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Abstract

Differentiating the ability from the motivation to act is of central importance to psychiatric dis-

orders in general and depression in particular. However, it has been difficult to develop

quantitative approaches to relate depression to poor motor performance in goal-directed

tasks. Here, we use an inverse optimal control approach to provide a computational frame-

work that can be used to infer and factorize performance deficits into three components:

sensorimotor speed, goal setting and motivation. Using a novel computer-simulated driving

experiment, we found that (1) severity of depression is associated with both altered sensori-

motor speed and motivational function; (2) moderately to severely depressed individuals

show an increased distance from the stop sign indicating aversive learning affecting goal

setting functions. Taken together, the inverse optimal control framework can disambiguate

on an individual basis the sensorimotor from the motivational dysfunctions in depression,

which may help to develop more precisely targeted interventions.

Introduction

Sensorimotor skills, motivation, and goal setting can all affect performance in complex ways. It

is important to distinguish their effects to understand observed individual differences in any

goal-directed motor task. At present, most of the experimental paradigms are restricted to

observing the behavior of discrete actions and using reaction time as the measure for perfor-

mance. However, it is difficult to distinguish those factors from discrete actions or reaction

time, because those factors jointly influence both the cognitive control (movement planning)

and movement execution [1]. For example, in a goal-directed motor task, a slower action may

be caused by slower movement execution due to impaired sensorimotor system; or by different

goals, for instance, minimizing the control noise with slower velocity; or lack of motivation,

i.e., not willing to spend effort to achieve the goal. Thus it is difficult to investigate their indi-

vidual influence from the confounded result.

Dissociating how these three factors conspire to explain observed behavior has profound

implications for the treatment of mood disorders [2], such as major depressive disorder
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(MDD). Mood [2] and anxiety [3] disorders will account for approximately $16 trillion lost

productivity or 25% of global GDP over the next 20 years [4] and are among the most common

and devastating mental health conditions worldwide. The clinical presentation of depression

can be remarkably varied, with some MDD patients exhibiting anhedonia, sleeplessness,

excessive guilt, and psychomotor slowing, while other MDD patients exhibit hypersomnia,

heightened interpersonal sensitivity, and psychomotor agitation. There is no evidence that

antidepressants have direct motor effects [5, 6]. There is a possibility that SSRI or other antide-

pressants indirectly affect motor behavior via their changes in mood, motivation, or executive

functioning, although the evidence is weak [7]. On the other hand, there is strong evidence

that anti-anxiety medications, e.g. benzodiazepines, have significant effects on motor behavior

in general and driving behavior in particular [6,7]. Thus, one would need to assess these effects

in depressed individuals who are receiving these medications. Unfortunately, traditional diag-

nostic methods, like self-reports, clinician ratings, and performance in simple tasks, were not

designed to disambiguate the effect of these three factors. It is therefore not surprising that

conflicting evidence has been found regarding the extent to which depression is associated

with sensorimotor, motivation, and/or goal-setting factors [8]. Thus, a precise delineation of

these deficits can help to develop more targeted interventions in the future.

We previously compared the performance of healthy controls and depressed individuals in

a simulated driving task [9], where subjects were instructed to drive a virtual car to a stop sign

as quickly as possible and stop as close as possible. In this task depressed individuals stopped

further away from a stop sign. However, it may be interpreted in several possible ways. For

example, this difference could be caused by slower speed to execute acceleration/deceleration

actions, or by different performance criterions due to avoidance motivation, e.g., further

intended stopping distance, or less effort one is willing to spend to achieve the intended stop-

ping distance. Thus it is important to disentangle those factors to explain the causes of the

observed behavioral difference. Here, we aim to further infer and isolate the cognitive pro-

cesses underlying altered goal-directed behavior in depression, by developing an experimental

paradigm that can independently assess sensorimotor speed, motivation, and goal setting func-

tions, and applying a computational framework that can disambiguate their effect on observed

behavior.

