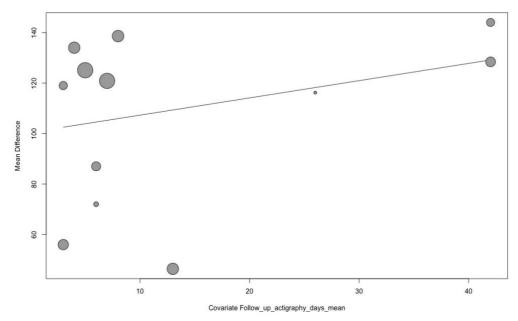


Figure 38

Follow-up time - max

Mixed-Effects Model (k = 12; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 804.0527 (SE = 576.9404)

tau (square root of estimated tau^2 value): 28.3558 I^2 (residual heterogeneity / unaccounted variability): 69.91%

H^2 (unaccounted variability / sampling variability): 3.32

R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:

QE(df = 10) = 27.9167, p-val = 0.0019

Test of Moderators (coefficient 2):

F(df1 = 1, df2 = 10) = 0.3778, p-val = 0.5525

Model Results:

estimate se tval df pval ci.lb ci.ub

intrcpt 102.3188 14.4798 7.0663 10 <.0001 70.0558 134.5818

Follow_up_actigraphy_days_max 0.4633 0.7537 0.6147 10 0.5525 -1.2160 2.1426

```
intrcpt ***
Follow_up_actigraphy_days_max
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

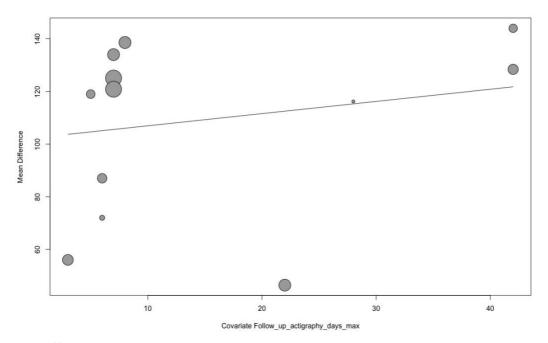


Figure 39

Subgroup analyses

SSD_Epochs < 60 sec

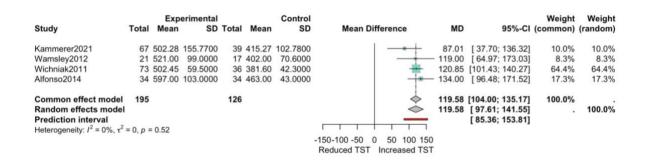


Figure 40

Number of studies: k = 4

Number of observations: o = 321 (o.e = 195, o.c = 126)

MD 95%-CI z|t p-value

Common effect model 119.5846 [103.9960; 135.1732] 15.04 < 0.0001 Random effects model 119.5846 [97.6147; 141.5544] 17.32 0.0004

Prediction interval [85.3634; 153.8057]

Quantifying heterogeneity:

 $tau^2 = 0 [0.0000; >100.0000]; tau = 0 [0.0000; >10.0000]$

 $I^2 = 0.0\% [0.0\%; 84.7\%]; H = 1.00 [1.00; 2.56]$

Test of heterogeneity:

Q d.f. p-value

2.26 3 0.5202

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 3)
- Prediction interval based on t-distribution (df = 2)

$SSD_Epochs > or = 60 sec$

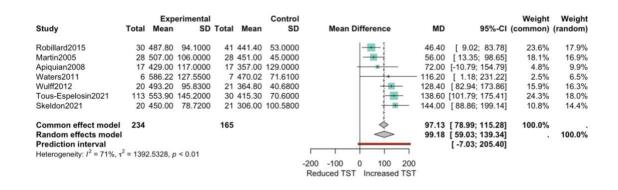


Figure 41

Number of studies: k = 7

Number of observations: o = 399 (o.e = 234, o.c = 165)

MD 95%-CI z|t p-value

Common effect model 97.1319 [78.9882; 115.2756] 10.49 < 0.0001 Random effects model 99.1846 [59.0340; 139.3353] 6.04 0.0009

Prediction interval [-7.0345; 205.4037]

Quantifying heterogeneity:

tau^2 = 1392.5328 [186.1690; 7518.2374]; tau = 37.3167 [13.6444; 86.7078]

I² = 70.8% [36.4%; 86.6%]; H = 1.85 [1.25; 2.73]

Test of heterogeneity:

Q d.f. p-value 20.58 6 0.0022

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 6)
- Prediction interval based on t-distribution (df = 5)

SSD_Follow-up: < 7 days

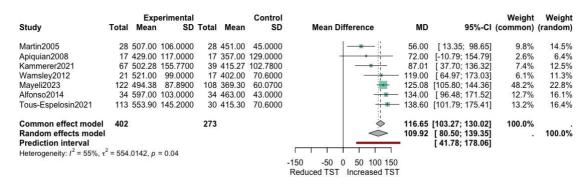


Figure 42

Number of studies: k = 7

Number of observations: o = 675 (o.e = 402, o.c = 273)

MD 95%-CI z|t p-value

Common effect model 116.6461 [103.2700; 130.0222] 17.09 < 0.0001 Random effects model 109.9215 [80.4970; 139.3460] 9.14 < 0.0001

Prediction interval [41.7843; 178.0586]

Quantifying heterogeneity:

tau^2 = 554.0142 [0.0000; 4544.9766]; tau = 23.5375 [0.0000; 67.4164] I^2 = 54.6% [0.0%; 80.5%]; H = 1.48 [1.00; 2.27]

Test of heterogeneity:

Q d.f. p-value 13.20 6 0.0399

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 6)
- Prediction interval based on t-distribution (df = 5)

SSD_Follow-up: > or = 7 days

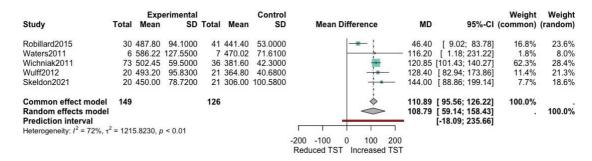


Figure 43

Number of studies: k = 5

Number of observations: o = 275 (o.e = 149, o.c = 126)

MD 95%-CI z|t p-value

Common effect model 110.8909 [95.5607; 126.2211] 14.18 < 0.0001

Random effects model 108.7862 [59.1409; 158.4314] 6.08 0.0037

Prediction interval [-18.0879; 235.6602]

Quantifying heterogeneity:

 $tau^2 = 1215.8230 [99.7574; 11283.4944]; tau = 34.8687 [9.9879; 106.2238]$ $I^2 = 72.2\% [30.2\%; 89.0\%]; H = 1.90 [1.20; 3.01]$

Test of heterogeneity:

Q d.f. p-value

14.41 4 0.0061

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

SSD - chronic schizophrenia

Forest Plot

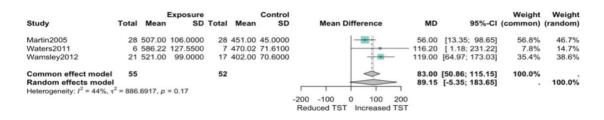


Figure 44

MD 95%-CI %W(common) %W(random)
Martin2005 56.0000 [13.3463; 98.6537] 56.8 46.7
Wamsley2012 119.0000 [64.9707; 173.0293] 35.4 38.6
Waters2011 116.2000 [1.1772; 231.2228] 7.8 14.7

Number of studies: k = 3

Number of observations: o = 107 (o.e = 55, o.c = 52)

MD 95%-CI z|t p-value Common effect model 83.0012 [50.8566; 115.1458] 5.06 < 0.0001 Random effects model 89.1529 [-5.3479; 183.6537] 4.06 0.0557

Quantifying heterogeneity:

tau^2 = 886.6917 [0.0000; >8866.9168]; tau = 29.7774 [0.0000; >94.1643] I^2 = 43.9% [0.0%; 83.2%]; H = 1.34 [1.00; 2.44]

Test of heterogeneity:

Q d.f. p-value 3.56 2 0.1682

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 2)

CHR-P studies

Forest Plot

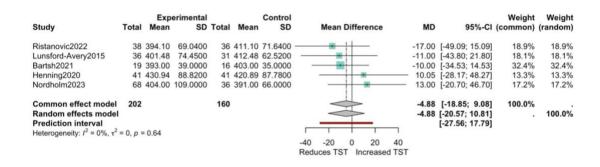


Figure 45

Number of studies: k = 5

Number of observations: o = 362 (o.e = 202, o.c = 160)

MD 95%-CI z|t p-value

Common effect model -4.8827 [-18.8476; 9.0822] -0.69 0.4932 Random effects model -4.8827 [-20.5731; 10.8078] -0.86 0.4363 Prediction interval [-27.5579; 17.7925]

Quantifying heterogeneity:

tau $^2 = 0$ [0.0000; >100.0000]; tau = 0 [0.0000; >10.0000] I $^2 = 0.0\%$ [0.0%; 79.2%]; H = 1.00 [1.00; 2.19]

Test of heterogeneity:

Q d.f. p-value 2.52 4 0.6417

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Funnel plot

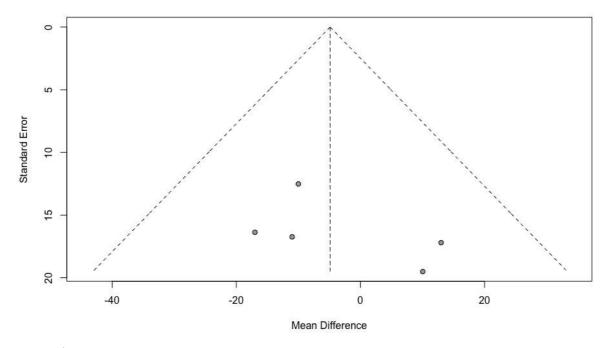


Figure 46

Outliers

No outliers detected (fixed-effect/random-effects model).

Baujat Plot

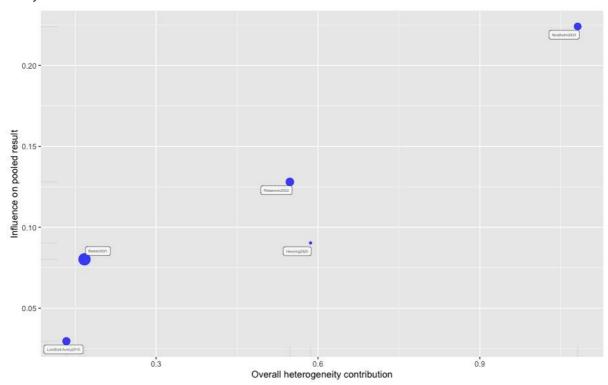


Figure 47

Influence analyses

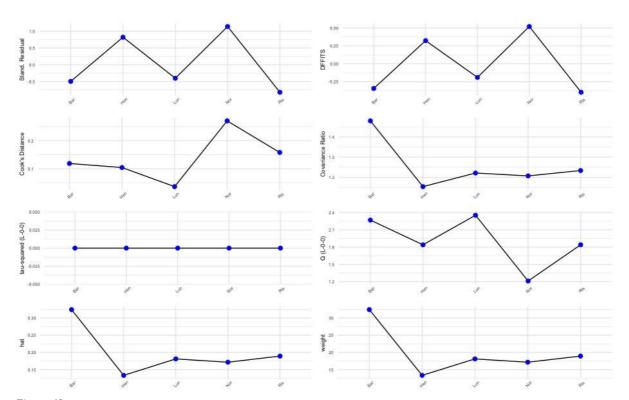


Figure 48

Meta-regressions

Year

Mixed-Effects Model (k = 5; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 201.2443)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 3) = 2.3146, p-val = 0.5097

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 3) = 0.2615, p-val = 0.6443

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt -2438.0965 4758.0895 -0.5124 3 0.6437 -17580.4609 12704.2679 year 1.2044 2.3551 0.5114 3 0.6443 -6.2907 8.6994

Age_mean

Mixed-Effects Model (k = 4; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 306.8561)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 2) = 0.3692, p-val = 0.8314

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 2) = 10.2901, p-val = 0.0850

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt -117.1964 35.9709 -3.2581 2 0.0827 -271.9665 37.5738 . age_mean_e 5.5805 1.7396 3.2078 2 0.0850 -1.9046 13.0656 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Gender_female Mixed-Effects Model (k = 4; tau^2 estimator: REML) tau^2 (estimated amount of residual heterogeneity): 0 (SE = 302.9400) tau (square root of estimated tau^2 value): I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R² (amount of heterogeneity accounted for): Test for Residual Heterogeneity: QE(df = 2) = 0.0916, p-val = 0.9552 Test of Moderators (coefficient 2): F(df1 = 1, df2 = 2) = 47.5214, p-val = 0.0204Model Results: estimate se tval df pval ci.lb ci.ub -81.5836 11.6314 -7.0141 2 0.0197 -131.6293 -31.5378 * female_percentage_e 157.0029 22.7752 6.8936 2 0.0204 59.0089 254.9968 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Study_sample Mixed-Effects Model (k = 5; tau^2 estimator: REML) tau^2 (estimated amount of residual heterogeneity): 0 (SE = 217.8419) tau (square root of estimated tau^2 value): I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00 R² (amount of heterogeneity accounted for): 100.00% Test for Residual Heterogeneity: QE(df = 3) = 2.4951, p-val = 0.4762 Test of Moderators (coefficient 2): F(df1 = 1, df2 = 3) = 4.8623, p-val = 0.1146Model Results: estimate se tval df pval ci.lb ci.ub intrcpt 65.1629 22.7228 2.8677 3 0.0642 -7.1510 137.4769 . PANSS_mean 1.1668 0.5292 2.2051 3 0.1146 -0.5172 2.8509

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Epochs

Mixed-Effects Model (k = 4; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 280.9148)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00

R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 2) = 1.7588, p-val = 0.4150

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 2) = 0.5801, p-val = 0.5258

Model Results:

estimate se tval df pval ci.lb ci.ub intrcpt 25.5991 37.6863 0.6793 2 0.5670 -136.5517 187.7500 Epochs_seconds -0.5183 0.6805 -0.7616 2 0.5258 -3.4464 2.4097

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

FU_mean

Mixed-Effects Model (k = 5; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity): 0 (SE = 224.1889)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00% H^2 (unaccounted variability / sampling variability): 1.00

R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity: QE(df = 3) = 2.4944, p-val = 0.4763

Test of Moderators (coefficient 2): F(df1 = 1, df2 = 3) = 0.0265, p-val = 0.8811

