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Visual Abstract

The ability to discriminate spikes that encode a particular stimulus from spikes produced by background activity is
essential for reliable information processing in the brain. We describe how synaptic short-term plasticity (STP)
modulates the output of presynaptic populations as a function of the distribution of the spiking activity and find a
strong relationship between STP features and sparseness of the population code, which could solve this problem.
Furthermore, we show that feedforward excitation followed by inhibition (FF-EI), combined with target-dependent
STP, promote substantial increase in the signal gain even for considerable deviations from the optimal conditions,

Significance Statement

What is the optimal way to distribute a fixed number of spikes over a set of neurons so the we get a maximal
response in the downstream neuron? This question is at the core of neural coding. Here, we show that
when synapses show short-term facilitation, sparse code (when a few neurons increase their firing rate in a
task-dependent manner) is more effective than dense code (when many neurons increase their firing rate in
a task-dependent manner). By contrast, when synapses show short-term depression a dense code is more
effective than a sparse code. Thus, for the first time, we show that the dynamics of synapses itself has an ef-
fect in deciding the most effective neural code
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granting robustness to this mechanism. A simulated neuron driven by a spiking FF-EI network is reliably modulated
as predicted by a rate analysis and inherits the ability to differentiate sparse signals from dense background activ-
ity changes of the same magnitude, even at very low signal-to-noise conditions. We propose that the STP-based
distribution discrimination is likely a latent function in several regions such as the cerebellum and the hippocampus.

Key words: excitation/inhibition balance; neural code; short-term plasticity; sparse code; synaptic depression;
synaptic facilitation

Introduction
The brain is a highly noisy system. At the cellular level,

the neurons are unreliable in eliciting spikes and synapses
are unreliable in transmitting the spikes to the postsynap-
tic neurons. At the network level, the connectivity and bal-
ance of excitation and inhibition gives rise to fluctuations
in the background activity (Brunel, 2000; Kumar et al.,
2008), which can be as high as the mean stimulus re-
sponse (Arieli et al., 1996; Kenet et al., 2003). In such a
noisy environment, a neuron is faced with a crucial task:
how to discriminate stimulus-induced firing rate changes
from fluctuations in the firing rate of the background activ-
ity of the same magnitude?
If synapses were static, that is, when the postsynaptic

conductances (PSCs) do not depend on the immediate
spike history, this task could not be accomplished, unless
synapses are specifically tuned to do so. For instance, the
identification of specific spiking patterns, filtering out pre-
sumed noise sequences, can be accomplished by precise
tuning of synaptic weights (Gütig and Sompolinsky, 2006).
This solution, however, relies on training synaptic weights
using a certain supervised learning rule, and even then, it
could only work for a specific set of spike timing sequences.
Active dendrites (with voltage dependent ionic conduct-
ance) can also work as pattern detectors (Hawkins and
Ahmad, 2016), but this mechanism would only work for sig-
nals constrained to locally clustered synapses. Therefore,
despite being relevant for the understanding of signal proc-
essing in the brain, the mechanisms by which neural ensem-
bles solve the activity discrimination problem have remained
elusive.
Here, we show that short-term plasticity (STP) of synap-

ses provides an effective and general mechanism to solve
the aforementioned task. STP refers to the observation
that synaptic strength changes on spike-by-spike basis,

depending on the timing of previous spikes (Stevens and
Wang, 1995; Zucker and Regehr, 2002), that is, STP arises
because neurotransmitter release dynamics is history de-
pendent and can be manifest as either short-term facilitation
(STF) or short-term depression (STD). Thus, STP becomes a
crucial part of neural hardware when information is encoded
as firing rate. Indeed, STP has been suggested to play
several important roles in neural information processing
(Buonomano, 2000; Fuhrmann et al., 2002; Izhikevich et al.,
2003; Abbott and Regehr, 2004; Middleton et al., 2011;
Rotman et al., 2011; Scott et al., 2012; Rotman and
Klyachko, 2013; Jackman and Regehr, 2017; Grangeray-
Vilmint et al., 2018; Naud and Sprekeler, 2018).
An immediate consequence of STP is that the effective

PSCs depend on the firing rates of individual presynaptic
neurons (Fig. 1). This suggests that postsynaptic targets
of populations with dynamic synapses could distinguish
among different input firing rate distributions even without
supervised learning. To demonstrate this feature of STP,
we measured the response of postsynaptic neurons for a
weak stimulus with amplitude one order of magnitude
smaller than the background activity. By systematically
changing the distribution of firing rates over the presynap-
tic neuron ensemble, we found that weak signals can be
differentiated from the noisy fluctuations if the signal is
appropriately distributed over the input ensemble. The
optimal distribution that maximizes the discriminability
depends on the nature of STP. We found that, for facilita-
tory synapses, sparse codes give better discrimination
between a weak signal and dense background changes
of the same intensity. By contrast, for depressing syn-
apses, sparse codes result in highly negative gains in
relation to dense background changes of the same
magnitude. We also investigated feedforward networks
with excitation and disynaptic inhibition, with target-
dependent STP, and found that this arrangement allows
for extra robustness for the output gain.
Finally, we demonstrate how STP can endow a postsy-

naptic neuron with the ability to differentiate sparsely en-
coded activity from dense activity of the same magnitude,
a function that would be especially important at very low
signal-to-noise regimes. Thus, our results reveal that the
nature of STP may also constrain the nature of firing rate-
based population code.

Materials and Methods
Model of STP
One parsimonious and yet powerful mathematical de-

scription of short-term synaptic dynamics was pro-
posed already 20 years ago (Tsodyks and Markram,
1997). The Tsodyks–Markram (TM) model could first
account for activity-dependent synaptic depression
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observed in pairs of neocortical pyramidal neurons and
was soon extended to cover for facilitation (increase in
probability) of vesicle release (Tsodyks et al., 1998).
With a small set of parameters, the TM model is able to
explain the opposed effects of depletion of available
synaptic vesicles and of the increase in release proba-
bility caused by accumulation of residual calcium in
the presynaptic terminal, making it suitable as a frame-
work to conjecture general impact of STP in neural in-
formation processing.
Here, we use the TM model (Eq. 1) to describe the

short-term synaptic dynamics. The effect of depression
is modeled by depletion of the proportion of available
resources, represented by the variable x (0� x� 1),
which instantaneously decreases after each spike and
returns to 1 with recovery time t rec. The gain effect of
short-term facilitation is modeled by the facilitation fac-
tor U (0�U� 1), which accounts for the accumulation of
calcium at the presynaptic terminal after the arrival of an ac-
tion potential. U transiently increases the release probability u
(0� u� 1), which returns to 0 with time constant t f:

du�

dt
¼ � u�

t f
1Uð1� u�Þd ðt� tspÞ

u1 ¼ u� 1Uð1� u�Þ
dx
dt

¼ 1� x
t rec

� u1x�d ðt� tspÞ
dgs

dt
/ Bsu1ðtspÞx�ðtspÞ

; (1)

where tsp is the last spike time.

Proportion of released resources (PRR)
The change in the PSC gs after a presynaptic spike is pro-

portional to the instantaneous PRR (PRRðtspÞ / u1ðtspÞ
x�ðtspÞ) and to the absolute synaptic strengthBs. The average
instantaneous PRR of a presynaptic unit can also be de-
scribed as a function of a time-dependent Poissonian firing
rate r(t) (Tsodyks et al., 1998) as:

dhui
dt

¼ �hui
t f

1Uð1� hu�iÞrðtÞ
hu1i ¼ hu�i1Uð1� hu�iÞ
dhxi
dt

¼
1� hxi
t rec

� hu1ihx�irðtÞ
PRRsðtÞ ¼ hu1ihx�irðtÞ;

(2)

where the brackets denote the average over many realiza-
tions. The total PRR contribution of a single synapse, for a
time window of duration Ts, can then be obtained by inte-
grating Equation 2 over this period:

Qs ¼
ðTs
0
PRRsðtÞdt: (3)

Total effective input to a postsynaptic neuron
For a homogeneous presynaptic population with same

STP parameters and individual basal firing rate rbas, the

population basal activity is Rbas ¼ N � rbas, where N is
the population size. We quantify Rext as a multiple of
Rbas. Our analysis is restricted to the case of low sig-
nal-to-noise ratio, i.e., Rext , 0:1Rbas. We consider a
simplified scenario where Rext is distributed homoge-
neously through a number Next of selected presynaptic
units, which will increase their firing rate by rext ¼ Rext=Next,
while the remaining presynaptic units will keep their activity
unchanged.
The total PRR released to a target neuron by the entire

population, during Ts, will then be

Qp
ext ¼ ðN� NextÞ �Qs

bas 1Next �Qs
ext; (4)

where Qs
bas and Qs

ext are the total PRR (Eq. 3) delivered by
a stationary unit (firing at rbas) and a stimulus encoding
unit (firing at rbas 1 rext), respectively.

Gain in the effective input
We are interested in the effects of varying the presynap-

tic distribution (over Next inputs) of this total extra rate
(Rext) on the effective input to postsynaptic targets. To es-
timate the change in the gain because of STP we used the
maximally dense distribution, when Next = N as the refer-
ence point:

Qp
d ¼ N �Qs

d ; (5)

where the d subscript denotes the smallest possible in-
crease in individual firing rates, rd (maximally distributed
Rext). We refer to this as the dense distribution case and it
ideally represents a situation of homogeneous increase in
the basal activity of the system, against which a stimulus
would need to be distinguished from. Next = N also implies
smallest increase in individual operating rates (rext = rd ),
therefore in the dense distribution case STP nonlinearities
will be minimal. In other words, Next = N is the point where
dynamic synapses will operate as close to static as
possible.
We then quantify the gain in Qp

ext for a given Next always
relative to Qp

d caused by an input of the same intensity but
with dense distribution, as

G ¼ 100 � Qp
ext �Qp

bas

Qp
d �Qp

bas

� 1

 !
: (6)

We calculate the curves of G as a function of Next for
different sets of STP parameters and basal rates and
search for points where it is maximized (Next = Nopt),
which we call the optimal distribution (see example in
Fig. 2D).

Optimal distribution
The optimal distribution of the activity (OD) can be

framed as the fraction of the optimal number of encoding
units Nopt in a given population of size N, that is,
OD ¼ Nopt=N. Because the optimal code (Nopt ¼ Rext=ropt)
is the distribution that maximizes the gain over the dense
distribution with the same input magnitude (N ¼ Rext=rd ),
OD can be written as
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OD ¼ Nopt

N

¼ Rext

ropt
� rd
Rext

¼ rd
ropt

:

(7)

We define Rext as a fraction of Rbas to keep the same
signal-to-noise ratio (Rext=Rbas) for populations of differ-
ent sizes N. We find that ropt is fixed given the STP pa-
rameters and rbas (see Results), therefore by defining
rd (Rext=N) as a fraction of rbas (Rbas=N) we reach the in-
teresting consequence of OD being independent of
any particular choices of population size (Eq. 7). That
is, given the same STP parameters and value of rbas,
populations of different sizes will optimally encode the
same stimulus intensity (relative to their basal activity)
with the same OD. Because the optimal encoding rate
is constrained by rd , ropt ,1, the optimal distribution
will also be constrained to 0,OD,1 (see Fig. 3D), with
values close to zero or one characterizing sparse or
dense distributions, respectively.