Optimal control theory has been shown to be an effective computational framework to

understand goal-oriented human behavior in a wide range of tasks, from eye-movements to

complex object manipulation [10, 11]. This approach frames goal-oriented behavior as the

solution to a constrained optimization problem in which a sensorimotor system (the human

body) is used to maximize the achievement of a desired goal state while minimizing effort. The

solution to this problem takes the form of a feedback controller that maps moment by

moment, the history of sensory information into sequences of motor commands (Fig 1). In

robotics this framework is typically used to develop control systems for robots to achieve pre-

defined goals at minimum energy cost [12, 13]. The approach is also used in reverse engineer-

ing problems to infer the goals, costs, and algorithms that drive the behavior of a complex

black-box system [14]. This is known as “inverse optimal control”. This inverse approach pro-

vides a mathematical model of how sensorimotor, motivational and goal-setting influences

interact with each other to produce goal-oriented behavior.

To independently assess sensorimotor, goal-setting, and motivation factors, we designed a

two-task experiment based on the previous paradigm (Fig 1). In Task 1, the car would start to

move from stationary state (at different speeds) and participants were instructed to push a joy-

stick to an instructed position as soon and as quickly as possible once they observed motion of

the car. In Task 2, similar as in previous study, subjects were instructed to drive the car as

quickly and as close as possible to a stop sign. Task 1 is aimed to measure individual’s
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sensorimotor speed parameters, and Task 2 is aimed to measure motivation and goal setting

parameters. We hypothesize that depressive behavior maybe reflected by changes in sensori-

motor, motivation, and/or goal setting parameters.

Materials and Methods

Participants

66 college students (20 male and 46 female subjects, mean age (years) 20.6, std = 2.04, range

18–27) participated this study (approved by the Human Research Protections Program at Uni-

versity of California San Diego) in Fall quarter 2013 and Winter & Spring quarter 2014. They

signed up through UCSD SONA system (an online experiment scheduling system used to

recruit subjects in UCSD), completed phone-screening and on-line BDI (Beck Depression

Inventory, BDI-II, [15]) measure. We aimed to recruit about 25% of participants with no sig-

nificant depression level (i.e., BDI score<6) while the remaining part of recruited participants

needed a BDI score >7. Other inclusion criteria included: being in good general health on the

basis of brief review of medical history, and sufficient proficiency in English to understand

and complete all study procedures. Exclusion criteria included: lifetime history of psychotic,

bipolar or obsessive-compulsive disorder, history of current alcohol or substance dependence,

recent history of (i.e., within last 6 months) or currently taking any antidepressant or

Fig 1. Computational framework and experiment design. a. Inverse optimal control framework. b. Task 1. c. Task 2.

doi:10.1371/journal.pone.0167960.g001
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psychotropic medications (except occasional sleep aid). Qualified subjects signed the informed

consent, and completed the experiment (with a second BDI measured prior to the task) in the

lab, and were compensated by 2 course credits. Their onsite BDI range from 0 to 39 with mean

BDI = 12.59 (std = 10.55), median BDI = 10. For each parameter, we used both continuous

BDI as the dependent variable and also examined depression groups based on Beck AT et al.

1996 [15] as follows: Non-dep (0�BDI�5, n = 17), Min-mild dep (6�BDI�19, n = 33), Mod-

dep (20�BDI�28, n = 9), and Sev-dep (29�BDI�63, n = 7).

Experiment

Subjects completed two tasks in this experiment. Both tasks were computerized tasks pro-

grammed using MATLAB (Mathworks) and the Psychophysics Toolbox on a 15 inch Mac-

Book Pro. Subjects performed Task 1 twice (120 trials, before and after Task 2). In each trial, a

car would appear on the bottom of the screen, and subjects were instructed to push the joystick

from resting position forward to the maximum position as quickly as possible once they

observe the car move. Each trial started with a 3-second countdown and a random waiting

interval (1–3 seconds), then the car would start to move at a randomly selected speed (.01-.3

cm/second). Car speed range was picked to ensure an exponential decay of response time as

the car speed increases. Trials ended once subjects pushed the joystick at its maximum forward

position. For Task 2, subjects completed 60 trials split into 3 blocks of 20 trials each. In each

trial, subjects were instructed to drive a virtual car as quickly as possible and stop at a stop sign

(distance: 10.62 cm) without crossing the stop-line, with a fixed time window of 10-second.