```
estimate
                          se tval df pval ci.lb ci.ub
intrcpt
                  -3.3480 11.4555 -0.2923 3 0.7891 -39.8043 33.1084
Follow_up_actigraphy_days_mean -0.1904 1.1704 -0.1627 3 0.8811 -3.9151
3.5344
intrcpt
Follow up actigraphy days mean
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
FU_max
Mixed-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of residual heterogeneity): 0 (SE = 222.9958)
tau (square root of estimated tau^2 value):
I^2 (residual heterogeneity / unaccounted variability): 0.00%
H^2 (unaccounted variability / sampling variability): 1.00
R<sup>2</sup> (amount of heterogeneity accounted for):
                                                 0.00%
Test for Residual Heterogeneity:
QE(df = 3) = 2.4560, p-val = 0.4833
Test of Moderators (coefficient 2):
F(df1 = 1, df2 = 3) = 0.0738, p-val = 0.8036
Model Results:
              estimate
                          se tval df pval ci.lb ci.ub
intrcpt
                  -2.0945 12.1225 -0.1728 3 0.8738 -40.6737 36.4848
Follow_up_actigraphy_days_max -0.3307 1.2175 -0.2716 3 0.8036 -4.2054 3.5441
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

RESULTS TIB

Forest plot – all studies

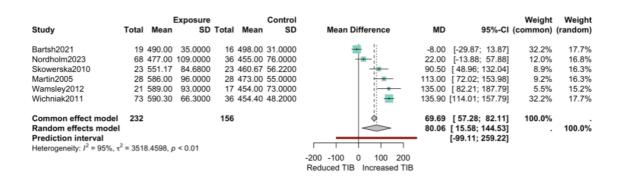


Figure 49

MD 95%-CI %W(common) %W(random) Bartsh2021 -8.0000 [-29.8724; 13.8724] 32.2 17.7 Martin2005 113.0000 [72.0195; 153.9805] 16.3 9.2 Nordholm2023 22.0000 [-13.8821; 57.8821] 12.0 16.8 Skowerska2010 90.5000 [48.9603; 132.0397] 8.9 16.3 Wamsley2012 135.0000 [82.2144; 187.7856] 5.5 15.2 Wichniak2011 135.9000 [114.0089; 157.7911] 32.2 17.7

Number of studies: k = 6

Number of observations: o = 388 (o.e = 232, o.c = 156)

MD 95%-CI z|t p-value

Common effect model 69.6923 [57.2770; 82.1077] 11.00 < 0.0001 Random effects model 80.0555 [15.5804; 144.5306] 3.19 0.0242

Prediction interval [-99.1071; 259.2181]

Quantifying heterogeneity:

tau^2 = 3518.4598 [1183.8058; 21915.7246]; tau = 59.3166 [34.4065; 148.0396] I^2 = 95.1% [91.7%; 97.1%]; H = 4.51 [3.47; 5.86]

Test of heterogeneity:

Q d.f. p-value 101.53 5 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 5)

- Prediction interval based on t-distribution (df = 4)

Funnel plot

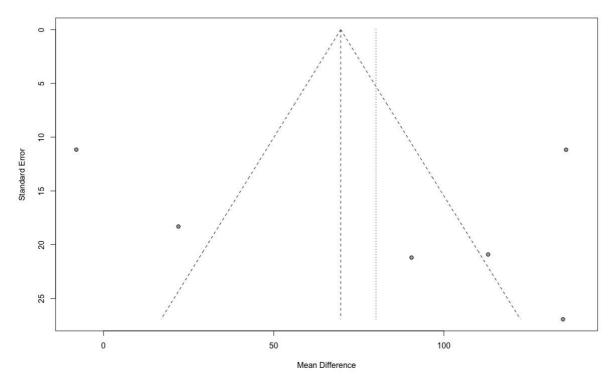


Figure 50

Eggers' test of the intercept

intercept 95% CI t p 2.929 -9.2 - 15.06 0.473 0.6606381

Eggers' test does not indicate the presence of funnel plot asymmetry.