Optimal rate (ropt) andmaximum gain (Gmax)
estimation
Equation 6 describes the gain G obtained by encoding

a stimulus Rext into Next units (with rates increased by
rext ¼ Rext=Next) as opposed to N units (with rates in-
creased by rd ¼ Rext=N). The peak of this function (Gmax)
is achieved by an optimal number of encoding units Next =
Nopt with their rate increased by ropt ¼ Rext=Nopt. This
maximum point can be found by taking the derivative of
the gain function with respect to rext and setting it equal to
zero,

dG
drext

¼ d
drext

ðN� NextÞ �Qs
bas 1Next �Qs

ext � N �Qs
bas

N �Qs
d � N �Qs

bas

� 1

 !

¼ 0; (8)

given that dQd

drext
¼ 0, this can be further simplified into

Qs
ext �Qs

bas

Qs9
ext

� rext ¼ 0; (9)

where Qs9
ext ¼ dQs

ext=drext and the value of ropt is the solu-
tion of the equation 9. This solution is independent of the
stimulus intensity Rext and population size N (see results
in Fig. 2F).
For the optimal rate ropt, the gain (Eq. 6) can be written as

Gmax ¼ 100 � rd � ðQs
opt �Qs

basÞ
ropt � ðQs

d �Qs
basÞ

� 1

 !
: (10)

Assuming that Qs
d is linear with slope Ss for small

rd , that is, Qs
d ¼ Qs

bas1Ss � rd (see below, Linear ap-
proximation of Qs

d ), then Gmax can be further simplified
into

Gmax ¼ 100 � Qs
opt �Qs

bas

ropt � Ss
� 1

 !
; (11)

which makes Gmax independent of the stimulus intensity
Rext and population size N.

Combined optimal rate (rcomopt ) and maximum gain (Gcom
max)

estimation
When an axon branches to connect to different targets,

STP properties might be target dependent. In the case of
excitatory fibers driving feedforward excitation-inhibition
(FF-EI) motifs, with synapses type 1 (s1) directly exciting a
readout neuron and synapses type 2 (s2) driving the local
inhibitory circuit (Fig. 1C), the combined gain is given by

Gcom

100
¼ rd
rext

� Qs1
ext �Qs1

bas

Qs1
d �Qs1

bas

�Qs2
ext �Qs2

bas

Qs2
d �Qs2

bas

 !
; (12)

To find the activity distribution that maximizes the com-
bined gain, we take the derivative of Gcom with respect to
rext, set it equal to zero and, assuming again that Qs

d is lin-
ear with slope Ss for both synapses, find the equivalence

Qs1
bas �Qs1

ext 1 rext �Qs19
ext

Ss1
¼ Qs2

bas �Qs2
ext 1 rext �Qs29

ext

Ss2
; (13)

for which the solution, rext ¼ rcomopt , is independent of the
stimulus intensity Rext and population size N. The optimal
combined gain is then

Gcom
opt ¼ 100 � Qs1

opt �Qs1
bas

rcomopt � Ss1
�Qs2

opt �Qs2
bas

rcomopt � Ss2

 !
; (14)

which is also independent of the stimulus intensity Rext

and population size N.

Numerical simulations
As a proof of concept of the potential relevance that the

estimated presynaptic gains could have on postsynaptic
targets, we performed numerical simulations of a con-
ductance-based integrate-and-fire (I&F) neuron model
acting as the readout device for a FF-EI circuit (See sec-
tion Sparse code identification by a postsynaptic neuron
mode). The I&F model’s membrane voltage Vm is de-
scribed by

Cm
dVm

dt
¼ geðVe � VmÞ1giðVi � VmÞ ; (15)

where Cm = 250pF is the membrane capacitance, ge and
gi are, respectively, the excitatory and inhibitory input
conductances and V e = 0mV and V i = –75mV are the ex-
citatory and inhibitory synaptic reverse potentials. When a
spike occurs, the membrane voltage is reset to V reset =
–60mV and held at this value for a refractory period of
2ms. The synapses were modeled by a-functions (Kuhn
et al., 2004) with time constants te = 0.5ms for excitatory
and t i = 2ms for inhibitory synapses.
The presynaptic population consisted of N=160,000

units that connected to the I&F neuron in a FF-EI arrange-
ment. The population stationary basal rate was Rbas =
80 kHz, with the individual basal rate rbas = 0.5Hz. At the
stationary basal rate, the synaptic states are described by
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ubas ¼ U
11t f rbas
11Ut f rbas

xbas ¼ 1
11ubast recrbas

PRRs
bas ¼ ubasxbasrbas

; (16)

where PRRs
bas is the expected rate of PRR by each syn-

apse with STP parameters fU; t rec; t fg.
We simulate a neuron that, during stationary basal ac-

tivity, is kept in the fluctuation-driven regime through exci-
tation-inhibition input balance (Kuhn et al., 2004). While
excitation is provided directly by s1, disynaptic inhibition
is modulated by s2 in a linear fashion,

l i ¼ aPRRs2: (17)

The inhibitory firing rate that keeps the target neuron mem-
brane potential fluctuating around the mean value of Vm dur-
ing stationary basal activity can be approximated by a linear
function of the excitation (adapted fromKuhn et al., 2004):

l i � �ðVe � VmÞBet e

ðVi � VmÞBit i

PRRs1
bas

a � �ðVe � VmÞBet e

ðVi � VmÞBit i

PRRs1
bas

PRRs2
bas

; (18)

where Be and Bi are the maximum amplitudes for the exci-
tatory and inhibitory synaptic conductances. Equation 18
allows to find the linear scale of Equation 17 that fulfills
the condition Vm ¼ �53mV. The inhibitory synapses are
kept static (no STP). The extra presynaptic activity

happens in blocks of Ts ¼ 40ms and is defined as sparse
(when Next = Nopt) or dense (when Next = N).

Continuous rate distribution
Although some bursting networks [e.g., cerebellar par-

allel fibers (PFs)] seem to operate in a quasi-binary fashion
(burst or no-burst), it is important to extend the analysis to
continuous distributions, which most parts of the brain
seem to operate under. We do this by assuming that the
distribution of event-related neural firing rates follows a g
distribution, which allows us parameterized control of the
sparseness of the neural code (with the mean of the distri-
bution) and of the distribution shape (with the skewness
and kurtosis):

rext ;Gammaðk; u Þ; (19)

where k is the shape parameter and u is the scale pa-
rameter. When k = 1, this is equivalent to an exponential
distribution and, for increasing values of k, this be-
comes a right-skewed distribution, with the skewness
approaching zero for higher values of k (becoming ap-
proximately Gaussian). For each shape parameter, we
controlled the mean of the distribution by varying the
scale parameter, because for a g distributed rext the ex-
pected value is

E½rext� ¼ ku : (20)

For the g-specified distribution of extra rates and a
given presynaptic set of STP parameters, the expected
amount of resources released by a population is

C
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Figure 1. Distribution of the spiking activity over presynaptic neurons and STP. A, top, A neuron receives input from a presynaptic
population, with only one of the neurons eliciting seven spikes. Bottom, The postsynaptic conductance (PSC) generated by the con-
secutive spikes for three different types of synapses (static, black; facilitatory, blue; depressing, red). The PSCs are different for
each of these three types of synapses. B, top, Similar to panel A, a neuron receives inputs from a presynaptic population, but in this
scenario the spikes were distributed among all presynaptic neurons. Bottom, The PSC generated by a sequence of seven consecutive
spikes arriving at the same time as in panel A coming from three different types of synapses (static, black; facilitatory, blue; depressing,
red). The PSCs are identical for each of these three types of synapses (lines overlapped). C, Feedforward excitation followed by feedfor-
ward inhibition configuration and two distributions of an extra spike rate Rext in addition to the basal firing rate rbas. Top, The extra rate is
distributed into a few presynaptic neurons Next units (gray), with each chosen unit increasing its rate by rext ¼ Rext=Next. Bottom, The
extra rate is distributed homogeneously throughout the population of N units, with each unit increasing its rate by rd ¼ Rext=N.
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E½Qp
ext� ¼

ð1
rd

Gammaðrext; k; u Þ
rext

QsðrextÞdrext; (21)

which we solved numerically for two synapse types (s1-facil-
itatory and s2-depressing) and a range of rate distributions.
The distribution gain G for E½Qp

ext� was then calculated in re-
lation to the dense case, whereNext =N and rext ¼ rd .
A glossary of of key symbols used throughout the work

is given in Table 1. All the analyses and simulations were
performed in MATLAB and Python. The model simula-
tions were performed using Euler’s method with time
step of 0.1ms implemented in the neural simulator
Brian2 (Stimberg et al., 2014). The simulation and analy-
sis code is available on GitHub at https://github.com/
luiztauffer/stp-activity-distribution.

Results
Here, we are interested in a mechanism by which a neu-

ronal network or a single postsynaptic neuron receiving
multiple inputs may distinguish between different spiking
distributions with the same intensity (e.g., the same num-
ber of spikes). This problem is schematically illustrated in
Figure 1. Consider two scenarios. In the first scenario,
seven spikes arrive from a single presynaptic neuron
while others six remain silent (Fig. 1A, sparse distribution).
In the second scenario, each of the seven presynaptic
neurons spikes once. In both trials, the postsynaptic neu-
ron receives seven spikes (Fig. 1B, dense distribution).
Here, we test the hypothesis that when synapses exhibit
STP (facilitation or depression) the two scenarios can be
differentiated without any specific tuning of synaptic
weights.
Static synapses evoke exactly the same PSC sequence

for both sparse and dense distributions (black lines), mak-
ing them indistinguishable for a readout neuron. However,

when synapses are dynamic, short-term facilitation (blue
line) enhances the PSC amplitudes compared with the
static synapses (compare Fig. 1A,B, bottom traces).
Short-term depression (red line) results in a weaker re-
sponse as compared with the static synapses (compare
Fig. 1A,B, bottom traces). If the incoming spikes are dis-
tributed along different synapses, the sequence of PSCs
is identical for all types of synaptic dynamics (compare
Fig. 1A,B, bottom traces).
In vivo neural coding is certainly more complex than the

above example. However, this simple example suggests
that in the case of a neuron receiving synaptic inputs via
thousands of noisy synapses, STP could be a mechanism
to differentiate between an evoked signal from the back-
ground activity fluctuations of the same amplitude, pro-
vided the former is encoded as a specific pattern that can
exploit the STP properties of the synapses. In the follow-
ing, we describe how well dynamic synapses could
endow feedforward circuits with such activity distribution
discrimination properties in low signal-to-noise regimes
(Fig. 1C).