Each trial started with a 3-second countdown and ended when time ran out, with no perfor-

mance feedback (e.g., points) in the end. Premature action on the joystick before the trial starts

(i.e. holding the joystick in the maximum position) was considered as a false start and would

abort and restart the current trial. They were given a 10 seconds practice to familiarize with

the joystick control during instruction session. The car has a linear dynamic system, in which

the car position is controlled by continuous joystick position. We recorded their continuous

actions using a gaming joystick (Thrust-master HOTAS Warthog Flight Stick). The goal of

Task 1 is to measure individual’s sensorimotor speed, and the goal of Task 2 is to apply inverse

optimal control model to recover reward-function in a goal-directed task (see Fig 1).

Models

An inverse optimal control model was used to distinguish sensorimotor speed, goal setting

and motivational effects in observed behavior. To achieve that, we first assessed individual’s

sensorimotor system by estimating their sensory speed and motor speed in Task 1. Then we

estimated their goal state (intended stopping distance) and motivation (the amount effort one

is willing to spend to achieve the goal state) in the reward function in Task 2, taking account of

the sensory and motor speed parameters from Task 1. Model simulation for the effects of the

three parameters of interest is shown in Figure A in S1 Fig.

Sensory-motor speed. Task 1 was designed to estimate sensory speed γ and motor speed

β. Sensory speed measures the delay between the actual car position and the observed car posi-

tion. Faster sensory speed will improve how fast sensory information was used in estimating

the car’s state (e.g. position, velocity). Motor speed measures the lag between the desired action

and the actual action. Faster motor speed will improve how quickly motor command on the

joystick was carried out.

We model subjects’ perceived car position Yt as a delayed true car position Xt due to the

limit of sensory processing speed γ. The higher the γ, the closer the perceived car position Yt is

to the true car position Xt. We assume subjects will decide the car starts moving once the

Inverse Model of Depressed Motor Control in a Goal-Directed Task
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perceived car position Yt reaches a position threshold Xthd. Thus the minimal time for the per-

ceived car position Yt to reach the threshold Xthd is reaction time RT:

Perceived car position Yt:

dYt ¼ gðXt � YtÞdt ð1Þ

Reaction Time:

RT ¼ argmintfYt � Xthdg ð2Þ

We model joystick position Ct as a delayed execution from target joystick position Utarget,

due to the limit of motor execution speed β. The higher the β, the closer joystick action is to

the desired target position. Thus the minimal time for Ct to reach Utarget is movement time:

Joystick position Ct:

dCt ¼ bðUtarget � CtÞdt ð3Þ

Movement Time:

MT ¼ argmintfCt � Utargetg ð4Þ

In above equations, Xt (true car position), RT (reaction time to car motion-onset), Ct
(recorded joystick position), Utarget (target position) and MT (movement time) are known.

Reaction time to car motion-set and true car position were used to recover γ, and recorded joy-

stick action and movement time were used to recover β, by applying Maximum Likelihood

Estimation (i.e. optimizing over γ, β over predicted reaction time, movement time and

observed data.).

Goal state and motivation. Task 2 was designed to estimate individual’s reward-function.

It is a function of goal stopping distance (goal state) and the ratio between internal reward for

achieving the goal and the energy expenditure (motivation). Goal state measures individual’s

intended stopping distance from the stop sign. Motivation measures individual’s willingness to

reach the goal stopping distance. In a quadratic reward function, goal represents the optimal

point of the reward function, and motivation represents the hessian of the reward function.

We formulate the driving task as a Linear Quadratic Gaussian (LQG) problem[16] with a lin-

ear dynamic system taking into account of the sensorimotor speed estimated from Task 1, and

a quadratic reward function of goal and motivation.

Assuming the driving task as a linear dynamic system Eq (1) with a partial hidden state Xt
and observable feedback Zt, in which Xt is a vector including the (hidden) true car distance to

target stopping position at time t, joystick action at time t, and perceived car distance to target

stopping position at time t.
Linear dynamic system:

dXt ¼ AXtdt þ BUtdt ð5Þ

Observation:

Zt ¼ CXt þ Vt ð6Þ

In which, A is a dynamics matrix with motor and perceptual speed estimated from Task 1

and parameters of car dynamics (assuming known), B is input matrix which takes into consid-

eration of subject’s motor speed, Ut is the optimal internal action command, and Vt is Gauss-

ian noise. Model details are provided in S1 appendix.