Sensitivity analyses

SSD studies

Forest plot

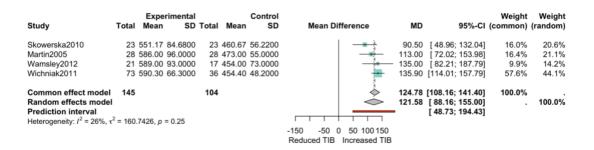


Figure 51

Number of studies: k = 4

Number of observations: o = 249 (o.e = 145, o.c = 104)

MD 95%-CI z|t p-value

Common effect model 124.7777 [108.1585; 141.3969] 14.72 < 0.0001 Random effects model 121.5798 [88.1569; 155.0027] 11.58 0.0014

Prediction interval [48.7346; 194.4250]

Quantifying heterogeneity:

tau^2 = 160.7426 [0.0000; >1607.4259]; tau = 12.6784 [0.0000; >40.0927] I^2 = 26.3% [0.0%; 72.0%]; H = 1.16 [1.00; 1.89]

Test of heterogeneity:

Q d.f. p-value

4.07 3 0.2541

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 3)
- Prediction interval based on t-distribution (df = 2)

CHR-P studies

Forest plot

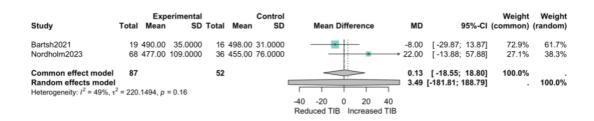


Figure 52

Number of studies: k = 2

Number of observations: o = 139 (o.e = 87, o.c = 52)

MD 95%-CI z|t p-value

Common effect model 0.1272 [-18.5489; 18.8034] 0.01 0.9893 Random effects model 3.4895 [-181.8106; 188.7896] 0.24 0.8505 Prediction interval

Quantifying heterogeneity:

tau^2 = 220.1494; tau = 14.8374; l^2 = 48.9%; H = 1.40

Test of heterogeneity:

Q d.f. p-value

1.96 1 0.1617

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Hartung-Knapp adjustment for random effects model (df = 1)

Outliers and heterogeneity

Identified outliers (fixed-effect model)

"Bartsh2021", "Wamsley2012", "Wichniak2011"

Results with outliers removed

Review: TIB

Number of studies: k = 3

Number of observations: o = 206 (o.e = 119, o.c = 87)

MD 95%-CI zlt p-value

Common effect model 70.1044 [47.4685; 92.7403] 6.07 < 0.0001 Random effects model 74.3449 [-44.2345; 192.9243] 2.70 0.1143 Prediction interval [-582.9811; 731.6708]

Quantifying heterogeneity:

tau^2 = 1905.6948 [235.6562; >19056.9482]; tau = 43.6543 [15.3511; >138.0469] I^2 = 83.4% [49.7%; 94.5%]; H = 2.45 [1.41; 4.27]

Test of heterogeneity:

Q d.f. p-value 12.04 2 0.0024

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 2)
- Prediction interval based on t-distribution (df = 1)

Identified outliers (random-effects model)

"Bartsh2021"

Results with outliers removed

Review: TIB

Number of studies: k = 5

Number of observations: o = 353 (o.e = 213, o.c = 140)

MD 95%-CI z|t p-value

Common effect model 106.6243 [91.5440; 121.7045] 13.86 < 0.0001 Random effects model 98.9366 [39.9169; 157.9562] 4.65 0.0096

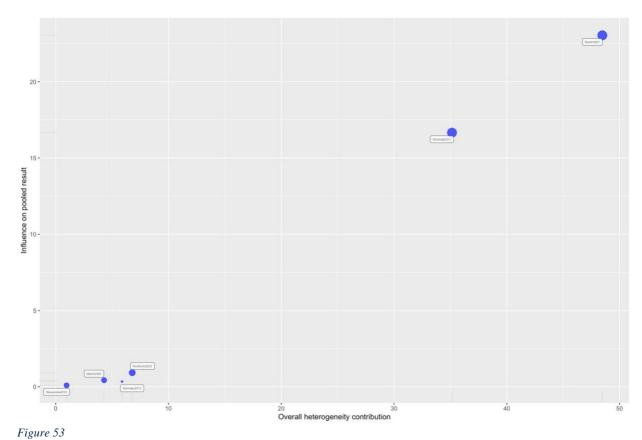
Prediction interval [-56.5547; 254.4278]

Quantifying heterogeneity:

tau^2 = 1922.9652 [462.1623; 17917.3486]; tau = 43.8516 [21.4980; 133.8557] I^2 = 86.7% [71.1%; 93.9%]; H = 2.74 [1.86; 4.03]

Test of heterogeneity:

Q d.f. p-value 30.02 4 < 0.0001


Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau

- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Influence analyses

Baujat plot

Influence diagnostics

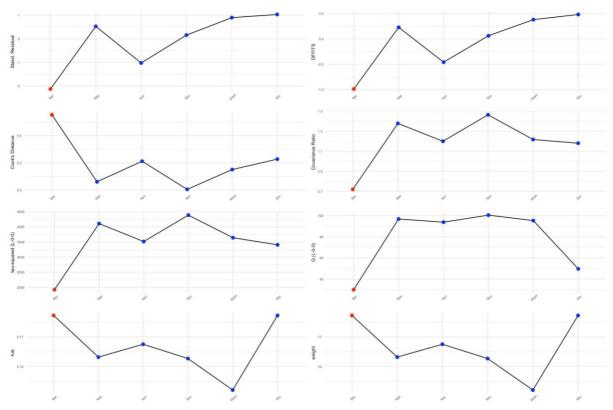


Figure 54

RESULTS SLEEP LATENCY

Forest plot - all studies

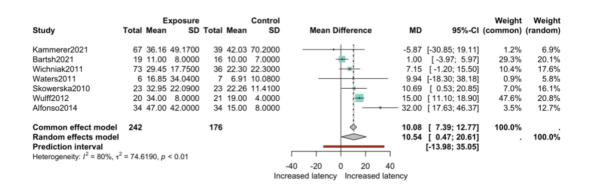


Figure 55

MD 95%-CI %W(common) %W(random)
Alfonso2014 32.0000 [17.6287; 46.3713] 3.5 12.7
Bartsh2021 1.0000 [-3.9703; 5.9703] 29.3 20.1
Kammerer2021 -5.8700 [-30.8505; 19.1105] 1.2 6.9
Skowerska2010 10.6900 [0.5291; 20.8509] 7.0 16.1

Waters2011 9.9400 [-18.3022; 38.1822] 0.9 5.8 Wichniak2011 7.1500 [-1.1953; 15.4953] 10.4 17.6 Wulff2012 15.0000 [11.0988; 18.9012] 47.6 20.8

Number of studies: k = 7

Number of observations: o = 418 (o.e = 242, o.c = 176)

MD 95%-CI z|t p-value Common effect model 10.0797 [7.3870; 12.7723] 7.34 < 0.0001 Random effects model 10.5365 [0.4661; 20.6069] 2.56 0.0429 Prediction interval [-13.9780; 35.0510]

Quantifying heterogeneity:

tau^2 = 74.6190 [13.3588; 611.6696]; tau = 8.6382 [3.6550; 24.7320] I^2 = 79.9% [59.1%; 90.2%]; H = 2.23 [1.56; 3.19]

Test of heterogeneity:

Q d.f. p-value 29.92 6 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 6)
- Prediction interval based on t-distribution (df = 5)

Funnel plot

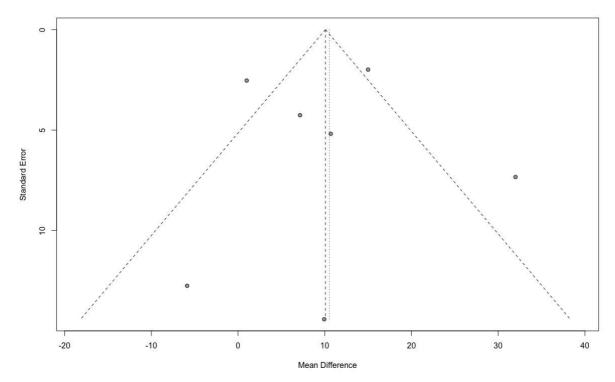


Figure 56

Eggers' test of the intercept

intercept 95% CI t p 0.023 -3.27 - 3.32 0.014 0.9894104

Eggers' test does not indicate the presence of funnel plot asymmetry.