Optimal activity distribution with dynamic synapses
We implemented dynamic synapses with the rate-

based TM model (Tsodyks et al., 1998; Eq. 2). In this
model, the instantaneous PRR depends on the resource
release probability (u1) and the proportion of available re-
sources (x–), which have their dynamics guided by the
choice of STP model parameters fU; t f ; t recg. For a tran-
sient increase in firing rate, a facilitatory synapse pro-
duces an average profile of sustained PRR, while a
depressing synapse produces an average profile of
rapid decaying PRR (Fig. 2A). Throughout this work, the
two reference sets of values for STP types are: U = 0.1,

Table 1. List of recurrent symbols

Symbol Description Equation
U Facilitation factor 1
t rec Recovery time constant 1
t f Facilitation time constant 1
r Firing rate of a single synapse 2
PRR Proportion of released resources 2
Q Total PRR (integrated over a time interval) 3
Ts Duration of the stimulus interval 3
N Number of presynaptic neurons 4
G Gain of any given distribution of presynaptic activity over the maximally distributed presynaptic activity (Next ¼ N) 6
OD Optimal distribution of the presynaptic activity 7
s1, s2 Synaptic type 1, synaptic type 2 12
rbas Individual basal firing rate
rext Individual increase in firing rate
rd Individual increase in firing rate when Next ¼ N
ropt Optimal individual increase in firing rate when Next = Nopt

Rbas Total population basal firing rate
Rext Total population increase in firing rate
Xs A s superscript indicates a quantity for a single synapse
Xp A p superscript indicates a quantity for a population of synapses
Xbas A bas subscript indicates a quantity for basal level activity
Xext A ext subscript indicates a quantity for extra activity
Xd A d subscript indicates a quantity for the maximally distributed presynaptic activity (Next ¼ N)
Xopt A opt subscript indicates a quantity for the optimally distributed presynaptic activity (Next = Nopt)
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t f ¼ 200ms and t rec ¼ 50ms (facilitatory) and U = 0.7,
t f ¼ 50ms and t rec ¼ 200ms (depressing).
To quantify the effects that different profiles will have on

the presynaptic output, for varying transient increases in
firing rate (rext), we calculate the total amount of extra re-
sources (Qs

ext) a synapse releases over a time period of Ts
(Eq. 3; Fig. 2B). We found that Qs

ext varied in a nonlinear
fashion as a function of rext, with depressing dynamics ap-
proaching Qs

ext saturation much faster than facilitatory dy-
namics. The slope of Qs

ext (Fig. 2B, inset) for depressing
synapses is monotonically decreasing, indicating that any
increase in the firing rate in those synapses will produce
sublinear increase in Qs

ext, whereas for facilitatory

synapses the slope initially grows, indicating that in-
creases in the firing rate of those synapses, up to some
point, will produce supralinear increase in Qs

ext.
In the brain, neurons typically receive inputs from a

large ensemble of presynaptic neurons. In the ongoing
activity state, these neurons spike at a low-basal firing
rate (rbas) with the total synaptic output of Qp

bas ¼ N �Qs
bas.

In the event-related activity state, the firing rate of a sub-
set of presynaptic neurons (Next) is transiently increased
and the total synaptic output (Eq. 4) changes accordingly.
We distribute a fixed event-related population rate in-
crease Rext into varied numbers of chosen synapses Next,
each of these chosen synapses increasing its firing rate

CBA

FD E

G

Figure 2. A, Temporal profile of the PRR for a facilitatory synapse (top, U=0.1, t f ¼ 200ms and t rec ¼ 50ms) and a depressing syn-
apse (bottom, U=0.7, t f ¼ 50ms and t rec ¼ 200ms), with increased rates during a period of Ts ¼ 40ms. B, The amount of resources re-
leased by a single synapse, Qs. This was obtained by integrating PRRsðtÞ over Ts (area under the curve in A, Eq. 3). Qs

ext for depressing
synapses saturates at lower firing rates than facilitatory synapses. Inset, The derivative of Qs

ext and highlights the nonlinearities in Qs
ext,

with depressing synapses showing monotonically decreasing slopes (decreasing release rate) and facilitatory synapses showing an initial
region of increasing slopes (increasing release rate) with respect to rext. C, The extra PRR (Qp

ext �Qp
bas) as a function of the number of pre-

synaptic neurons (Next) whose firing rate increases by two different values of Rext. Dashed lines mark the value achieved when Next ¼ N,
i.e., the dense distribution case (Qp

d �Qp
bas). A population of facilitatory synapses (left) maximizes its release with low Next, while a popula-

tion of depressing synapses (right) maximizes its release with Next ¼ N. D, The gain (G; Eq. 5) as a function of Next for a fixed Rext. The
Next that maximizes G, for this particular extra rate, is Nopt = 64 for facilitatory synapses and Nopt ¼ N for depressing synapses. Notice
that if the extra rate is allocated in even fewer input units, G can be negative. E, G surface for a facilitatory synapse as a function of rd
and Next. The black line marks the maximum values of G, i.e., Nopt for each rd . The gain curves at panel D, where rd ¼ 8% of rbas, is
marked with a gray line for reference. F, The relationship between Nopt and rd is linear. At maximum gain (Gmax), the firing rate of the
event-related neurons (Next) is roptð100Hz for this specific example). G, Gmax for the two STP regimes shown in panel B. For a low signal-
to-basal ratio rd =rbas,1, the gain can be considered independent from the stimulus intensity rd .
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by rext, that is, Rext ¼ Next � rext, and report the changes in
Qp

ext.
We found that, for a population of facilitatory synapses,

Qp
ext varied in a non-monotonic fashion as a function of

Next, initially increasing up to a peak point, then decreas-
ing (Fig. 2C, left). By contrast, for depressing synapses
(Fig. 2C, right), Qp

ext varied in a monotonically increasing
fashion. For both facilitatory and depressing synapses,
Qp

ext converged to their respective Qp
d when the total extra

input rate Rext was distributed over all the neurons such
that Next = N and rext ¼ rd ¼ Rext=N.
These results suggest that, when synapses are facilita-

tory, the total amount of synaptic resources released dur-
ing a event-related activity state is maximized when
event-related spiking activity is confined to a small num-
ber of synapses. Qp

ext was smaller than Qp
d when Rext was

distributed into a small subset of presynaptic neurons,
because those chosen neurons spiked at very high rates
and the synapses ran out of vesicle resources rapidly.
When the event-related input was distributed over all the
presynaptic neurons, the Qp

ext also decreased because in
such a scenario rext ¼ rd ¼ Rext=N was too small to fully
exploit the benefits of synaptic facilitation. In contrast to
the facilitatory synapses, for depressing synapses it was
more beneficial to distribute the event-related spiking ac-
tivity over the whole input ensemble to maximize the total
amount of synaptic resources released. In this condition,
rext ¼ rd was small enough to avoid any losses in vesicle
release caused by depression.

Activity distribution-dependent gain
To further quantify the effect of distribution of event-

related activity over the input ensemble (that is, how
neurons increase their rate in the event-related phase),
we defined the distribution gain G as the proportional
change in Qp

ext in relation to Qp
d (Eqs. 5, 6). We found

that Qp
d is approximately a linear function of rd for a wide

range of scenarios (see Materials and Methods) and,
because of that, with the dense distribution of the activ-
ity (when all the presynaptic neurons change their firing
rate by a small amount rd in the event-related activity
state), even dynamic synapses behave approximately
as static synapses. Therefore, G can be understood ei-
ther as a gain over a dense distribution or as a gain over
static synapses. For facilitatory synapses, just as for
Qp

ext, G follows a non-monotonic curve as a function of
Next, with a single peak at Nopt (Fig. 2D, blue line). By
contrast, depressing synapses resulted in negative
gains to every distribution, except for Next = N where
G = 0% (Fig. 2D, red line).
Next, we estimate Nopt and G for a range of extra activ-

ity intensities (Fig. 2E, for facilitatory synapses). For these
calculations, we parameterized the extra activity Rext as a
fraction of the basal firing rate Rbas (correspondingly, rd as
% of rbas; see Materials and Methods). We found that, for
facilitatory synapses, Nopt increased linearly with the extra
activity intensity (Fig. 2G), resulting in an optimal encoding
rate ropt which is independent of the input intensity. For
depressing synapses, the optimal distribution Nopt = N did
not change with the extra activity intensity, making the
optimal encoding rate always ropt = rd .

Because the presynaptic neurons are assumed to be
Poisson processes, an advantage of parametrize Rext in
terms of fraction of Rbas is that it directly translates to sig-
nal-to-noise ratio. For the example shown in Figure 2G,
we found that STP could amplify the presynaptic output
for weak signals (which were ,10% of the basal activity)
by up to 60% if the extra rate was distributed over Nopt

synapses as opposed to N synapses. For low signal-to-
noise ratios (rd , rbas), the gain at the optimal distribution
(Gmax) was approximately constant and always positive
for facilitatory synapses, while depressing synapses keep
Gmax = 0 at Nopt = N (Fig. 2G). Finally, we analytically show
that the independence of ropt and Gmax from the extra ac-
tivity intensity is a good approximation for a wide range of
basal rates and STP types (see Materials and Methods).
These results suggest that when synapses are facilita-

tory, the input should be distributed sparsely (or sparse
code, that is, only a small set of neurons change their fir-
ing rate in the event-related state) to maximize the total
amount of synaptic resources released at the down-
stream neuron. By contrast, when synapses are depress-
ing, the input should be distributed densely (or dense
code, that is, all the neurons change their firing rate in the
event-related state) to maximize the synaptic resources
released at the downstream neuron. Thus, for sparse pop-
ulation activity, while facilitatory synapses are optimally
used, depressing synapses are subutilized.

Effects of STP parameters on optimal rate and gain
Next, we investigated how Nopt, ropt, and Gmax vary

with STP parameters. To this end, we systematically
changed synapses from facilitatory to depressing by jointly
varying the set of parameters: U ¼ f0:05; :::; 0:9g; t rec ¼
f0:02; 0:5g ms and t f ¼ f0:5; :::; 0:02g ms. We found that
ropt decayed exponentially as the synapses became more
depressing (Fig. 3A). This follows from the fact that facilita-
tory synapses profit from high firing rates and depressing
synapses avoid negative gains at lower rates.
The maximum gain Gmax also decreased exponentially

as synapses were systematically changed from facilita-
tory to depressing (Fig. 3B). We found that the relationship
between gain and optimal rate was linear from mildly to
strongly facilitatory synapses (Fig. 3C), with larger basal
rates constraining the optimal conditions to lower rates
with lower gains.
Interestingly, increasing the basal firing rate rbas sub-

stantially reduced ropt and Gmax. This is surprising be-
cause, at such low values of spiking rates, STP effects are
hardly perceivable in traditional paired-pulse ratio analy-
ses. The high value of Gmax, when the system operates at
low rbas, happens because of synapses taking advantage
of the nonlinearities in their individual Qs

ext (Fig. 2B).
Increased basal activity attenuates these nonlinearities,
therefore impairing the distribution-dependent gain.