Inverse Model of Depressed Motor Control in a Goal-Directed Task
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We assume the reward function r (Xt, Ut) is a quadratic function of current state Xt and

action Ut Eq (7). It evaluates current state Xt based on its distance from the goal state (G) and

the ratio of the weight on this distance over the energy expenditure, which is defined as moti-

vation M in our framework.

Reward function:

rðXt;UtÞ ¼ gðXt;G;MÞ � U2

t ð7Þ

Statistical analysis approach

To examine the influence of depression severity on sensorimotor speed, goal setting and moti-

vation, for each of the parameter, we first performed linear regression using BDI as the depen-

dent measure, and then conducted ANOVA for depressive groups analysis. For goal setting

and motivation parameter, we used linear mixed effect models [17] with subject modeled as a

random effect, and examined the main effect of depression using BDI as fixed effect, and the

interaction between BDI and block using BDI and block as fixed effects.

Results

Sensorimotor parameters

We estimated sensory speed from reaction time to car motion-onset (Eqs 1 and 2 in Material

and Methods), and motor speed from recorded joystick position and time used to push the

joystick to the target position (Eqs 3 and 4 in Material and Methods) in Task 1. Using BDI as

the independent measure (Fig 2), both sensory speed and motor speed decrease significantly

as depression severity increases (Sensory speed: R2 = .13, F(1,64) = 9.49, p = 9.49, p = .003;

Fig 2. Sensorimotor speed. a. Sensory speed. b. Motor speed.

doi:10.1371/journal.pone.0167960.g002
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Motor speed: R2 = .17, F(1,64) = 13.1, p< .001). These results are consistent with a relatively

longer reaction time to car motion-onset (R2 = .04, F(1,64) = 2.97, p = .08, n.s.) and a signifi-

cantly longer movement time from resting to maximum forward position of the joystick

(R2 = .18, F(1,64) = 13.8, p< .001). Separating by depressive groups, a one-way ANOVA

among depressive groups also showed there was a significant main effect of depression on sen-

sory speed (F(3,62) = 5.01, p = .004) and motor speed (F(3,62) = 6.4, p = .001). Group compari-

sons of sensorimotor speed are shown in Figure B in S1 Fig.

Goal setting parameter

The goal-setting parameter here reflects the participants intended stop location, which was

measured as distance from the stop sign. Negative values indicate that the participant intended

to stop before the stop sign and positive values that he/she intended to stop after the stop sign.

For each subject, we estimated their goal stopping position in each of the three experimental

blocks. As shown in Fig 3a, individuals’ mean goal stopping position negatively correlates with

BDI (R2 = .27, F(1,64) = 23.79, p< .001), which indicates as depression severity increases, sub-

jects intended to stop further away from the stop sign. A one-way ANOVA among depressive

groups also showed there was a significant main effect of depression on goal stopping position

(F(3,62) = 10.91, p< .001, in Figure C in S1 Fig).

Using a linear mixed effect model, with subject modeled as a random effect and BDI as

fixed effect, we found a significant negative effect of BDI (B = −.009, p< .001) on subjects’ goal

stopping positions. Additionally, we also investigated how depression affected behavior over

time in the three experimental blocks (Fig 3b). With subject modeled as a random effect, BDI

and block as fixed effects in the linear mixed effect model, we found a significant interaction

between BDI and block (F(2,132) = 8.43, p< .001) while no main effect of block was found

(F(2,132) = .38, p> .1). Results of the full model are displayed in Table 1.

More specifically, comparing to Block 1, Non-dep individuals had significantly closer goal

distance in Block 2 (B = .02, p = .003), while Mod-dep individuals had significant further goal

distance in Block 2 (B = −.07, p< .001). Sev-dep individuals had significant further goal dis-

tance both in Block 2 (B = −.18, p = .002) and Block 3 (B = −.36, p< .001). No significant

change in Mid-dep group over blocks was observed (p> .1).