SSD studies

Forest plot

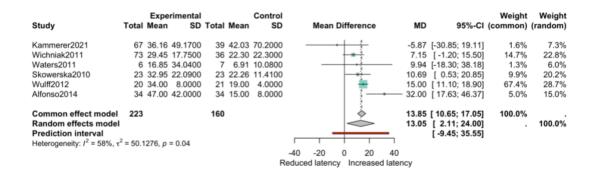


Figure 57

Number of studies: k = 6

Number of observations: o = 383 (o.e = 223, o.c = 160)

MD 95%-CI z|t p-value

Common effect model 13.8513 [10.6479; 17.0547] 8.47 < 0.0001 Random effects model 13.0546 [2.1104; 23.9988] 3.07 0.0279

Prediction interval [-9.4451; 35.5543]

Quantifying heterogeneity:

 $tau^2 = 50.1276 [0.0000; >501.2757]; tau = 7.0801 [0.0000; >22.3892]$ $I^2 = 57.5\% [0.0\%; 82.8\%]; H = 1.53 [1.00; 2.41]$

Test of heterogeneity:

Q d.f. p-value 11.78 5 0.0380

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 5)
- Prediction interval based on t-distribution (df = 4)

CHR-P studies

Forest plot

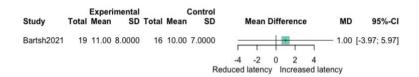


Figure 58

Review: CHR-P_latency

Number of observations: o = 35 (o.e = 19, o.c = 16)

MD 95%-CI z p-value Bartsh2021 1.0000 [-3.9703; 5.9703] 0.39 0.6933

Outliers and heterogeneity

Identified outliers (fixed-effect model)

"Alfonso2014", "Bartsh2021"

Results with outliers removed

Review: latency

Number of studies: k = 5

Number of observations: o = 315 (o.e = 189, o.c = 126)

MD 95%-CI zlt p-value

Common effect model 12.9024 [9.6163; 16.1885] 7.70 < 0.0001 Random effects model 11.1344 [4.3918; 17.8770] 4.58 0.0101

Prediction interval [-2.7420; 25.0108]

Quantifying heterogeneity:

tau^2 = 11.5701 [0.0000; >115.7013]; tau = 3.4015 [0.0000; >10.7565] I^2 = 24.9% [0.0%; 69.7%]; H = 1.15 [1.00; 1.82]

Test of heterogeneity:

Q d.f. p-value

5.33 4 0.2551

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau

- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Identified outliers (random-effects model)

Results with outliers removed

Review: latency

Number of studies: k = 7

Number of observations: o = 418 (o.e = 242, o.c = 176)

MD 95%-CI z|t p-value

Common effect model 10.0797 [7.3870; 12.7723] 7.34 < 0.0001 Random effects model 10.5365 [0.4661; 20.6069] 2.56 0.0429

Prediction interval [-13.9780; 35.0510]

Quantifying heterogeneity:

tau^2 = 74.6190 [13.3588; 611.6696]; tau = 8.6382 [3.6550; 24.7320] I^2 = 79.9% [59.1%; 90.2%]; H = 2.23 [1.56; 3.19]

Test of heterogeneity:

Q d.f. p-value 29.92 6 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 6)
- Prediction interval based on t-distribution (df = 5)

Influence analyses

Baujat plot

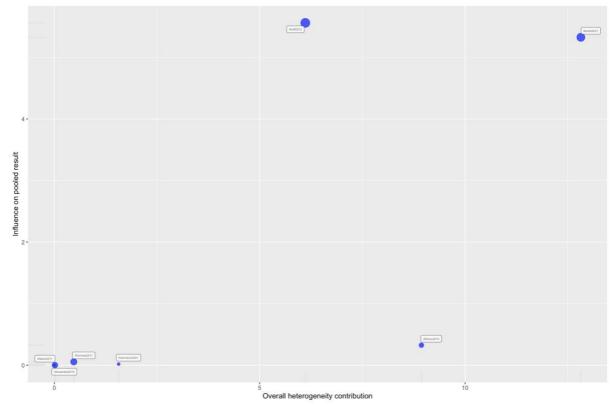


Figure 59

Influence diagnostics

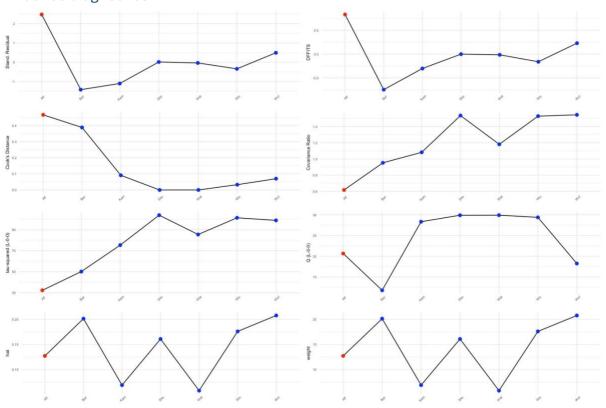
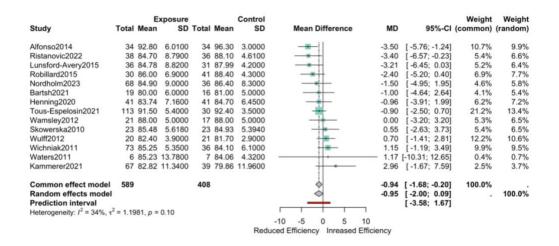



Figure 60

RESULTS SLEEP EFFICIENCY

Forest plot – all studies

Figure 61

MD	95%-CI %W(commor	n) %W(rar	ndom)
Alfonso2014	-3.5000 [-5.7578; -1.2422]	10.7	9.9
Bartsh2021	-1.0000 [-4.6443; 2.6443]	4.1	5.4
Henning2020	-0.9600 [-3.9098; 1.9898] 6.2	7.2
Kammerer2021	2.9600 [-1.6728; 7.592	8] 2.5	3.7
Lunsford-Avery	2015 -3.2100 [-6.4484; 0.03	284] 5	6.2
Nordholm2023	-1.5000 [-4.9535; 1.953	5] 4.6	5.8
Ristanovic2022	2 -3.4000 [-6.5747; -0.225	3] 5.4	6.6
Robillard2015	-2.4000 [-5.1980; 0.3980]	6.9	7.7
Skowerska2010	0.5500 [-2.6329; 3.732	9] 5.4	6.5
Tous-Espelosin	2021 -0.9000 [-2.5000; 0.7	000] 2	1.2 13.4
Wamsley2012	0.0000 [-3.1972; 3.1972	2] 5.3	6.5
Waters2011	1.1700 [-10.3111; 12.6511] 0.4	0.7
Wichniak2011	1.1500 [-1.1902; 3.4902] 9.9	9.5
Wulff2012	0.7000 [-1.4118; 2.8118]	12.2	10.6

Number of studies: k = 14

Number of observations: o = 997 (o.e = 589, o.c = 408)

MD 95%-CI z|t p-value

Common effect model -0.9407 [-1.6778; -0.2036] -2.50 0.0124 Random effects model -0.9540 [-2.0013; 0.0933] -1.97 0.0708 Prediction interval [-3.5762; 1.6682]

Quantifying heterogeneity:

tau^2 = 1.1981 [0.0000; 6.3904]; tau = 1.0946 [0.0000; 2.5279]

I² = 34.0% [0.0%; 65.1%]; H = 1.23 [1.00; 1.69]

Test of heterogeneity:

Q d.f. p-value 19.69 13 0.1032

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 13)
- Prediction interval based on t-distribution (df = 12)

Funnel plot

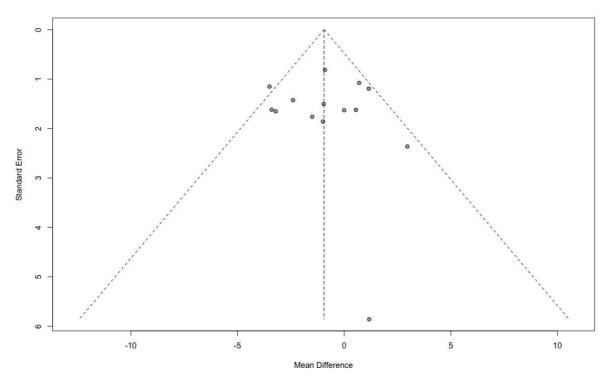


Figure 62

Linear regression test of funnel plot asymmetry

Test result: t = 0.21, df = 12, p-value = 0.8400

Bias estimate: 0.2104 (SE = 1.0196)

Details:

- multiplicative residual heterogeneity variance (tau^2 = 1.6350)
- predictor: standard error

- weight: inverse variance

- reference: Egger et al. (1997), BMJ

Eggers' test of the intercept

intercept 95% CI t p 0.21 -1.79 - 2.21 0.206 0.8400112

Eggers' test does not indicate the presence of funnel plot asymmetry.

SSD studies

Forest plot

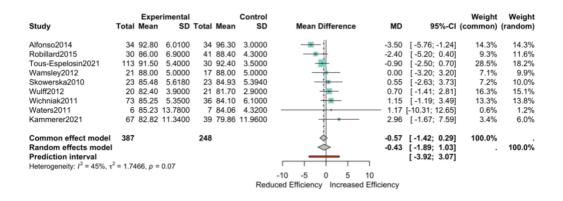


Figure 63

Number of studies: k = 9

Number of observations: o = 635 (o.e = 387, o.c = 248)

MD 95%-CI z|t p-value

Common effect model -0.5661 [-1.4198; 0.2876] -1.30 0.1937 Random effects model -0.4299 [-1.8888; 1.0291] -0.68 0.5160

Prediction interval [-3.9250; 3.0653]

Quantifying heterogeneity:

tau^2 = 1.7466 [0.0000; 11.1061]; tau = 1.3216 [0.0000; 3.3326]

 $1^2 = 45.4\% [0.0\%; 74.7\%]; H = 1.35 [1.00; 1.99]$

Test of heterogeneity:

Q d.f. p-value 14.66 8 0.0662

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 8)
- Prediction interval based on t-distribution (df = 7)

CHR-P studies

Forest plot

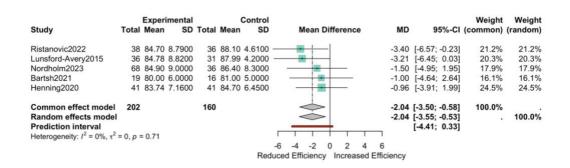


Figure 64

Review: CHR Efficiency

Number of studies: k = 5

Number of observations: o = 362 (o.e = 202, o.c = 160)

MD 95%-CI z|t p-value

Common effect model -2.0374 [-3.4982; -0.5767] -2.73 0.0063 Random effects model -2.0374 [-3.5468; -0.5281] -3.75 0.0200