Relationship between facilitatory synapses and
sparse coding
We quantified the optimal distribution of an evoked

neural signal by OD (see Materials and Methods). High
OD (OD ! 1) indicates a dense distribution in which many
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neurons spike to encode the extra activity, whereas low
OD (OD ! 0) indicates a sparse distribution. We found
that OD changed abruptly from sparse to dense as synap-
ses were changed from facilitatory to depressing (Fig.
3D). Facilitatory synapses yielded maximum response
for sparse while depressing synapses yielded maximum
response (avoid negative gains) for dense distributions.
The transition point from sparse to dense OD did not
depend on the stimulus duration. However, the basal

rate strongly modified the transition point, with higher
rbas allowing only strongly facilitatory synapses to take
advantage of sparse distributions. This configuration
remained independent of the stimulus intensity as long
as the circuit operates at low signal-to-noise conditions
(rd =rbas,1; Fig. 2G).
In the above, we changed the synapses from facilitatory

to depressing by linearly modifying the whole set of pa-
rameters together. Next, we systematically varied each of

D

B

A

E

C

Figure 3. Effects of STP attributes on maximum gain of the neural population. Here, the STP parameters U, t rec and t f were var-
ied in the following range, from more facilitatory to more depressing: U : 0:05 ! 0:9; t rec : 20 ! 500ms and t f : 500 ! 20ms. A,
The optimal frequency ropt as a function of STP properties that gradually and monotonically change the synapse from facilita-
tory to depressing. ropt is high for facilitatory synapses and low for depressing synapses. ropt monotonically decreases as syn-
apses change from facilitatory to depressing. As the basal rate is increased, ropt decreased for all types of synapses. The
circles mark the parameters position for the facilitatory (s1, blue) and a depressing (s2, red) synapses used as reference in this
work. B, Gmax as a function of STP properties that gradually and monotonically change the synapse from facilitatory to de-
pressing. Similar to ropt, Gmax also decays rapidly for more depressing types and for higher basal rates. C, Relationship be-
tween Gmax and ropt. Notice the approximately linear relationship for facilitatory synapses, with the slope steadily decreasing
with increasing rbas. This summarizes our prediction that higher basal firing rates will constrain the amplitudes of activity distri-
bution-dependent gains and optimal encoding rates. D, Optimal distribution of presynaptic activity that maximizes the gain G.
The change from sparse (OD;0) to dense (OD;1) optimal distribution is abrupt and occurs approximately at the same STP re-
gion for different stimulus durations (Ts). However, the transition point where OD changes from sparse to dense code is
strongly modulated by rbas, higher basal rates allow for sparse code only for much more facilitatory synapses. E, Optimal distri-
bution of rate as a function of the three key model parameters (U, t rec, and t f). The variable U is the most influential in defining
the optimal encoding distribution, with U;0:45 defining the OD transition point for Ts ¼ 40ms and rbas ¼ 0:5Hz. Marker sizes
represent OD values, with large ones for OD = 1 and small ones for OD;0. Effects of STP attributes on maximum gain of the
neural population can be seen in Extended Data Figure 3-1.
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the STP parameters independently and measured the OD
for maximum gain. We found that the transition region
was primarily governed by the facilitation factor U
(U; 0:45), with a weak dependence on t rec and t f (Fig.
3E). The relative contribution of t rec and t f became more
relevant at higher Ts (Extended Data Fig. 3-1).
These results clearly highlight the importance of the sta-

tionary basal rate in how well the synaptic gain modula-
tion operates, as only low rbas allows for significant gains.
Importantly, the switch-like behavior of the optimal distri-
bution indicates that, for a given population code, there is
a robust range of STP attributes that could produce posi-
tive gains. This transition point seems to be relatively in-
dependent of the signal duration but is strongly affected
by rbas. Finally, having a low initial release probability (de-
fined in the model by a low U) seems to be the preeminent
feature in defining the optimal OD.
The Equation 7 suggests that OD is independent of the

population size (N). However, there is a lower limit of N
below which the sparsity argument does not hold. We
have shown that given the STP parameters, there is an
optimum firing rate ropt at which signal carrying neurons
should operate to maximize the gain (Fig. 2F). For a given

rate it is optimal to distribute spikes over Nopt input chan-
nels (Fig. 2F). However, when N ¼ Nopt, then clearly the
optimal distribution will not be sparse. The argument for
sparseness arises when N..Nopt. When N..Nopt, and
we increase N while keeping all other parameters con-
stant, OD will decrease. However, if we change N while
keeping all other parameters constant, the signal-to-noise
ratio will change. The signal-to-noise ratio is defined as
Rext=Rbas, where Rbas ¼ N� rbas and if we change N, Rbas

will also change. In order to maintain the signal-to-noise
ratios comparable for low and high N scenarios, we need
to scale Rext accordingly. Therefore, here, we defined Rext

in proportion to Rbas so that it can accommodate the
changes in N. With this choice, OD is indeed independent
of N (see Eq. 7).

Effects of different sources of enhancement onGmax

The enhancement of the output at facilitatory synapses
could, in principle, have many causes (Valera et al., 2012;
Thanawala and Regehr, 2013; Jackman and Regehr,
2017). Using the TM model (Eq. 1), we phenomenologi-
cally accounted for two important sources: a low initial

C

B

A

D

Figure 4. Effects of resources recovery time constant t rec and facilitation factor U on Gmax and ropt for Ts ¼ 40ms, for facilitatory
synapses. A, The ropt surface, as a function of U and t rec, shows that a given optimal encoding rate can be matched by different
combinations of synaptic parameters. For example, the iso-frequency curve of 150Hz (black line) can be achieved with either
fU ¼ 0:05; t rec ¼ 90msg (�) or fU ¼ 0:1; t rec ¼ 15msg ((). B, The Gmax surface, as a function of U and t rec, shows that the same
maximum gain can observed for many different combinations of U and t rec. The black line shows the contour for Gmax ¼ 109%. The
two configurations with same ropt marked in panel A have distinct gains (� ¼ 109%; ( ¼ 92%). C, We fix U and vary t rec (circle
sizes) to match ropt (x-axis), then observe the gain. Larger values of U systematically produce smaller gains. Recovery time has a
lower boundary t rec ¼ 10ms. D, Gmax as a function of U for three different values of ropt. Larger values of U require smaller values of
t rec (circle sizes) to match the same ropt, but as a consequence the gain decreases as we increase U. Effects of resources recovery
time constant t rec and facilitation factor U on Gmax and ropt for facilitatory synapses can be seen in Extended Data Figure 4-1.
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release probability which sequentially increases with
each incoming spike (Jackman et al., 2016) and fast
replenishment of readily available resources (Crowley et
al., 2007). The first characteristic is mimicked by a low
facilitation factor U, which determines the initial release
probability after a long quiescent period and the pro-
portional increase in it after each spike. The second
mechanism is captured by a fast recovery time con-
stant t rec.

We systematically varied U and t rec and measured Gmax

and ropt. We found that several different combinations of
U and t rec resulted in the same optimal distribution gain
and rate. However, when we changed U and t rec while
keeping the ropt fixed, Gmax could no longer be kept con-
stant and vice versa. For instance, the two parameter sets
fU ¼ 0:05; t rec ¼ 90msg and fU ¼ 0:1; t rec ¼ 15msg
gave ropt ¼ 150Hz (Fig. 4A), but the first parameter set
gave Gmax ¼ 109% and the second parameter set gave

B

D

CA

E

F

Target
neuron

s1

s2
Inhibitory
circuit

Figure 5. Combined optimal distribution of activity in a FF-EI circuit with target-dependent STP. A, G as a function of rd and Next for
a facilitatory synapse (s1, top) and for a depressing synapse (s2, bottom). This is similar to the Figure 2E. B, The combined gain
(Gcom ¼ Gs1 �Gs2) of the FF-EI circuit as a function of rd and Next obtained by combining the gains of the FFE and FFI branches.
The black line marks the Ncom

opt for every stimulus intensity rd and is represented with dashed black lines in panel A. In-box,
Schematic of the FF-EI circuit. C, Gain as a function of Next for rd ¼ 8% of rbas (gray lines in panels A, B). Gcom inherits the non-mo-
notonicity from Gs1 (blue, compare with Fig. 2D). The gain for a depressing synapse is negative (Gs2, red) for every Next,N. D, Nopt
as a function of rd produces iso-frequency lines (compare with Fig. 2F). rcomopt is markedly larger than rs1opt (top). G

com
max is independent

of rd (for rd,rbas, compare with Fig. 2G). Gain for both synapse types at rcomopt (dashed lines). The small decrease in synaptic gain for
s1 is compensated by putting s2 in a very negative gain region (bottom). E, Gcom

max surface for different combinations of STP charac-
teristics of s1 and s2. Notice that Gcom

max steadily increases for s1 ! Fac or s2 ! Dep, and that Gcom
max ¼ 0 whenever s1 is more de-

pressing than s2. The circle marks the specific fs1; s2g combination used in the other panels and throughout the work. F, Effects of
ongoing basal activity rbas on optimal conditions for Ts ¼ 40ms. Increasing basal activity decreases the combined optimal rate (top)
and combined maximum gain (center). Results for three different U at the facilitatory synapse. Increasing basal activity consistently
decreases Gmax. Gcom

max decay happens mostly because of decay of the positive gain at the facilitatory synapse s1 (blue), while the
negative gain at the depressing synapse s2 is kept negative and change only slightly (red). Dashed vertical line marks the basal ac-
tivity used for most part of our analysis, rbas ¼ 0:5Hz, where both branches contribute significantly to increase the combined gain
(bottom).
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Gmax = 92% (Fig. 4B). Holding U fixed and choosing t rec
to match with different ropt showed that Gmax consistently
dropped for higher U (Fig. 4C,D).
These results indicate that, in terms of maximum gain

Gmax, the fine tuning of intracellular mechanisms that
work to steadily increase a low initial release probability
might be more important than fast vesicle replenishment
mechanisms. This remains true for larger Ts (Extended
Data Fig. 4-1).
In summary, our results show that a set of presynaptic

STP parameters generates a gain surface G that, in princi-
ple, could be tuned to match presynaptic population ac-
tivity characteristics. The optimal rate and the maximum
gain are independent of the stimulus intensity for a low
signal-to-noise ratio, with facilitatory synapses yielding
high gains for sparse distributions while depressing syn-
apses avoid negative gains only with dense distributions.
For low basal activity (rbas = 0.5Hz) and short duration in-
tegration window (Ts = 40ms) conditions, the parameter
U is the principal determinant of the optimal distribution.
Furthermore, lower U yields a higher gains than lower t rec
when the optimal encoding rate is kept constant.