Motivation parameter

Taking into account sensorimotor speed and goal state, motivation parameter for each indi-

vidual subject was estimated in each of the three experimental blocks. Using BDI as the depen-

dent measure, we found that mean motivation (log-transformed) has a mildly negative

correlation with depressive severity (R2 = .06, F(1,64) = 4.31, p = .04, B = −.03, Fig 3c). A one-

way ANOVA among depressive groups showed there was no significant main effect of depres-

sion group on motivation (F(3,62) = .69, p> .1). For comparison, we also examined how it

would be reported differently if not considering individual differences in sensorimotor speed

and goal state. In fact, in this case, the mean motivation (log-transformed) would have a stron-

ger negative correlation with BDI (R2 = .16, F(1,64) = 11.76, p = .001, B = −.06, Fig 3d), and the

one-way ANOVA would report a significant main effect of depression severity on motivation

(F(3,62) = 3.3, p> .0.3). Next, using a linear mixed effect model, with subject modeled as a ran-

dom effect, BDI and block as fixed effects, we found a significant block effect on motivation

(F(2,132) = 6.91, p = .001, in Figure D in S1 Fig, while no significant interaction between BDI

and block was found (p> .1).

Additionally, we examined the accumulative action (measured by accumulated joystick

position in each trial) across blocks in each depressive group and found that non-dep (p = .05)

Inverse Model of Depressed Motor Control in a Goal-Directed Task
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and mid-dep (p = .03) groups had increased action over blocks. However, there was no signifi-

cant change in action between Mod and Sev-dep groups. Based on the accumulative action

cost generated from different reward functions, model simulation suggests optimal action cost

increases as the goal stopping distance decreases (closer to stop-sign) and as motivation

increases (willing to spend more effort to achieve goal stopping distance). Taking into account

each individual reward function with previously estimated goal state and motivation, we can

map their optimal action cost estimated from the model. Result shows depressed individuals

used the reward function that associated with the lowest action cost and is significantly lower

from non-dep group (T(23) = −2.8799, p = .0085). Model simulation and mapped action cost

is shown in Figure E in S1 Fig). A summary of correlation among model parameters and BDI

Fig 3. Goal stopping position and motivation estimated from Task 2. a. Average goal stopping position across blocks as a function of

BDI. b. Goal stopping position over time in three blocks in four depressive groups. c. Estimated motivation for each subject, taking into

consideration of individual differences in both sensorimotor speed and goal state. d. Estimated motivation for each subject, not considering

individual differences in sensorimotor speed and goal state.

doi:10.1371/journal.pone.0167960.g003
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(pairwise mutual information [18] and correlation coefficient) is provided in Figure F in

S1 Fig.

Discussion

We used an inverse optimal control modeling approach to parse the observed simulated driv-

ing behavior of individuals with a range of depressive symptoms, into three independent com-

ponents: sensorimotor speed, goal-setting, motivation. We found that, relative to healthy

controls, individuals with depressive symptom severity showed (a) slower sensorimotor speed

and attenuated motivation, (b) increasing goal distance from the instructed target. This study

is based on the notion that computational psychiatry approaches [19] aimed at arriving at a

computational account of how psychiatric disorders impair neural and cognitive dysfunction

[20] can be useful to disambiguate complex behavioral syndromes. In particular, the current

results show that motivational components can be clearly delineated from psychomotor speed,

which is important for the interpretation of psychiatric deficits.

Sensorimotor parameters

Our results are consistent with prior work suggesting that depressed individuals have impaired

sensorimotor pathways [8, 21], and suggest a tangible impact on complex goal-directed actions

such as driving, independently of motivational factors. In fact, psychomotor retardation is one

of the core symptoms in Major Depressive Disorder [22]. For example, relative to healthy con-

trols, depressed individuals exhibit increased reaction times [1] and lower velocity [23] (for a

comprehensive review, see [24]). However, traditional experimental methods often fail to

identify whether slowing is from pure motor factors and/or from effort-based motivational

factors, since motor slowing affects both motor and cognitive processes [1, 25]. Thus distin-

guishing the ability to act (motor slowing) from the motivation to act (motivation deficits) is

critical in examining the impact of depression on performance in goal-directed motor tasks.