Prediction interval [-4.4093; 0.3344]

Quantifying heterogeneity:

tau^2 = 0 [0.0000; 9.1390]; tau = 0 [0.0000; 3.0231] I^2 = 0.0% [0.0%; 79.2%]; H = 1.00 [1.00; 2.19]

Test of heterogeneity:

Q d.f. p-value

2.13 4 0.7122

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Outliers and heterogeneity

No outliers detected (fixed-effect/random-effects model)

Influence analyses

Baujat plot

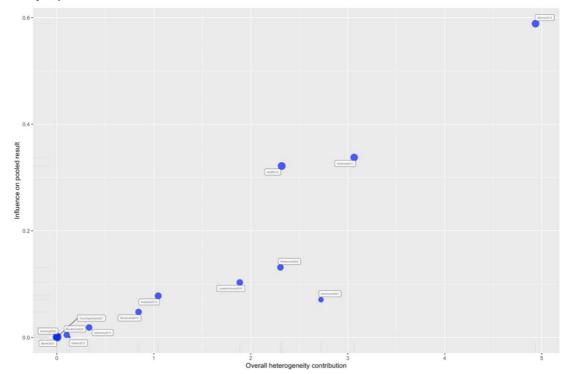


Figure 65

Influence diagnostics

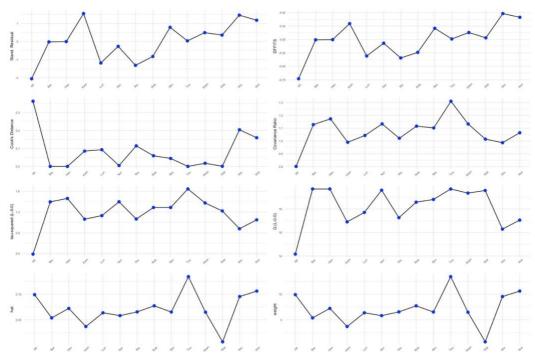


Figure 66

RESULTS WASO

Forest plot - all studies

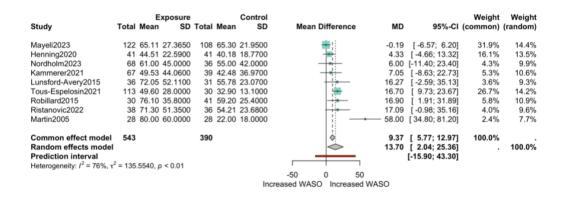


Figure 67

MD 95%-CI %W(common) %W(random) Henning2020 4.3300 [-4.6601; 13.3201] 16.1 13.5 Kammerer2021 7.0500 [-8.6322; 22.7322] 5.3 10.6 Lunsford-Avery2015 16.2700 [-2.5903; 35.1303] 3.6 9.3 Martin2005 58.0000 [34.7976; 81.2024] 7.7 Mayeli2023 -0.1850 [-6.5659; 6.1959] 31.9 14.4 Nordholm2023 6.0000 [-11.3962; 23.3962] 4.3 9.9

Ristanovic2022 17.0900 [-0.9764; 35.1564] 4.0 9.6 Robillard2015 16.9000 [1.9147; 31.8853] 5.8 10.9 Tous-Espelosin2021 16.7000 [9.7267; 23.6733] 26.7 14.2

Number of studies: k = 9

Number of observations: o = 933 (o.e = 543, o.c = 390)

MD 95%-CI z|t p-value Common effect model 9.3707 [5.7682; 12.9732] 5.10 < 0.0001 Random effects model 13.6994 [2.0358; 25.3630] 2.71 0.0267 Prediction interval [-15.8984; 43.2972]

Quantifying heterogeneity:

 $tau^2 = 135.5540 [37.8705; 962.7086]; tau = 11.6428 [6.1539; 31.0275]$ $I^2 = 76.0\% [54.0\%; 87.5\%]; H = 2.04 [1.47; 2.83]$

Test of heterogeneity:

Q d.f. p-value 33.35 8 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 8)
- Prediction interval based on t-distribution (df = 7)

Funnel plot

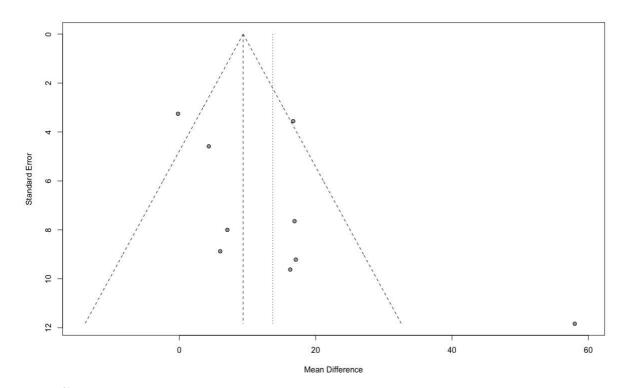


Figure 68
Eggers' test of the intercept

intercept 95% CI t p 2.377 -0.41 - 5.16 1.672 0.138535

Eggers' test does not indicate the presence of funnel plot asymmetry.

Sensitivity analyses

SSD studies

Forest plot

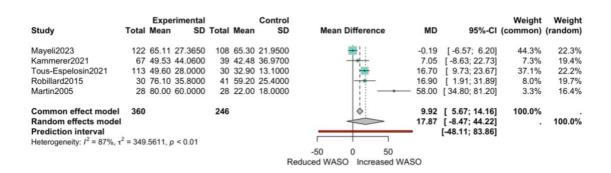


Figure 69

Number of studies: k = 5

Number of observations: o = 606 (o.e = 360, o.c = 246)

MD 95%-CI z|t p-value

Common effect model 9.9195 [5.6748; 14.1642] 4.58 < 0.0001 Random effects model 17.8738 [-8.4702; 44.2179] 1.88 0.1327

Prediction interval [-48.1107; 83.8584]

Quantifying heterogeneity:

tau^2 = 349.5611 [84.3590; >3495.6111]; tau = 18.6966 [9.1847; >59.1237] I^2 = 87.0% [71.9%; 94.0%]; H = 2.77 [1.89; 4.07]

Test of heterogeneity:

Q d.f. p-value 30.72 4 < 0.0001

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

CHR-P studies

Forest plot

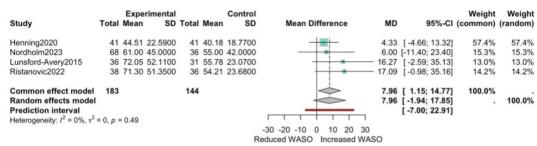


Figure 70

Number of studies: k = 4

Number of observations: o = 327 (o.e = 183, o.c = 144)

MD 95%-CI zlt p-value

Common effect model 7.9574 [1.1457; 14.7691] 2.29 0.0220 Random effects model 7.9574 [-1.9391; 17.8539] 2.56 0.0833

Prediction interval [-6.9961; 22.9109]

Quantifying heterogeneity:

```
tau^2 = 0 [0.0000; >100.0000]; tau = 0 [0.0000; >10.0000]
I^2 = 0.0\% [0.0%; 84.7%]; H = 1.00 [1.00; 2.56]
```

Test of heterogeneity:

Q d.f. p-value 2.40 3 0.4933

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 3)
- Prediction interval based on t-distribution (df = 2)

Outliers and heterogeneity

Identified outliers (fixed-effect model)

"Martin2005"

Results with outliers removed

Review: WASO

Number of studies: k = 8

Number of observations: o = 877 (o.e = 515, o.c = 362)

MD 95%-CI z|t p-value

Common effect model 8.1694 [4.5227; 11.8162] 4.39 < 0.0001 Random effects model 9.3707 [3.1173; 15.6241] 3.54 0.0094

Prediction interval [-6.9065; 25.6479]

Quantifying heterogeneity:

tau^2 = 34.8805 [0.0438; 164.5819]; tau = 5.9060 [0.2093; 12.8289] I^2 = 56.4% [4.0%; 80.2%]; H = 1.51 [1.02; 2.25]

Test of heterogeneity:

Q d.f. p-value 16.06 7 0.0245

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 7)
- Prediction interval based on t-distribution (df = 6)

Identified outliers (random-effects model)

"Martin2005"

Results with outliers removed

Review: WASO

Number of studies: k = 8

Number of observations: o = 877 (o.e = 515, o.c = 362)

MD 95%-CI z|t p-value

Common effect model 8.1694 [4.5227; 11.8162] 4.39 < 0.0001 Random effects model 9.3707 [3.1173; 15.6241] 3.54 0.0094

Prediction interval [-6.9065; 25.6479]

Quantifying heterogeneity:

tau^2 = 34.8805 [0.0438; 164.5819]; tau = 5.9060 [0.2093; 12.8289] I^2 = 56.4% [4.0%; 80.2%]; H = 1.51 [1.02; 2.25]

Test of heterogeneity:

Q d.f. p-value 16.06 7 0.0245

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 7)
- Prediction interval based on t-distribution (df = 6)