Feedforward inhibition (FFI) and heterogeneous STP
In the above we ignored the fact that presynaptic STP

can be target dependent (Markram et al., 1998; Reyes et
al., 1998; Rozov et al., 2001; Sun et al., 2005; Pelkey and
McBain, 2007; Bao et al., 2010; Blackman et al., 2013;
Larsen and Sjöström, 2015; Éltes et al., 2017), and
the spike trains coming from the same axon can be
modulated by different short-term dynamics at different
synapses. In the following, we describe the effects of
such heterogeneity in a FF-EI motif (Fig. 1C), an ubiqui-
tous circuit motif across the brain (Klyachko and Stevens,
2006; Dean et al., 2009; Isaacson and Scanziani, 2011;
Wilson et al., 2012; Jiang et al., 2015; Grangeray-Vilmint
et al., 2018).
We extend our previous analysis to a scenario in

which the presynaptic population makes synaptic con-
tacts not only with a readout neuron, but also with the
local inhibitory population which projects to the readout
neuron creating the FF-EI motif. Both, the readout neu-
ron and the inhibitory group receive the same spike
trains via two different types of synapses, s1 and s2
(Fig. 1C). Because the presynaptic population activity is
the same for both synapses (rbas ¼ 0:5ms; Ts ¼ 40ms),
the differences in gain (G) are governed by the STP
properties of the two synapses. Figure 5A shows G for a
facilitatory (s1, U = 0.1, t f ¼ 200ms; t rec ¼ 50ms) and
a depressing (s2, U = 0.7, t f ¼ 50ms; t rec ¼ 200ms)
synapse.
In the case of a FF-EI network, those two synapse

types may be associated with the two branches, for ex-
ample s1 to the feedforward excitation (FFE) branch
(targeting a principal neuron) and s2 to the feedforward
inhibition (FFI) branch (targeting local interneurons
which eventually project to principal neurons; Fig. 5B,
inset). In this arrangement, the combined gain is deter-
mined by the two branches Gcom ¼ Gs1 �Gs2. We found
that the combined gain of the FF-EI circuit also varied

non-monotonically as a function of Next and peaked at
Ncom

opt which corresponded to the combined optimal en-
coding rate rcomopt (Fig. 5B,C). Note that the combined
maximum gain of the FF-EI circuit is larger than the gain
obtained via the FFE branch with facilitatory synapses
alone (Fig. 2C). This substantial increase is a conse-
quence of the strictly negative profile of Gs2. When the
extra input is distributed in Ncom

opt units (sparse coding),
the depressing branch of the FF-EI drove the local in-
hibitory group with weaker strength than a scenario in
which Next ¼ N (dense coding). Therefore, with sparse
distribution of the input, the readout neuron experi-
enced stronger excitation from the FFE branch and
weaker inhibition from FFI branch.
Similar to the behavior of facilitatory synapses, in the

FF-EI network Ncom
opt increased linearly as a function of rd ,

maintaining a constant optimal encoding rate rcomb
opt (Fig.

2D, top). We also observed that rcomb
opt was larger than rs1opt

(Ncom
opt ,Ns1

opt), making the isolated gain of s1 suboptimal.
However, this can be compensated by putting s2 into a
very negative gain region (Fig. 5D, bottom, red dashed
line), with a sparse distribution of the inputs. We show an-
alytically that rcomopt and Gcom

max are independent of the extra
rate for a wide range of conditions (see Materials and
Methods).
We extended this analysis to a large range of fs1; s2g

STP combinations by gradually changing the set of pa-
rameters fU; t f ; t recg (Fig. 5E). We found that Gcom

max in-
creased monotonically when we made the synapse s1
more facilitatory or when we made the synapse s2 more
depressing. The anti-diagonal (where s1 ¼ s2) marked the
region of zero gain and any point above it (s2 more facili-
tatory than s1) resulted in Gcom

max ¼ 0, whereas any point
below it (s1 more facilitatory than s2) resulted in Gcom

max.0.
As expected, if s1 is highly facilitatory and s2 highly de-
pressing the combined effect will be of very high gains,
given that the presynaptic activity is optimally distributed.

Effects of basal activity on the FF-EI network
Next, we investigated the effects of the stationary

basal activity at the combined optimal conditions of a
FF-EI network. We found that the optimal rate and opti-
mal gain both decreased as rbas was increased (Fig. 5F).
Separation of the individual contributions of s1 and s2
branches revealed that this decrease was primarily be-
cause of a reduction in the gain of facilitatory synapses
(s1) whereas the strong negative gain of depressing
synapses (s2) remained approximately unaltered. This
suggests that a population of facilitatory synapses will
lose most of its activity distribution-dependent gain as
the basal firing rate is increased, whereas a population
of depressing synapses can preserve this capability
even at larger basal rates.
Thus, these results show that a FF-EI network with tar-

get-dependent STP can make the discrimination of
sparse activity more robust than what could be achieved
by the FFE alone. This can be achieved when the excita-
tory branch is facilitatory while the activation of the inhibi-
tory branch is depressing (by placing s1 and s2 at the
region below the anti-diagonal in Fig. 5E).
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Sparse code identification by a postsynaptic neuron
model
The ability of STP to amplify the output of a presynaptic

population would be functionally relevant only if this am-
plification is transferred to the postsynaptic side. We

tested the postsynaptic effects of the STP based modula-
tion of the presynaptic activity distribution by simulating
an I&F neuron model (Eq. 15) as a readout device for a FF-
EI circuit (Fig. 6A). We simulate a presynaptic population
with characteristics similar to the cerebellar molecular
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Figure 6. Transfer of STP gain from presynaptic population to postsynaptic neuron. A, Schematic of a readout neuron receiving
feedfoward excitation and FFI input. The inhibitory group was driven by the PRR of synapses of type s2 (Eq. 17). Sparse and dense
activity patterns are schematically shown. The population temporally (Ts ¼ 40ms marked in gray) increases its firing rate by
Rext ¼ 1:::10% of Rbas in two different configurations: sparse (top, Next = Nopt) or dense distribution (bottom, Next ¼ 16;000). For
panels B–E, Rext ¼ 8% of Rbas. B, PSTH of the spiking rate (3000 realizations) of readout neuron receiving sparse (black) or dense
(gray) distribution of input activity. C, Mean membrane potential for sparse input (black) and dense input (gray) when the synapse s1
was facilitatory and synapse s2 was depressing. Red trace, Membrane potential when the synapse s1 was facilitatory and synapses
s2 was static. Blue trace, Membrane potential when the synapse s1 was static and synapses s2 was depressing. The red and blue
traces show the contributions from synaptic facilitation (FFE branch) and depression (FFI branch) to the neuron response. D,
Changes in the total excitatory and inhibitory conductances for the four configurations of synapses (as show in the panel C). The
dashed line marks the conductance changes for the static synapses condition. E, Effect of varying Next as a proportion of Ncom

opt on
the expected spike count (top, black circles) and the mean membrane potential (bottom, black circles) during the event-related ac-
tivity period. Both profiles match the combined gain curve (gray line, compare with Fig. 5C), with peak at Next ¼ Ncom

opt . F, Probability
distribution of output spike counts within Ts. G, Separation (1–BC) between spike count distributions as a function of rd . The sparse
distribution produced increasingly substantial separation when compared with basal (dark gray) and dense distribution (black),
whereas the separation was always small when comparing dense distribution with basal activity (light gray).
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layer, a massively feedforward system with properties
much alike the ones we have described so far (Ito, 2006).
Specifically, the readout neuron received input from

160,000 presynaptic neurons. The presynaptic back-
ground activity was modeled as independent and
homogeneous Poisson spike trains with average firing
of rbas ¼ 0:5Hz (Rbas ¼ 80 kHz). In addition, the popula-
tion of presynaptic neurons increased their firing rate
(Rext ¼ 1:::10% of Rbas) during a brief time window
(Ts ¼ 40ms) to mimic an event-related activity. The
extra presynaptic activity was either confined to a small
set of presynaptic neurons (Next = Nopt, sparse) or distrib-
uted over a large number of neurons (Next ¼ 16; 000,
dense). The excitatory synapses onto the readout neuron
(s1) were facilitatory and the STP parameters for each syn-
apse were drawn from a Gaussian distribution (s1, U :
mean ¼ :1; s:d: ¼ :02; t rec : mean ¼ 50; s:d: ¼ 10ms
and t f : mean ¼ 200; s:d: ¼ 40ms). The FFI activity was
modeled as a Poisson process whose firing rate (l i; Eq. 9)
was linearly dependent on the excitatory input of depressing
synapses, whose STP parameters for each synapse
were drawn from a Gaussian distribution (s2, U :
mean ¼ 0:7; s:d: ¼ :14; t rec : mean ¼ 200; s:d: ¼ 40ms,
and t f : mean ¼ 50; s:d: ¼ 10ms). Maximum weights of
each excitatory and inhibitory were drawn from
Gaussian distributions (Be : mean ¼ 25; s:d: ¼ 2:5nS;
Bi : mean ¼ 2:; s:d: ¼ :2nS).
The distribution of the input had a noticeable effect in

the output of the target neuron, as shown by the peristi-
mulus time histogram (Fig. 6B). While the dense distribu-
tion elicited transients at the beginning and ending of the
stimulus period because of the inhibition slow time con-
stant, the sparse code elicited a sustained elevated firing
rate response throughout the stimulus period. The stimu-
lus induced membrane potential responses for the two
types of input patterns (dense and sparse) were also simi-
lar to the firing rate responses (Fig. 6C). By interchange-
ably setting s1 and s2 to static, we identified that both
branches contributed significantly to keep the mean
membrane potential high in the presence of extra sparse
input.
The contribution of each branch becomes clear at the

average change in the total excitatory and inhibitory con-
ductances of the readout neuron. When both synapses
were dynamic and the stimulus was sparse (Fig. 6D, left-
most), the average excitation was larger (because of syn-
aptic facilitation) and the average inhibition was lower
(because of synaptic depression) than the average
changes caused by a stimulus of the same intensity but
with dense distribution (Fig. 6D, rightmost). Note how,
with dynamic synapses and dense distribution of the
stimulus, the conductance changes matched the ex-
pected change for static synapses (dashed line). When
we kept the stimulus distribution sparse, but interchange-
ably set s1 and s2 to static, the conductance trace related
to the static branch reached the same value as for the
dense distribution and the system was left with the gain
produced at the dynamic branch. Dense distributions,
therefore, do not exploit the STP nonlinearities and the
synapses behave approximately as static, as predicted.