The experimental paradigm proposed in this study provides one solution to this problem, by

assessing independently the motor component from the (effort-based) motivation in a dual-

task design. Since goal setting and motivation influence any human action, we cannot

completely rule out that the behavior observed in Task1 was influenced by individual’s internal

reward function. However, given explicit task instruction and the goal state (push the joystick

to the maximum forward position once you see the car starts moving) in the absence of explicit

positive or negative valence outcomes, we assume the behavior reflects the individuals’ baseline

sensorimotor ability with a minimal influence of subjective reward function. Although the

observed sensorimotor speed may be influenced by individual’s motivation, using the baseline

Table 1. Fixed effects for model predicting goal stop distance.

Parameter Estimate Pr (> |t|)

Intercept -0.109659 0.00229 **

BDI -0.005150 0.01801 *

Block_2 0.022257 0.46902

Block_3 0.043060 0.16239

BDI: Block_2 -0.004434 0.01926 *

BDI: Block_3 -0.007652 7.5e-05 ***

* < .5,

**: < .01,

***: < .001

doi:10.1371/journal.pone.0167960.t001
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sensorimotor ability as a covariate provides a within-subject control for Task 2 (i.e. relative to

Task1). It is also worth noting that without controlling for the motor factor, we would have

concluded very different result of the motivation parameter with the ANOVA analysis (e.g.,

Fig 3d). However, in the future it will be interesting to explore how individual’s motor speed

may be affected by motivation in different context. For example, with reward or punishment

associated with movement time. Our results provide support for helping depressed patients

with impaired sensorimotor function, for instance by encouraging increased physical activity,

which could be considered as one possible targeted intervention to improve patients with

slower sensorimotor speed. Structured exercise is indeed one of the non-pharmacological

interventions, which has proven helpful for depressed mood [26].

Goal setting parameters

We found that, as depression severity increased, participants set goals further and further away

from the stopping sign (and closer to self). Note that with no significant change in accumu-

lated action across blocks, this different goal setting in the Sev-dep group is more likely to indi-

cate a higher avoidance motivation rather than increased fatigue. This finding supports earlier

work by Ahrens et al. [27] that depressed subjects (BDI> = 9) set lower personal goals (includ-

ing work, home and social contexts) relative to non-depressed individuals, although there has

been mixed findings in that area [28]. It is important to note, however, that depression is also

associated with a lower tolerance and higher avoidance of negative outcomes [29], which

could explain the observed gradation in distance from target over time among depressed indi-

viduals. For example, depressive individuals learn faster to avoid risky gambles [30] and dem-

onstrate faster motor response to withdraw from negative stimuli such as negative faces [31].

Studies have also shown that depression is associated with more avoidant schemas and emo-

tions [32]. For example, in a history-dependent decision-making task, Maddox et al. 2012 [33]

showed that depression enhances loss-minimization, but not gain-maximization. In particular,

depressed individuals may have a conditionally set goal [34], i.e. framing the task in terms of

avoidance (to not cross the stop sign), as opposed to approach (e.g. to stop as close as possible

to the stop sign). Thus it is possible that in tasks with potential punishment (e.g. crossing the

stop sign), depressed individuals set a closer position goal to avoid ‘failure’ of crossing the line

and minimize loss in the task. In addition, it will lead to higher likelihood of positive self-

reward, which can be critical to maintain behavior without external rewards [27]. Further-

more, this less specific goal setting (i.e. stop further away from the ‘stop-sign’ vs. stop at the

‘stop-sign) is also consistent with recent report by Dickson et al. [35], in which they found that

depressed individuals had reduced specificity of personal goals.

Motivation parameters

Conceptually motivation may be related to ‘arrival time’ of individual’s goal stopping position.