Influence analyses

Baujat plot

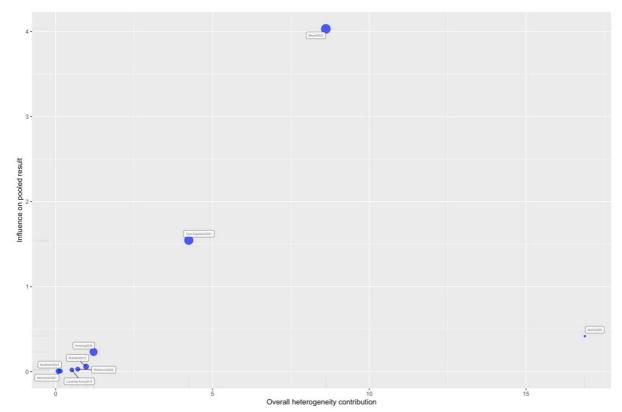


Figure 71

Influence diagnostics

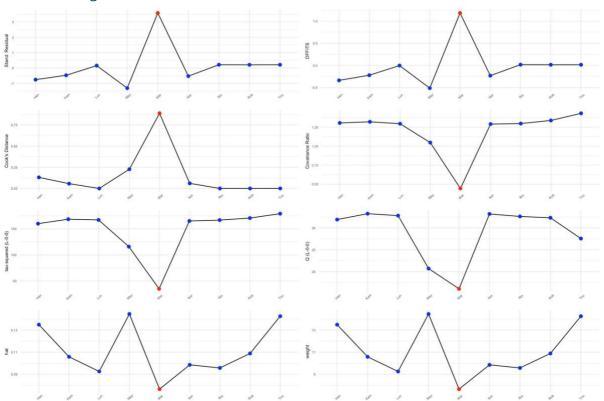


Figure 72

RESULTS Nighttime Awakenings

Forest plot – all studies

Study	Total	E Mean	xposure SD	Total	Mean	Control SD	Mean Difference	MD	95%-CI	Weight (common)	
Apiquian2008	17	24.59	11.2200	17	25.97	14.9900	- 1:	-1.38	[-10.28; 7.52]	0.1%	4.9%
Lunsford-Avery2015	36	20.67	8.3700	31	20.63	5.4200		0.04	[-3.29; 3.37]	0.9%	18.5%
Alfonso2014	34	1.28	0.8600	34	0.69	0.4100		0.59	[0.27; 0.91]	96.3%	33.9%
Nordholm2023	68	19.30	8.9000	36	17.40	7.7000	- ;	1.90	[-1.39; 5.19]	0.9%	18.8%
Martin2005	28	8.00	5.0000	28	3.00	4.0000		5.00	[2.63; 7.37]	1.8%	23.9%
Common effect model	183			146			♦	0.67	[0.36; 0.99]	100.0%	
Random effects model								1.69	[-1.08; 4.47]		100.0%
Prediction interval									[-5.13; 8.51]		
Heterogeneity: $I^2 = 71\%$, τ	$^2 = 3.42$	226. p <	0.01								
						-	10 -5 0 5 1 Reduced NA Increased NA	0			

Figure 73

MD 95%-CI %W(common) %W(random) 0.5900 [0.2698; 0.9102] Alfonso2014 96.3 33.9 -1.3800 [-10.2807; 7.5207] Apiquian2008 0.1 4.9 Lunsford-Avery2015 0.0400 [-3.2940; 3.3740] 0.9 18.5 Martin2005 5.0000 [2.6283; 7.3717] 1.8 Nordholm2023 1.9000 [-1.3865; 5.1865] 0.9 18.8

Number of studies: k = 5

Number of observations: o = 329 (o.e = 183, o.c = 146)

MD 95%-CI z|t p-value

Common effect model 0.6721 [0.3578; 0.9864] 4.19 < 0.0001 Random effects model 1.6937 [-1.0841; 4.4716] 1.69 0.1657 Prediction interval [-5.1262; 8.5137]

Quantifying heterogeneity:

tau^2 = 3.4226 [0.2012; 41.9570]; tau = 1.8500 [0.4485; 6.4774] I^2 = 71.3% [27.3%; 88.7%]; H = 1.87 [1.17; 2.97]

Test of heterogeneity:

Q d.f. p-value 13.92 4 0.0075 Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Funnel plot

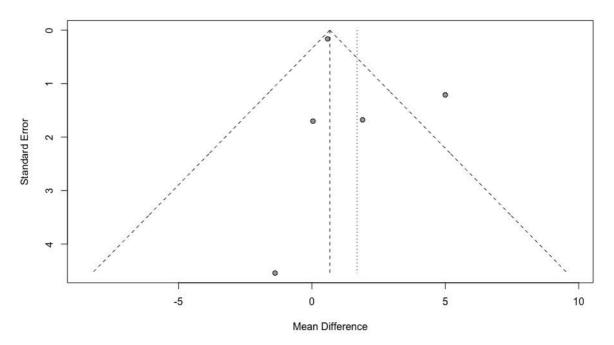


Figure 74

Eggers' test of the intercept

intercept 95% CI t p 0.93 -1.18 - 3.04 0.864 0.4510582

Eggers' test does not indicate the presence of funnel plot asymmetry.

SSD studies

Forest plot

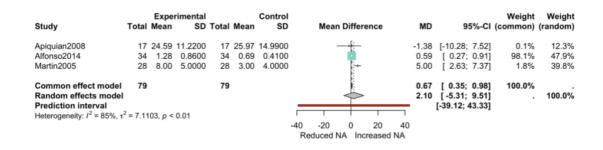


Figure 75

Number of studies: k = 3

Number of observations: o = 158 (o.e = 79, o.c = 79)

MD 95%-CI z|t p-value

Common effect model 0.6664 [0.3492; 0.9835] 4.12 < 0.0001 Random effects model 2.1039 [-5.3063; 9.5142] 1.22 0.3463

Prediction interval [-39.1191; 43.3270]

Quantifying heterogeneity:

tau^2 = 7.1103 [0.6530; >100.0000]; tau = 2.6665 [0.8081; >10.0000] I^2 = 84.9% [55.3%; 94.9%]; H = 2.57 [1.50; 4.43]

Test of heterogeneity:

Q d.f. p-value 13.25 2 0.0013

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 2)
- Prediction interval based on t-distribution (df = 1)

CHR-P studies

Forest plot

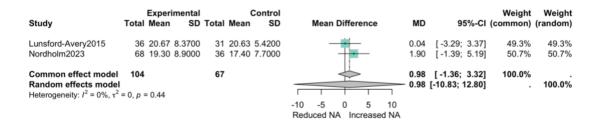


Figure 76

Number of studies: k = 2

Number of observations: o = 171 (o.e = 104, o.c = 67)

MD 95%-CI z|t p-value

Common effect model 0.9833 [-1.3572; 3.3239] 0.82 0.4103 Random effects model 0.9833 [-10.8322; 12.7989] 1.06 0.4822 Prediction interval

Quantifying heterogeneity:

tau^2 = 0; tau = 0; I^2 = 0.0%; H = 1.00

Test of heterogeneity:

Q d.f. p-value

0.61 1 0.4362

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Hartung-Knapp adjustment for random effects model (df = 1)

Outliers and heterogeneity

Identified outliers (fixed-effect model)

"Martin2005"

Results with outliers removed

Review: NA

Number of studies: k = 4

Number of observations: o = 273 (o.e = 155, o.c = 118)

MD 95%-CI z|t p-value

Common effect model 0.5947 [0.2776; 0.9118] 3.68 0.0002 Random effects model 0.5947 [0.3124; 0.8771] 6.70 0.0068 Prediction interval [-0.1014; 1.2908]

Quantifying heterogeneity:

tau^2 = 0 [0.0000; 15.6073]; tau = 0 [0.0000; 3.9506] I^2 = 0.0% [0.0%; 84.7%]; H = 1.00 [1.00; 2.56]

Test of heterogeneity:

Q d.f. p-value 0.90 3 0.8249

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 3)
- Prediction interval based on t-distribution (df = 2)

Identified outliers (random-effects model)

Results with outliers removed

Review: NA

Number of studies: k = 5

Number of observations: o = 329 (o.e = 183, o.c = 146)

MD 95%-CI z|t p-value

Common effect model 0.6721 [0.3578; 0.9864] 4.19 < 0.0001 Random effects model 1.6937 [-1.0841; 4.4716] 1.69 0.1657 Prediction interval [-5.1262; 8.5137]

Quantifying heterogeneity:

tau^2 = 3.4226 [0.2012; 41.9570]; tau = 1.8500 [0.4485; 6.4774] I^2 = 71.3% [27.3%; 88.7%]; H = 1.87 [1.17; 2.97]

Test of heterogeneity:

Q d.f. p-value 13.92 4 0.0075

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau

- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 3)