Next, we systematically changed Next as percentages
of Nopt (Next = 1%, 10%, 25%, 50%, 100%, 200%, 400%,
1000% of Nopt, black circles in Fig. 6E) and found that
both the mean membrane potential and the average spike
count during the stimulus period followed profiles that
closely matched the predicted Gcom curve (Fig. 6E). This
result confirms that the modulation of the PRR from the
presynaptic population is faithfully translated into postsy-
naptic variables (gain estimated at the presynaptic side
and membrane potential and spike rate measured on the
postsynaptic neuron side). Furthermore, this result also
highlights the robustness of this mechanism, even with
considerable deviations from the optimal encoding distri-
bution (Next = 50% or Next = 200% of Nopt, marked as
the first black points at left and right from Next = Nopt), the
evoked responses remained reasonably close to the
optimal.
To further assess how individual realizations of the

sparse input could be distinguished from a dense input of
the same intensity, we sampled the output spike count of
the readout neuron for a period of 40ms during the on-
going basal activity just before the stimulus and during
the 40 ms stimulus period for both sparse and dense dis-
tributions (Fig. 6F). We used the Bhattacharyya coefficient
(BC) as a measure of overlap between these sample dis-
tributions and 1–BC as a measure of difference (Fig. 6G).
The dense input had almost complete overlap with the
basal condition. On the other hand, the sparse input pro-
duced increasingly different response distributions from
both the dense input and basal condition, with almost
complete separation at rd ¼ 10% of rbas.
Taken together, these results illustrate the potential role

of dynamic synapses in amplification of sparse signals at
the presynaptic side (Qp, G), even when such signal inten-
sity is just a small fraction of the ongoing basal activity
and, therefore, likely to be buried in proportionally large
noise fluctuations. In addition, for a dense distribution of
the input, the system can preserve short periods (;10ms)
of increased (decreased) spike probability right after stim-
ulus onset (offset) because of delayed inhibition, which is
a known characteristic of FF-EI motifs and might serve as
indication of global background rate changes.

Continuous extra rate distribution
Thus far, we have considered a binary distribution of

the extra rate: a fraction of presynaptic cells increased
their rate by rext or not at all. Although some neural net-
works might roughly operate in this binary fashion, it is im-
portant to ask how would such STP-driven gains operate
under continuous distributions, a perhaps more compre-
hensive way of describing the activity distribution of many
neural populations. We therefore estimate the optimal
conditions for when the extra presynaptic activity follows
a g distribution (Eq. 19).
The variation of the shape parameter (1,k,20)

changes the distribution from an exponential to a quasi-
Gaussian. For each fixed shape, we control the mean
(therefore the sparsity; Eq. 20) of the distribution with the
scale parameter (10�2,u,103). For each set fk; u g we
calculate the expected gain (Eq. 21) yielded by a
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population of facilitatory synapses (s1, 7A left), of de-
pressing synapses (s2; Fig. 7A, center) and the combined
gain (Fig. 7A, right). Nine particular parameters choices
are demonstrated in Figure 7B, where the central panels
follow the choices that maximize the combined gain.
We found that, similar to the binary distribution case,

the gain for facilitatory synapses followed a non-mono-
tonic curve as a function of u (for a fixed k), with negative
values at high u (overly sparse distribution), a single peak
at the optimal u choice and convergence to 0 at low u
(dense distribution). By contrast, depressing synapses

showed negative gains, monotonically converging to zero
at low u . The combined gain reached high values when s1
synapses were in very positive and s2 synapses were in
very negative operating regions (Fig. 7C; see Fig. 7A, gray
line).
Interestingly, not only the gain magnitudes were very simi-

lar to the ones obtained with binary distributions (compare
colorbars of Figs. 5A,B and 7A), but also with continuously
distributed rates the points of maximum gain were obtained
at high mean rates (in relation to rd ) and, therefore, represen-
tative of sparse distributions of the population activity. For

0

2

4 10-3

mean: 422

0

0.005

0.01 mean: 166

0

10

20 mean: 0.07

0

5

P(
r ex

t)

10-10

mean: 4422

0

0.01

0.02 mean: 135

0

1

2 mean: 0.78

0 200 400
0

2

4 10-21

mean: 8422

0 200 400
rext [spks/sec]

0

0.01

0.02 mean: 133

0 1 2
0

1

2 mean: 1.49

10-210-1 100 101 102 103

Scale

-100

-50

0

50

100

150

Ga
in

 [%
]

s1
s2
com

1 5 10 15 20
Shape

0

63

125

187

250

r ex
t

0

0.005

0.01

0.015
P(rext)

mean rext
bi ropt

s1 - facilitatory

10-210-1 100 101 102 103

Scale

1

5

10

15

20

Sh
ap

e

s2 - depressing

10-210-1 100 101 102 103

Scale

1

5

10

15

20
Sh

ap
e

combined

10-210-1 100 101 102 103

Scale

1

5

10

15

20

Sh
ap

e

-50

0

50

100

Gcom [%]

B

A

C

D

Figure 7. Synaptic gain when firing rates of individual neurons (rext) were draw from continuous distributions (g distribution). A, Gain
surfaces for a facilitatory synapse (left), for a depressing synapse (middle) and for the combined effect in a FF-EI (right). Increasing
the shape parameter (k) moved the distribution from exponential to approximately Gaussian. Decreasing the scale parameter (u )
moved the distribution from a high mean and high variance (sparse) to a low mean and low variance one (dense). Black lines mark
the u that resulted in maximum combined gain for each value of k. Similar to the binary distribution, the Gcom

max is obtained by putting
s1 in positive and s2 in negative gain regions. Note that the gain values are in the same range as in Figure 5A,B. B, Representative
examples of g functions used to model the distribution rext. The nine examples correspond to the points marked in panel A.
Changing k affects the shape of the distribution: exponential (top row), right-skewed (middle row), and approximately Gaussian (bot-
tom row) shapes. Changing u affects the scale of the distribution (sparsity of the population code): high mean and variance (left col-
umn), optimal mean and variance (middle column), and low mean and variance (right column). C, Gain curves for a facilitatory
synapse (blue), for a depressing synapse (red), and for the combined effect in a FF-EI (black). These curves were obtained for a
fixed k=10 (gray lines on panel A) and gradually changing u . The gains as a function of the g activity distribution follow a profile
similar to the binary distribution (compare with Fig. 5C). D, g-Distributed rext (color plot) as a function of shape parameter. Mean rext
from the g distributions obtained with the optimal u for each value of k (black lines on panel A). As the g shape moves from an ex-
ponential to a Gaussian one (increasing k), the mean of the optimal distribution approaches the ropt for the binary distribution.
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increasing values of k, the skewness of these distributions
approached zero (i.e., became closer to a Gaussian) and the
mean rext of the optimal u approaches the ropt obtained by
binary distributions. These results further corroborate the ef-
fects of the activity distribution-dependent gain modulation
in presynaptic populations with STP.

Continuous basal rate distribution
In the preceding analysis we assumption that rbas is

fixed and the same for all presynaptic units. A more natu-
ral scenario, however, would be to consider a continuous
distribution of basal firing rates. We extend our analysis to
account for this continuous rbas scenario in a similar way
to what we did for rext: we modelled the distribution of
basal rates with a g distribution, with varying shape and
scale parameters. The variation of the shape parameter
(1,k,20) changed the distribution from an exponential to
a quasi-Gaussian (Fig. 8A). For each fixed shape, we con-
trolled the mean of the distribution (Eq. 20) with the scale
parameter.
We calculated the expected values for Qs

bas; Q
s
d , and

Qs
opt for each distribution shape (Fig. 8B) and found that

these values converged to the values estimated with a
fixed rbas for higher k (quasi-Gaussian) and diverged for
lower k (exponential). Using these traces, we calculated
the gains (Fig. 8C) and again found that the results con-
verged to the estimated values for fixed rbas. For higher
rbas, however, the differences between fixed and continu-
ously distributed rbas were more pronounced.
The divergence we observed can be explained by the

probabilities that any chosen unit will have a rate below or

above the mean rbas value. As discussed above, higher
rbas will hinder the exploitation of STP nonlinearities and,
therefore, reduce the possibility of higher gains. For expo-
nential-like distributions, a higher proportion of the popu-
lation has rbas , rbas , which reduces this hindering effect,
even if a smaller part of the population (for which
rbas . rbas ) gets more impaired. As the distribution gets
closer to a Gaussian (increase in shape parameter), the
proportions of the population with rbas below or above the
rbas become almost equal. In the limit of k ! 1, the var-
iance of the g distribution will approximate zero (for our
fixed mean) and the gains will converge to the values esti-
mated with fixed rbas.
It is worth noting that, for higher rbas , the spike rate var-

iances are also higher and the estimates of gains with
fixed rbas become less accurate. This means that our sim-
plified predictions of the hindering impact that higher rbas
have on the distribution-dependent gains will likely be an
overestimate of the actual effects in real neuron popula-
tions. In other words, the distribution-dependent gains in
facilitatory populations can be more resilient to higher rbas
than what is predicted by a fixed rbas models.

From presynaptic gains to postsynaptic rate changes
The readout neuron in our simulations operates in a re-

gime where the presynaptic gains are reliably translated
into readout firing rate gains, which is equivalent to saying
that the postsynaptic transfer function is independent of
the input distribution. However, both synapses and readout
neuron dendrites/soma can operate in a nonlinear regime

BA C

Figure 8. Continuous distribution of rbas. A, Two configurations of a g distribution with the same mean value rbas = 0.5 Hz. When
k=1, the distribution is exponential and there is a higher probability that any chosen neuron will have rbas , 0.5Hz as opposed to
rbas . 0.5Hz. A higher shape value k=20 brings the distribution closer to a Gaussian and decreases variance. B, Expected values
of Qs

bas; Q
s
d and Qs

opt for varied g shape values. The higher k is, the smaller is the variance and the results converge to the estimated
values with fixed rbas. C, Similar to the other variables, the optimal gains start with higher values (when k is low) and converge to the
estimated values with fixed rbas for higher k. For lower rates the estimates do not diverge much (see overlapping solid and dashed
lines when rbas = 0.5Hz), but for higher rbas the increased variance of the continuous distribution has non trivial effects. This indi-
cates that distribution-dependent gains from facilitatory populations might be more resilient to higher basal levels than initially
predicted.
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and further transform the presynaptic gain described above.
These non-linearities reflect in the transfer function of the
neuron, i.e. the probability of an output spike given a certain
input.
To identify in which circumstances changes in postsy-

naptic transfer function may affect the transfer of presyn-
aptic gains into output firing rate, let us consider a neuron
with two possible transfer functions (Fig. 9, blue and red
curves). The transfer function TF-1 is similar to the one we
have considered previously in Figure 6. The TF-2 shows a
sharp change. Such a sharp change in the transfer func-
tion may arise, for example, because of NMDA receptors.
When input is strong, postsynaptic depolarization can re-
move the Mg21 block and creates a larger EPSP and in-
crease the spike probability (Du et al., 2017). Similarly,
nonlinear local dendritic integration (Polsky et al., 2004),
input correlations (de la Rocha and Parga, 2005), and volt-
age dependent ion channels may also create input-de-
pendent changes in the neuron transfer function. When
the neuron transfer function can change between TF-1
and TF-2, the output firing rate is not only determined by
the effective input (sparse . dense, for s1-facilitatory) but
also by the qualitative differences in the two transfer
functions.
Sparse input distributions will allocate extra incoming

spikes as bursts, which could potentially cause extra ac-
cumulation of neurotransmitters (for s1-facilitatory) in spe-
cific dendritic sites, triggering supralinear integration (TF-
2, red curve). If a dense input distribution does not attain
the triggering of TF-2 and instead keeps operating under
TF-1, the difference between presynaptic gains of sparse
and dense distributions will be further increased (see the
difference between points 1 and 4; Fig. 9).
In cases where both input distributions operate under

the same TF the presynaptic gains will be reliably trans-
ferred into output rates (compare points 1 and 2 for TF-1
and points 3 and 4 for TF-2 in Fig. 9). Finally, when a
dense distribution of inputs makes the output neuron

operate under TF-2 and a sparse distribution brings the
neuron to operate under TF-1, the presynaptic gains
could potentially be overcome (Fig. 9, compare points 2
and 3).