However in our computational framework, motivation was not derived from the arrival time,

but was estimated through a quadratic reward function that is based on inverse LQG frame-

work (Linear-Quadratic-Gaussian), using the continuous action and states recorded in partici-

pants’ data. Controlling the effects of individuals’ sensorimotor speed and goal-state, we found

that in the stop-sign task, there is only mildly negative correlation between BDI and motiva-

tion. In comparison, a stronger negative correlation between BDI and motivation would be

reported if individuals’ sensorimotor speed and goal-state were not controlled. This suggests

that in order to investigate task-specific motivation in a goal-directed motor task, it is impor-

tant to isolate the motor effect independently of the task and also consider individuals’ subjec-

tive goal state in the task. However, one possibility is that one factor may still influence the

Inverse Model of Depressed Motor Control in a Goal-Directed Task
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other, for instance depressed individuals may draw improper conclusion of the degree of lack

of motivation from their slower sensorimotor speed and/or different goal-state. The results

further indicate that motivation deficits may only be present in more severely depressed indi-

viduals, while for individuals with minimal to moderately depression, their behavioral differ-

ence are mainly in sensorimotor slowness and subjective goal setting. Thus, for those non-

severely depressed, the conceptualization of depression as anhedonia and lack of motivation

could be actually secondary to the primary effects depression on the motor system.

Anhedonia is a core symptom of depression and recent work has shown a significant

inverse relationship between anhedonia and the willingness to expend effort to achieve goals

[36]. As shown in our model, both further distance goal to the stop-sign and lower motivation

will lead to lower action costs in the task. This suggests that for minimally to moderately

depressed individuals (i.e., BDI < 29), the lower action cost is caused by setting a more distant

stopping position goal, while for severely depressed individuals (BDI>29), the lower action

cost is a combination of further stopping distance and lower motivation. Thus our findings

provide important evidence of the difference in how anhedonia affects different aspects of an

individual’s reward-function, which can be used to design more effective treatment plans for

anhedonic depressed patients. In addition, to help patients with motivation deficits, finding

proper reinforcement that can encourage subjects to spend more effort to achieve their goals

may be a more promising treatment direction to investigate. Clery-Melin et al. [37] showed

that depressed patients exerted more effort following emotionally arousing pictures, but not

for higher monetary incentives. In future work, we plan to test the usefulness of various types

of reinforcement using our task and to quantify their effects using the inverse optimal control

model.

Limitation

One limitation of the current study is not considering motor learning effect, as it may covary

with goal setting and motivation. For future work, we will take into consideration of motor

learning effect in the model, for example, by including motor noise in the model. Another

limitation of current study includes the use of a self-report clinical measure to assess depres-

sion severity (BDI) and absence of psychiatric diagnostic classification in our sample. While

this makes the relevance and generalization of our results difficult for clinically depressed

individuals at more advanced stages of the disease, this approach emphasizes ecological valid-

ity (i.e., with a range of symptoms in the anxiety/neurotic and anhedonic affective dimen-

sions) and may be particularly useful for early detection efforts of depressive symptomatic

types within young adults at risk for developing full-blown clinical depression. In addition,

examining the current definition of Major Depressive Episode, Watson reported [38] that

although more than half of the DSM symptom criteria are so strongly correlated as to be

nearly interchangeable, the remaining symptoms (e.g., insomnia, appetite loss) are only

weakly to moderately interrelated. In that regard, he found that IDAS, Beck Depression

Inventory, and possibly other depression scales are virtually indistinguishable. Thus, taken

together, although individual depression measures are good indicators of general negative

mood, they are not well suited to parse particular components that are specific to depression

or are able to subtype depression.

Conclusions

Our findings provide the first model-based evidence of distinct cognitive alterations among

depressed individuals in sensorimotor speed, goal-setting, and motivation during a complex

goal-directed motor task, confirming that depression is a cognitively intricate and multifold

Inverse Model of Depressed Motor Control in a Goal-Directed Task
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illness. Our results suggest that different treatment plans may be identified and emphasized to

target individuals with different types of depressive symptoms, for example, physical training

for individuals with sensorimotor deficits, and positive reinforcement training for individuals

with poor goal-settings and lower motivations. Importantly, our modeling approach and

motor-control paradigm offer a much needed computational scaffold for investigating, infer-

ring, and more thoroughly understanding the neural basis of depression and associated cogni-

tive deficits.
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