Influence analyses

Baujat plot

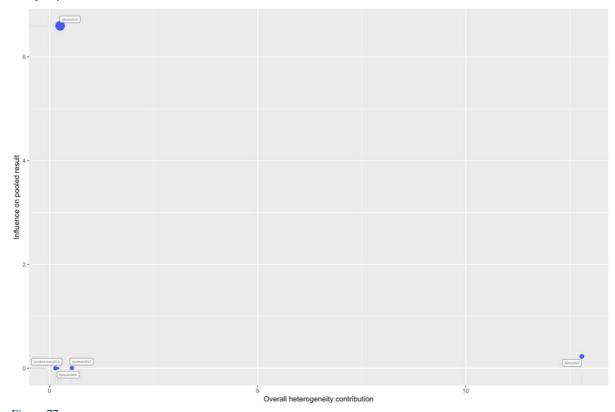


Figure 77

Influence diagnostics

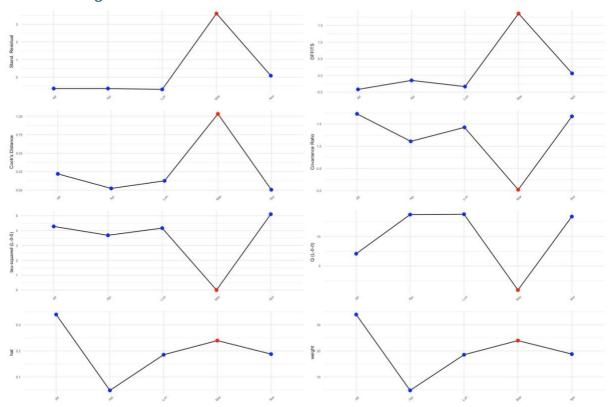


Figure 78

QUALITY OF SLEEP - SMD PSQI and AIS

Forest plot – all studies

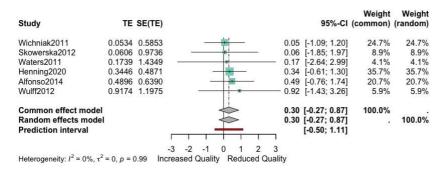


Figure 79

95%-CI %W(common) %W(random)
Alfonso2014 0.4896 [-0.7629; 1.7421] 20.7 20.7
Henning2020 0.3446 [-0.6101; 1.2993] 35.7 35.7
Skowerska2012 0.0606 [-1.8476; 1.9687] 8.9 8.9

Waters2011 0.1739 [-2.6383; 2.9862] 4.1 4.1 Wichniak2011 0.0534 [-1.0938; 1.2006] 24.7 24.7 Wulff2012 0.9174 [-1.4296; 3.2644] 5.9 5.9

Number of studies: k = 6

95%-CI z p-value

Common effect model 0.3042 [-0.2659; 0.8742] 1.05 0.2957 Random effects model 0.3042 [-0.2659; 0.8742] 1.05 0.2957 Prediction interval [-0.5034; 1.1117]

Quantifying heterogeneity:

tau^2 = 0; tau = 0; I^2 = 0.0% [0.0%; 74.6%]; H = 1.00 [1.00; 1.99]

Test of heterogeneity:

Q d.f. p-value 0.61 5 0.9877

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Prediction interval based on t-distribution (df = 4)

Funnel plot

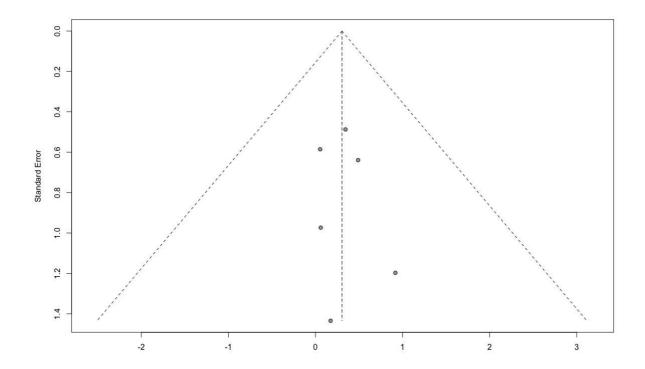


Figure 80

Eggers' test

intercept 95% CI t p 0.157 -0.72 - 1.03 0.351 0.7432214

Eggers' test does not indicate the presence of funnel plot asymmetry.

Baujat Plot

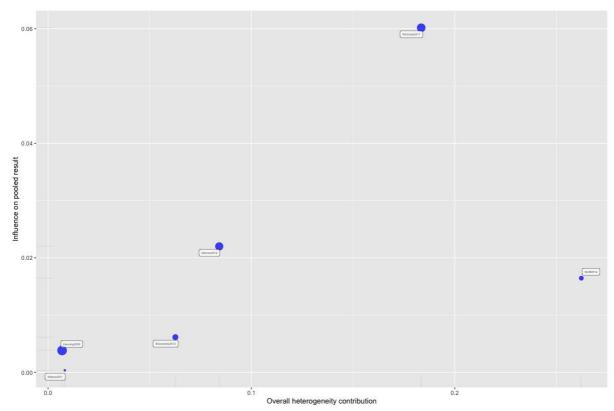


Figure 81

Influence analyses

Figure 82

SSD studies

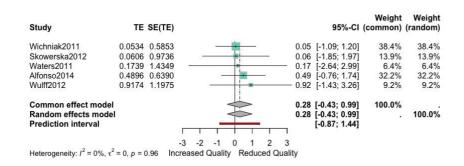


Figure 83

95%-CI %W(common) %W(random) Alfonso2014 0.4896 [-0.7629; 1.7421] 32.2 32.2 Skowerska2012 0.0606 [-1.8476; 1.9687] 13.9 13.9 Waters2011 0.1739 [-2.6383; 2.9862] 6.4 6.4 Wichniak2011 0.0534 [-1.0938; 1.2006] 38.4 38.4 Wulff2012 0.9174 [-1.4296; 3.2644] 9.2 9.2

Number of studies: k = 5

95%-CI z p-value

Common effect model 0.2818 [-0.4289; 0.9924] 0.78 0.4371 Random effects model 0.2818 [-0.4289; 0.9924] 0.78 0.4371 Prediction interval [-0.8722; 1.4357]

Quantifying heterogeneity:

tau^2 = 0 [0.0000; 0.1555]; tau = 0 [0.0000; 0.3943] I^2 = 0.0% [0.0%; 79.2%]; H = 1.00 [1.00; 2.19]

Test of heterogeneity:

Q d.f. p-value 0.60 4 0.9634

Details on meta-analytical method:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Prediction interval based on t-distribution (df = 3)

CHR-P

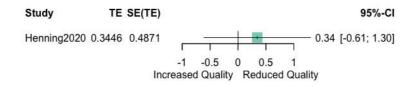


Figure 84

95%-CI z p-value Henning2020 0.3446 [-0.6101; 1.2993] 0.71 0.4793.

PRISMA 2020 Checklists

PRISMA 2020 Main Checklist

Торіс	No.	Item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			

Topic	No.	Item	Location where item is reported
Abstract	2	See the PRISMA 2020 for Abstracts checklist	Page 2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Pages 4 - 5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Pages 5-6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 5
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 5, Supplemental Materials
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Pages 5-6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Pages 5-6
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Pages 5-6

Торіс	No.	Item	Location where item is reported
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Pages 5-7
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item 5)).	Pages 5-7
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Pages 5-7
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Pages 5-7
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Pages 5-7
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, metaregression).	Pages 5-7
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Pages 5-7
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 7
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Pages 5-7
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 8, Figure 1 - PRISMA 2020 flow diagram for systematic review

Topic	No.	Item	Location where item is reported
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Figure 1
Study characteristics	17	Cite each included study and present its characteristics.	Table 1 Supplemental Materials
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Page 8, Supplemental Materials
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Pages 9-11, Figures 2a, 2b, 3a, 3b, 4a, 4b
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Pages 9-11, Figures 2a, 2b, 3a, 3b, 4a, 4b, Supplemental Materials
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Pages 9-11, Figures 2a, 2b, 3a, 3b, 4a, 4b, Supplemental Materials
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Pages 9-11, Figures 2a, 2b, 3a, 3b, 4a, 4b, Supplemental Materials
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Pages 9-11, Figures 2a, 2b, 3a, 3b, 4a, 4b, Supplemental Materials
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Supplemental Materials
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Supplemental Materials
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Pages 11-16
	23b	Discuss any limitations of the evidence included in the review.	Page 14

Topic	No.	Item	Location where item is reported
	23c	Discuss any limitations of the review processes used.	Page 14-15
	23d	Discuss implications of the results for practice, policy, and future research.	Pages 15-16
OTHER INFORMATION			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 5
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 5
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	None
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	17
Competing interests	26	Declare any competing interests of review authors.	Page 17
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Supplemental Materials

PRISMA Abstract Checklist

Topic	No.	Item	Reported?
TITLE			
Title	1	Identify the report as a systematic review.	Yes
BACKGROUND			
Objectives	2	Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Yes
METHODS			
Eligibility criteria	3	Specify the inclusion and exclusion criteria for the review.	No

Topic	No.	Item	Reported?
Information sources	4	Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last searched.	Yes
Risk of bias	5	Specify the methods used to assess risk of bias in the included studies.	Yes
Synthesis of results	6	Specify the methods used to present and synthesize results.	Yes
RESULTS			
Included studies	7	Give the total number of included studies and participants and summarise relevant characteristics of studies.	Yes
Synthesis of results	8	Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which group is favoured).	Yes
DISCUSSION			
Limitations of evidence	9	Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Yes
Interpretation	10	Provide a general interpretation of the results and important implications.	Yes
OTHER			
Funding	11	Specify the primary source of funding for the review.	Yes
Registration	12	Provide the register name and registration number.	No

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. MetaArXiv. 2020, September 14. DOI: 10.31222/osf.io/v7gm2. For more information, visit: www.prisma-statement.org

Sensitivity analyses accounting for RoB (excluding studies with a high risk of bias)

Total sleep time

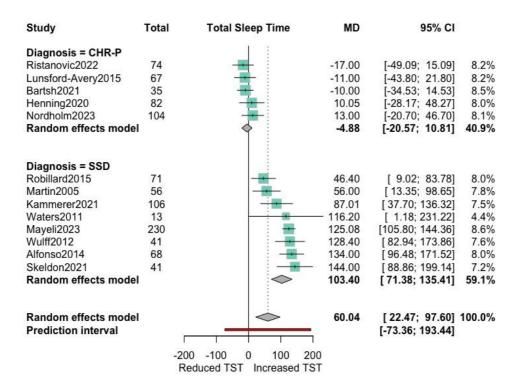


Figure 85

Review: Total Sleep time (TST) - Filtered

Number of studies: k = 13

Number of observations: o = 988 (o.e = 529, o.c = 459)