Linear approximation of Qs
d

We solve Qs numerically (Eq. 3) and show that it be-
haves linearly for a moderate range of rates in different
STP regimes (Fig. 10). The approximation by a linear func-
tion, Qs

d ¼ Qs
bas1Ss � rd , allows Gmax and ropt to be inde-

pendent of the stimulus intensity and population size
(Eqs. 13, 14).
To which extent is the linear approximation valid? To in-

vestigate this, we solve Qs
d for gradually increasing rd (Fig.

10A) departing from a range of different basal levels
rbas ¼ 0:5:::10 Hz. We then compare the slopes for each
rd to the slope for rd ¼ 0:1 � rbas and see how much they
deviate from it (Fig. 10B,D). If, for a given rbas, increasing
rd would result in significant change in the regressed Ss,
then Gmax would be dependent on the stimulus intensity
rd . We also show the R2 statistics to confirm the accuracy
of the linear approximation (Fig. 10C,E).
As we observe, for low signal-to-basal ratios (rd =rbas,1),

there is a wide range of rates for which the approximation
is good enough, with jSs dev j,1% and R2 . 99.9%.
Specially for low rbas, the approximation is valid for the
whole range of rd .

Discussion
Our results suggest how the activity distribution of a

presynaptic population can exploit the nonlinearities of
short-term synaptic plasticity and, with that, the theoreti-
cal potential of synaptic dynamics to endow a postsynap-
tic target with the ability to discriminate between weak
signals and background activity fluctuations of the same
amplitude. Such mechanisms have the advantage of
being in-built in synapses, not requiring further recurrent
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Figure 9. Transfer of presynaptic gains onto postsynaptic rate changes. Distribution-dependent postsynaptic transfer function. For
facilitatory synapses, sparse input distributions will yield higher effective input than dense distributions. If both distributions keep
the neuron operating under the same transfer function, the presynaptic gain will be efficiently transferred to the postsynaptic rate
(1–2 or 3–4). If sparse distributions put the neuron operating under TF-2 while dense distributions keep the neuron under TF-1, the
presynaptic gains will be magnified (1–4). Otherwise, if dense distributions put the neuron under TF-2 while sparse distributions
keep it under TF-1, the presynaptic gains might be overtaken by the postsynaptic integration effects (2–3).
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computation or any sort of supervised learning to take
place. This feature is likely to be present in different brain
regions, e.g. the cerebellum and the hippocampus, and
might have critical implications for general information
processing in the brain.

Relevance to specific brain circuits
We have shown that STP can enhance the effective

input when (1) stimulus is sparse, temporally bursty and
(2) FFE synapses on the principal cells are facilitatory and
FFE synapses on local fast-spiking, inhibitory interneur-
ons are depressing. These two conditions are fulfilled in
several brain regions. Sparse coding provides many
advantages for neural representations (Babadi and
Sompolinsky, 2014) and associative learning (Litwin-
Kumar et al., 2017). As discussed in the following, a num-
ber of experimental studies provide support for sparse
coding in several brain regions such as the neocortex,
cerebellum and hippocampus.

In the cerebellum, glomeruli in the granular layer actively
sparsify the multimodal input from mossy fibers into rela-
tively few simultaneously bursting PFs (Billings et al.,
2014) projecting to Purkinje cells (PuC). A single PuC
might sample from hundreds of thousands of PFs (Tyrrell
and Willshaw, 1992; Ito, 2006). In behaving animals, PF
present two stereotypical activity patterns, a noisy basal
state with rates lower than 1Hz during long periods inter-
leaved by short-duration (;40ms), high-frequency (usu-
ally .100Hz) bursts carrying sensory-motor information
(Chadderton et al., 2004; Jörntell and Ekerot, 2006; van
Beugen et al., 2013). Given the large number of PFs im-
pinging on to a PuC, the fluctuations in basal rate are as
big as the event-related high-frequency bursts. As our
analysis shows, if PF synapses were static, the PuC
would not be able to discriminate between high-fre-
quency bursts and background fluctuations. However,
PF synapses show short-term facilitation when target-
ing PuC and short-term depression when targeting

BA C

D

E

Figure 10. Linear approximation of Qs
d . A, For basal rate rbas ¼ 0:5Hz and Ts ¼ 40ms; Qs

d is approximately linear for all STP
regimes, facilitatory (U = 0.1,t rec ¼ 50ms; t f ¼ 2000ms), facilitatory/depressing (U = 0.4,t rec ¼ 100ms; t f ¼ 1000ms), or de-
pressing (U = 0.7,t rec ¼ 2000ms; t f ¼ 500ms). B, Slope deviation for increasing rd in comparison to the slope for rd ¼ 0:1 � rbas is al-
ways smaller than 0.6% for the three synapse types. C, R2 is always close to 100% for the three synapse types. D, Absolute value of
slope deviation, similar to panel B, but for rd departing from several different values of rbas. The gray line marks jSs dev j ¼ 1%. We ob-
serve that the linear approximation will work well throughout a large space (left from the gray line) for facilitation (left) and facilitation/de-
pression (middle) regimes and gets a bit more constrained for depressing (right) synapses. E, Similar to panel C, but for rd departing
from several different values of rbas.
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Basket cells (Atluri and Regehr, 1996; Bao et al., 2010;
Blackman et al., 2013; Grangeray-Vilmint et al., 2018).
Basket cells perform strong, phasic somatic inhibition
to PuCs (Jörntell et al., 2010). This circuit motif closely
matches the FF-EI circuit investigated in this work (Fig.
6). Based on these similarities, we argue that one of the
functional implications of the specific properties of STP
is to enable the PuC to discriminate between informa-
tion encoded in high-frequency bursts and background
activity fluctuations.
In the neocortex, the population code in the layer 2/3 of

the somatosensory (De Kock and Sakmann, 2008) and
visual cortex of rats (Greenberg et al., 2008) and mice
(Rochefort et al., 2009) is believed to be sparse (Petersen
and Crochet, 2013), with short-lived bursts (usually ,20ms)
of high firing rates occurring over low rate spontaneous
activity (,0:5Hz). Additionally, it has been recently
found that pyramidal cells at layer 2/3 of the mouse so-
matosensory cortex show short-term facilitation when
targeting cells at layers 2/3 and 5 (Lefort and Petersen,
2017). The receptive field properties in the visual cortex
are also consistent with the sparse code (Olshausen
and Field, 1996). These characteristics suggest that the
mechanism to discriminate between weak signals and
background fluctuations may also be present in the
neocortex. It is believed that such sparse representa-
tion at superficial cortical layers indicates strong stimu-
lus selectivity (Petersen and Crochet, 2013), in which
case the transient gain, provided by the target-depend-
ent STP configuration of local pyramidal neurons, would be
a suitable property for interlayer communication.
In the hippocampus, the Schaffer collaterals bringing

signals from CA3 to CA1 operate under low basal firing
rates with evoked bursts of high-frequency activity during
short periods of time (Schultz and Rolls, 1999). The synapses
from pyramidal cells in CA3 to pyramidal cells in CA1 are fa-
cilitatory and provide this pathway with extra gain control
(Klyachko and Stevens, 2006). Simultaneously, Schaffer col-
laterals synapses to CA1 stratum radiatum interneurons
show larger release probability than to pyramidal neurons
(Sun et al., 2005). Therefore, it is likely that this STP-based
stimulus/noise discrimination mechanism is also used to im-
prove the transmission of sequential activity from CA3 to
CA1.
As we have pointed above, STP configuration in the

neocortex, hippocampus and cerebellum are consistent
with the configuration that enables the neural networks to
take advantage of sparse coding. However, it is important
to notice that facilitatory excitatory inputs to other inhibi-
tory cells also exist in the aforementioned circuits. These
facilitatory inputs mostly target interneurons that form
synapses on distal dendrites. The presence of facilitatory
excitatory drive to these classes of inhibitory neurons is,
however, unlikely to counteract the distribution-depend-
ent transient gains, because they produce weaker, slower
and persistent dendritic inhibition. Consistent with this
idea, only parvalbumin-expressing neurons (that synapse
on the soma), but not somatostatin-expressing neurons
(that synapse on distal dendrites), modulate stimulus re-
sponse gain (Wilson et al., 2012).