MD 95%-CI t p-value

Random effects model 60.0375 [22.4701; 97.6049] 3.48 0.0045

Prediction interval [-73.3627; 193.4378]

Quantifying heterogeneity (with 95%-Cls):

 $tau^2 = 3444.2049 \, [1531.1235; \, 9918.6617]; \, tau = 58.6873 \, [39.1296; \, 99.5925]$

I² = 92.7% [89.2%; 95.0%]; H = 3.69 [3.05; 4.48]

Test of heterogeneity:

Q d.f. p-value 163.82 12 < 0.0001

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2

Diagnosis = CHR-P 5 -4.8827 [-20.5731; 10.8078] 0 0 2.52 0.0%

Diagnosis = SSD 8 103.3953 [71.3772; 135.4134] 1046.4838 32.3494 24.11 71.0%

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 54.46 1 < 0.0001

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 12)
- Prediction interval based on t-distribution (df = 12)

Time in bed

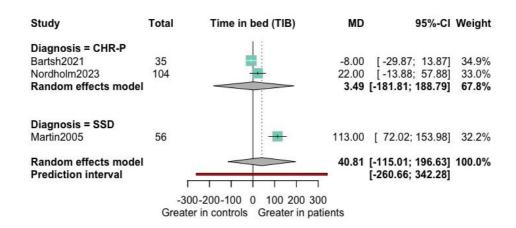


Figure 86

Review: TIB

Number of studies: k = 3

Number of observations: o = 195 (o.e = 115, o.c = 80)

MD 95%-CI t p-value

Random effects model 40.8085 [-115.0084; 196.6254] 1.13 0.3768

Prediction interval [-260.6638; 342.2808]

Quantifying heterogeneity (with 95%-Cls):

tau^2 = 3608.3567 [751.4271; >36083.5671]; tau = 60.0696 [27.4122; >189.9568] I^2 = 92.3% [80.8%; 96.9%]; H = 3.61 [2.28; 5.71]

Test of heterogeneity:

Q d.f. p-value 26.09 2 < 0.0001

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2

Diagnosis = CHR-P 2 3.4895 [-181.8106; 188.7896] 220.1494 14.8374 1.96 48.9%

Diagnosis = SSD 1113.0000 [72.0195; 153.9805] -- -- 0.00 --

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 18.45 1 < 0.0001

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 2)
- Prediction interval based on t-distribution (df = 2)

Sleep Efficiency

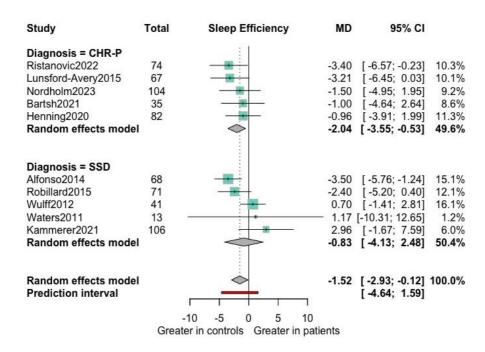


Figure 87

Review: Efficiency

Number of studies: k = 10

Number of observations: o = 661 (o.e = 359, o.c = 302)

MD 95%-CI t p-value

Random effects model -1.5228 [-2.9293; -0.1163] -2.45 0.0368 Prediction interval [-4.6385; 1.5929]

Quantifying heterogeneity (with 95%-Cls): $tau^2 = 1.4735$ [0.0000; 10.7059]; tau = 1.2139 [0.0000; 3.2720] $t^2 = 35.7\%$ [0.0%; 69.3%]; tau = 1.25 [1.00; 1.81]

Test of heterogeneity:

Q d.f. p-value 13.99 9 0.1226

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2 Diagnosis = CHR-P 5 -2.0374 [-3.5468; -0.5281] 0 0 2.13 0.0% Diagnosis = SSD 5 -0.8252 [-4.1296; 2.4793] 4.6345 2.1528 11.06 63.8%

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 0.86 1 0.3542

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 9)
- Prediction interval based on t-distribution (df = 9)

Sleep Latency

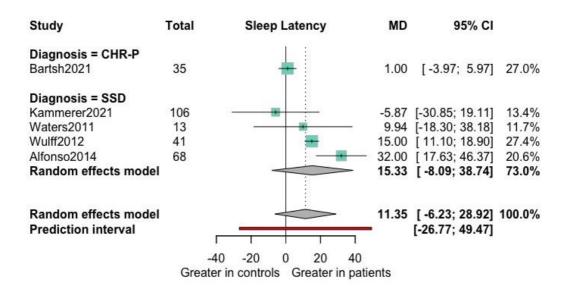


Figure 88

Review: latency

Number of studies: k = 5

Number of observations: o = 263 (o.e = 146, o.c = 117)

MD 95%-CI t p-value

Random effects model 11.3479 [-6.2271; 28.9228] 1.79 0.1475

Prediction interval [-26.7743; 49.4700]

Quantifying heterogeneity (with 95%-Cls):

 $tau^2 = 147.1323 \ [23.6023; > 1471.3235]; \ tau = 12.1298 \ [4.8582; > 38.3578]$

I^2 = 86.4% [70.4%; 93.8%]; H = 2.71 [1.84; 4.00]

Test of heterogeneity:

Q d.f. p-value

29.39 4 < 0.0001

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2

Diagnosis = CHR-P 1 1.0000 [-3.9703; 5.9703] -- -- 0.00 --

Diagnosis = SSD 4 **15.3285** [-8.0871; 38.7441] 129.0279 11.3590 8.09 62.9%

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 3.39 1 0.0656

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 4)
- Prediction interval based on t-distribution (df = 4)

Wakefulness After Sleep Onset

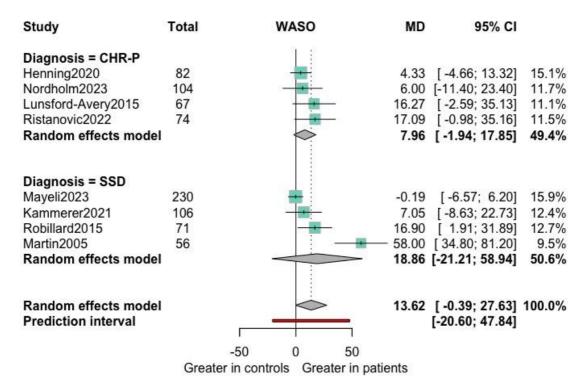


Figure 89

Review: WASO

Number of studies: k = 8

Number of observations: o = 790 (o.e = 430, o.c = 360)

MD 95%-CI t p-value

Random effects model 13.6192 [-0.3904; 27.6288] 2.30 0.0551

Prediction interval [-20.6002; 47.8385]

Quantifying heterogeneity (with 95%-CIs):

tau^2 = 179.1711 [45.0586; 1273.0228]; tau = 13.3855 [6.7126; 35.6794]

I^2 = 74.6% [48.7%; 87.4%]; H = 1.98 [1.40; 2.82]

Test of heterogeneity:

Q d.f. p-value 27.57 7 0.0003

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2

Diagnosis = CHR-P 4 7.9574 [-1.9391; 17.8539] 0 0 2.40 0.0%

Diagnosis = SSD 4 18.8629 [-21.2140; 58.9398] 533.2640 23.0925 24.95 88.0%

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 0.71 1 0.4005

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 7)
- Prediction interval based on t-distribution (df = 7)

Nighttime awakenings

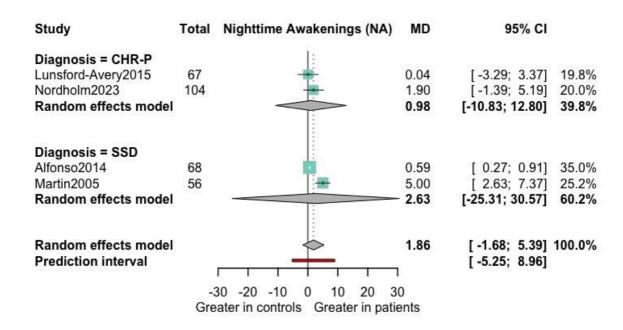


Figure 90

Review: NA

Number of studies: k = 4

Number of observations: o = 295 (o.e = 166, o.c = 129)

MD 95%-CI t p-value

Random effects model 1.8563 [-1.6815; 5.3941] 1.67 0.1935

Prediction interval [-5.2487; 8.9613]

Quantifying heterogeneity (with 95%-CIs):

tau^2 = 3.6849 [0.3680; 66.8912]; tau = 1.9196 [0.6067; 8.1787]

 $I^2 = 78.1\% [41.0\%; 91.9\%]; H = 2.14 [1.30; 3.51]$

Test of heterogeneity:

Q d.f. p-value

13.72 3 0.0033

Results for subgroups (random effects model):

k MD 95%-Cl tau^2 tau Q l^2

Diagnosis = CHR-P 2 0.9833 [-10.8322; 12.7989] 0 0 0.61 0.0%

Diagnosis = SSD 2 2.6320 [-25.3085; 30.5725] 8.9786 2.9964 13.04 92.3%

Test for subgroup differences (random effects model):

Q d.f. p-value

Between groups 0.48 1 0.4899

Details of meta-analysis methods:

- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 3)
- Prediction interval based on t-distribution (df = 3)