The initial release probability is the most distinguishable
STP parameter between Schaffer collaterals synapses
onto CA1 pyramidal cells versus CA1 interneurons (Sun et
al., 2005). In line with that, our approach predicts that fa-
cilitatory mechanisms that steadily increase a low initial
release probability during a fast sequence of spikes (low
U) will have a greater impact on the optimal OD and gain
amplitude than mechanisms for fast replenishment of re-
sources (low t rec). However, the speed of recovery has
been shown to be itself an activity-dependent feature
(Fuhrmann et al., 2004; Crowley et al., 2007; Valera et al.,
2012; Doussau et al., 2017) and this could in principle in-
crease the relevance of t rec.
The facilitatory or depressing nature of STP depends on

the postsynaptic neuron type (Markram et al., 1998;
Reyes et al., 1998; Rozov et al., 2001; Sun et al., 2005;
Pelkey and McBain, 2007; Bao et al., 2010; Blackman et
al., 2013; Larsen and Sjöström, 2015; Éltes et al., 2017).
Target-dependent STP is a strong indication that such
short living dynamics are relevant for specific types of in-
formation processing in the brain (Middleton et al., 2011;
Naud and Sprekeler, 2018). Here, we predict that, when
accompanied by specific arrangements of target-depend-
ent STP found experimentally in different brain regions, di-
synaptic inhibition could further increase the gain of
sparse over dense distributions and make it robust even
at higher basal activity, when the gain at facilitatory exci-
tation decreases substantially.
Disynaptic inhibition following excitation is a common

motif throughout the brain, and different classes of inhibi-
tory neurons are believed to serve distinct computations
within their local circuits (Wilson et al., 2012; Jiang et al.,
2015). Despite a wide diversity of inhibitory cell types, a
classification of FF-I into two main types, perisomatic and
dendritic targeting, seems to be coherent with findings
throughout the central nervous system. A remarkable at-
tribute of this configuration is the consistency of the
short-term dynamics of excitatory synapses across local
circuits: depressing to perisomatic and facilitating to den-
dritic interneurons (Sun et al., 2005; Bao et al., 2010;
Blackman et al., 2013; Éltes et al., 2017).
Disynaptic inhibition has been implicated in controlling

the precision of a postsynaptic neuron’s response to brief
stimulation in the cerebellum (Mittmann et al., 2005; Ito,
2014) and hippocampus (Pouille and Scanziani, 2001).
Additionally, the combination of disynaptic inhibition with
target-dependent STP has been recently associated with
the ability of networks to decode multiplexed neural sig-
nals in the cortex (Naud and Sprekeler, 2018). In line with
these, our results show a bimodal profile of the readout
neuron response to sparse or dense input code. We also
demonstrate that, coexisting with the sustained gain dur-
ing sparse code transmission, in a dense coding scenario,
the system produces shorter periods (;10ms) of in-
creased (decreased) spike probability right after stimulus
onset (offset; Fig. 6B, gray line). This results from inhibi-
tory conductances (GABA) which are slower than the
excitatory conductances (AMPA). This very short period
of firing rate modulation might work as an indication of
a widespread basal rate change in the presynaptic
population.
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Relationship with previous work
Historically, STP has been prominently explored as a

frequency filter which renders an individual neuron as a
low-pass filter (when synapses are depressing) or high
pass filter (when synapses are facilitatory; Markram et al.,
1998; Dittman et al., 2000; Abbott and Regehr, 2004). It
has been suggested that under some conditions STD can
also interact with subthreshold oscillation to modulate the
gain of the neurons (Latorre et al., 2016). With STP the
synaptic strength depends on recent history of the incom-
ing spikes in a particular synapse. This automatically
makes the downstream neurons more sensitive to tran-
sient fluctuations in input spike trains. In most of the previ-
ous work this specific property has been exploited for
neural coding.
For instance, history dependence of STP means that

the effect of serial correlations (that can be seen in the au-
tocorrelogram of spike trains) and spike bursts in the pre-
synaptic activity depends on whether the synapses
express STF or STD. Synapses with STD reduce redun-
dancy in the input spike train by reducing the PSPs of
spikes that appear with a certain serial correlation or peri-
odicity (Goldman et al., 2002). By contrast, when synap-
ses express STF, they enhance the effect of serial
correlations or spike bursts and the readout neuron can
function as a burst detector (Lisman, 1997). In fact, both
STF and STD can be combined to de-multiplex spike
bursts from single spikes (Izhikevich et al., 2003;
Middleton et al., 2011; Naud and Sprekeler, 2018). Thus,
much emphasis has been put on understanding how STP
can be used to extract information encoded in the pattern
of spikes of a single input neuron.
Here, we extend this line of work and show how STP

may affect the impact of a neuron ensemble on down-
stream neurons. Previous work has suggested that STP
makes a neuron sensitive to transient rate changes. Given
this property, when synapses show STD, input correla-
tions can still modulate the neuron output for a wide
range of firing rates (de la Rocha and Parga, 2005). Our
work reveals a new consequence of the same effect as
we show that STP renders the neurons in the brain with
input distribution dependent gain, through which sparse-
bursty codes could have stronger downstream impact
than dense codes with same intensity. Furthermore, we
investigate the relative importance of different STP pa-
rameters and baseline firing rates for these gains. This
novel feature could be a highly valuable asset in low sig-
nal-to-noise ratio conditions. Moreover, our results also
show how synapses can impose further constrains on the
neural code.

Experimental verification of model predictions
Experimentally, these results can be tested by meas-

uring the distribution of evoked firing rates of the neurons
and STP properties of the synapses in the same brain
area. Recent technological advances in stimulation sys-
tems, allowing for submillisecond manipulation of single
and multiple cells spike activity, might soon provide
means for fine control of population spike codes in intact
tissues (Shemesh et al., 2017). These, together with

refined methods for single cell resolution imaging of entire
populations (Xu et al., 2017; Weisenburger and Vaziri,
2018), may also allow for scrutinizing the extent of which
the proposed synaptic mechanisms for distribution-de-
pendent gain are present in neural networks. Our predic-
tion about the role of background activity in determining
the gain of the sparse or dense codes can be tested by
changing the overall background activity using chemoge-
netic techniques.

Limitations and possible extensions
Here, we made several simplifications and assumptions

to reveal that STP of synapses has important consequen-
ces for neural coding. Relaxing each of these simplifica-
tions and assumptions may affect our conclusions in
certain conditions and should be investigated in further
studies. In the following we briefly discuss a few crucial
simplifications and how they might affect our results.
Our analyses considered the presynaptic activity to be

comprised of independent Poisson processes, that is,
whenever we choose a set of Next presynaptic units to in-
crease their firing rates, we choose them randomly.
Because STP is a synapse specific property, input cross-
correlation will not affect PRR and Q and therefore, the
presynaptic gain. However, it is well known that input cor-
relation can change the gain of a neuron (Kuhn et al.,
2003; de la Rocha and Parga, 2005).
It is conceivable that in some conditions, input correla-

tions can potentially neutralize the advantage of sparse
codes over dense codes. The readout neuron fluctuations
(and therefore, their output firing rate) are dependent on
the input correlation. For the same amount of pairwise
correlation, the size of fluctuations in the readout neurons
is directly proportional to the number of signal-carrying
units (Next). A larger Next (dense distribution) will elicit
larger fluctuations than a smaller Next (sparse distribution).
This is because for a larger Next more input spikes can
occur together in the same time bin. Thus, input correla-
tions may amplify the downstream impact of dense
input distributions more than the sparse input distribu-
tions. The size of this effect of correlations depends on
the number of inputs (Next) and the amount of correla-
tions (both pairwise and higher-order). However, be-
cause cortical activity is weakly correlated (Ecker et al.,
2010) such an effect of correlation may not be enough
to completely neutralize the advantage of sparse distri-
bution over dense distribution.
We also did not study the effect of spatial location of

synapses in transferring the effect of sparse codes over
dense codes to the readout neurons. There are at least
two possibilities in which dendritic locations of the syn-
apses may weaken the advantage of a sparse input dis-
tributions over a dense input distributions. First, when
synaptic strength decreases as a function of distance
from the soma: it is possible that in the sparse input dis-
tribution case, the synapses bringing the information
are located far away from the soma while for dense
input distribution at least some inputs will be closer to
the soma. Therefore, even if on the presynaptic side, a
sparse input distribution generates stronger outputs
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than a dense input distribution, its effect on the postsy-
naptic neurons may be weakened because of weaker
synapses. However, even in this case, because of den-
dritic nonlinearities and Na1/Ca21 spikes (Larkum et
al., 2009), distally located sparse distribution may still
have a stronger response than proximally located
dense input distributions. Second, the effect of synap-
ses on certain dendrites is cancelled by strategically
placed inhibitory synapses (Gidon and Segev, 2012). It
is possible that a sparse distribution (because of fewer
synapses) may get cancelled or weakened by strategi-
cally placed inhibition. The effect of such inhibition will
indeed be weaker on dense input distributions as many
more synapses will carry the input information. Thus,
for sparse input distributions, their location on the neu-
ron may be an important factor. A proper treatment of
this question requires the knowledge of, e.g., neuron
morphology, distribution of inhibition, and dendritic
non-linearities, and should addressed in a separate
study.
We also assumed that all the synaptic weights are

sampled from the same Gaussian distribution as our goal
was to consider a naive situation in which weights have
not been “trained” for any specific task. Having different
synaptic weight distributions may affect the value of the
gains, especially when synaptic weights and input are as-
sociated (stimulus-specific tuning). Such different distri-
butions may arise because of supervise/unsupervised
learning. A systematic study of a network with stimulus-
specific tuning of synaptic weights raises several perti-
nent questions and should be investigated in a separate
study.
The transient enhancement or depression of synaptic

efficacy by presynaptic mechanisms consists of many in-
dependent processes (Zucker and Regehr, 2002). The TM
model is a tractable and intuitive way to account for these
two phenomena of interest, but this parsimony comes at
the cost of biophysical simplifications. For example, it as-
sumes the space of available resources is a continuum
(0, x,1) as opposed to the known discrete nature of
transmitter-carrying vesicles. However, we argue that
when modeling a large number of simultaneously active
synapses, the variable of interest (population PRR) can be
approximated by a continuous variable. The nonuniform
amount of transmitters per vesicle might further justify
this assumption.
Detailed STP models that try to account for specific in-

tracellular mechanisms (Dittman et al., 2000), and sto-
chasticity of the release process (Sun et al., 2005;
Kandaswamy et al., 2010) have been proposed in the liter-
ature. We argue that, with more complex models of STP,
our results might change quantitatively but the qualitative
outcome of our analysis would remain: that presynaptic
short-term facilitation (depression) yields a substantial
positive (negative) gain to sparse over dense population
codes. Nevertheless, it would be interesting to see how
the gain and optimal rate predictions may be shaped by
more detailed models.
Our analyses do not account for use-dependent recov-

ery time, changes in the readily releasable pool size

(Kaeser and Regehr, 2017) or vesicles properties hetero-
geneity. The effects of postsynaptic receptor desensitiza-
tion and neurotransmitter release inhibition by retrograde
messengers (Brown et al., 2003) are likely to decrease the
estimated gain by counteracting facilitation. Another inter-
esting extension could be used to further investigate the
effects of input STP heterogeneity at compartment-de-
pendent input using multi-compartment neuron models
(Vetter et al., 2001; Grillo et al., 2018).
If the same patterns of bursts tend to happen repeat-

edly (e.g., PFs in cerebellum during continuously repeti-
tive movement), there might be an optimal interburst
interval (IBIopt) for which, if bursts happen faster than
IBIopt, the signal would be compromised (because of
slow vesicles recovery time) and if bursts happen sepa-
rated by intervals longer then IBIopt no extra gain will
happen. Experimental evidence points to the importance
of resonance in the band oscillations (5:0;10:0Hz;
interburst interval : 100;200ms IBI) for cortical-cerebel-
lar drive (Gandolfi et al., 2013; Chen et al., 2016) and for
hippocampus (Buzsáki, 2002). In these cases, the slower
interaction between different pools of vesicles (Rizzoli and
Betz, 2005) are likely to play a role in information transfer.
Augmentation, a form of transient synaptic enhancement
that can last for seconds, is also likely to play a role in
these cases (Kandaswamy et al., 2010; Deng and
Klyachko, 2011).
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