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Abstract

Atrial fibrillation is the most frequent arrhythmia in both equine and human athletes. Currently, this condition is diagnosed
via electrocardiogram (ECG) monitoring which lacks sensitivity in about half of cases when it presents in paroxysmal form.
We investigated whether the arrhythmogenic substrate present between the episodes of paroxysmal atrial fibrillation (PAF)
can be detected using restitution analysis of normal sinus-rhythm ECGs. In this work, ECG recordings were obtained during
routine clinical work from control and horses with PAF. The extracted QT, TQ, and RR intervals were used for ECG restitution
analysis. The restitution data were trained and tested using k-nearest neighbor (k-NN) algorithm with various values of
neighbors k to derive a discrimination tool. A combination of QT, RR, and TQ intervals was used to analyze the relationship
between these intervals and their effects on PAF. A simple majority vote on individual record (one beat) classifications was
used to determine the final classification. The k-NN classifiers using two-interval measures were able to predict the diagno-
sis of PAF with area under the receiving operating characteristic curve close to 0.8 (RR, TQ with k�9) and 0.9 (RR, QT with
k�21 or TQ, QT with k�25). By simultaneously using all three intervals for each beat and a majority vote, mean area under
the curves of 0.9 were obtained for all tested k-values (3–41). We concluded that 3D ECG restitution analysis can potentially
be used as a metric of an automated method for screening of PAF.
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Introduction

It is well-established that high-performance human athletes
are predisposed to cardiac rhythm abnormalities. The same re-
lationship between exercise and cardiovascular disease could
be observed in other species, and the most frequent arrhythmia
in both equine and human athletes is atrial fibrillation (AF).
This condition poses little immediate danger, but negatively
affects cardiac function and therefore decreases the athletic
performance; it also substantially increases the long-term risk
of ischemic events, including stroke.1 Although moderate exer-
cise decreases the risks associated with cardiovascular disease,
strenuous exercise paradoxically increases arrhythmia risk, in-
cluding the risk of ventricular arrhythmias that can lead to sud-
den cardiac death (SCD).2 According to the “International
recommendations for electrocardiographic interpretation in
athletes,”3 detection of AF is a “red flag” case when further car-
diovascular evaluation is required to investigate for pathologic
cardiovascular disorders associated with SCD in athletes. Since
equine athletes have a pattern of exercise which is analogous to
human athletes and the cardiovascular risks in both species are
similar, racehorses might be considered as a feasible model ani-
mal to develop the methods of AF detection.

Development of automated methods to detect AF in horses
has several advantages. It is a widely occurring clinical problem
in veterinary medicine for which there is a growing interest in
developing automated detection methods. Additionally, al-
though other large animals have been used as the models for
AF research,4,5 we expect that racing horse models offer signifi-
cant advantages of subjects being kept in tightly controlled en-
vironment, with controlled breeding facilitating genetic
analysis. Horses also spontaneously developed AF similar to
humans. Furthermore, it is routine clinical practice to acquire
long durations of equine ECG which makes it easier to develop

the algorithms for nonlinear analysis which could be then ap-
plied to humans.

Identification of an ongoing AF by ECG analysis is straight-
forward and easy; however, in nearly half of AF cases which
present as paroxysmal AF (PAF), episodes could be short (from
hours down to 30 s) and interspersed by very long periods of
normal sinus rhythm (see Figure S1 for sample ECG traces). The
difficulty of PAF detection prompted the search for other risk
markers, based on blood proteins or miRNA, echocardiography,
and biomarkers.6 However, the current “gold standard” remains
the ECG monitoring. Various strategies for “fishing”7,8 for fibril-
lation episodes were suggested but the most frequent ones use
long-term continuous ECG monitoring that requires patient
compliance which could be problematic if the recording lasts
longer than 2–3 weeks.9

There is a growing body of evidence that structural and elec-
trophysiological alterations in the heart associated with the on-
set of AF might be detectable even in absence of actual AF event
and in apparently normal heart. A recent work by Attia et al.10

has demonstrated the applicability of neural network-based
machine learning techniques in detection of PAF from short
strips of normal sinus rhythm ECGs. The “black box” nature of
neural network makes it very difficult to make any physiologi-
cal inference on the nature of ECG alterations which might un-
derlie the detection by the artificial intelligence algorithms. Our
recent research has highlighted the feasibility of nonlinear data
analysis of equine ECGs for detection of the arrhythmogenic
substrate in horses that are in normal sinus rhythm.11

One of such techniques that has a straightforward physio-
logical basis is ECG restitution analysis which evaluates the
ability of the heart to recover after the heartbeat. It is regarded
as an appropriate measure to estimate the integrated mecha-
noelectrical impact on the heart. There are several possible
ways to quantify the ability of the heart to recover after the
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heartbeat, for example by evaluating QT and TQ interval ratios
to compare working phase and resting phase durations. Other
estimates include QT and RR ratio, TQ and RR ratio and more
complicated ones which include e.g. QRS complex width.11 As
the physiological changes leading to AF are not confined to
atria,12 it could be expected that alterations in the key temporal
relationships used in restitution analysis, measured from easily
resolvable and consistent features of the ventricular ECG will
change systematically with rate and rhythm, and some of these
can be selected as a basis for indirect detection and related pre-
diction of atrial rhythm disturbances. The common feature of
all these analyses is that they rely on interpretation of 2D plots
which can be easily performed by a human observer.
Unfortunately, this task is not always easy to formalize espe-
cially if the analysis concentrates on the outlier detection13 and
development of appropriate algorithms might be difficult.

The task of multidimensional data interpretation has been
facilitated in the recent decade by development of high-
performance computers and machine learning techniques. In
machine learning, the model describing the data is generated
not by a human, but rather by a computer algorithm. A popular
class of these algorithms is “supervised learning”, which infer
the mapping of the inputs to outputs in the “testing” data set
using the known relationship of inputs and outputs in a
“learning” data set. Of these, a very popular choice is a k-nearest
neighbors algorithm (k-NN), due to its simplicity which ensures
easy implementation and excellent interpretability of the
results.14 During the training phase of the model using k-NN
classifier, the “training” data are stored in the model. These
stored data are then used to classify the new query points by
picking k nearest neighboring points, based on a pre-defined
distance metric and a simple majority vote is carried out
(Figure 1). Note that the parameter k is often chosen as an odd
number due to the nature of majority vote.

A notable disadvantage of restitution analysis is that it typi-
cally requires collection and analysis of ECGs recorded at high
heart rates, above 110 bpm in horses.11 This requires exercising
the animal and demands manual examination of the ECG to ob-
tain the cardinal points of the ECG heartbeat waveforms thus
preventing the automatization of the whole process. Our previ-
ous study highlighted the feasibility of ECG complexity analysis
to detect arrhythmogenic substrate, even when ECG recordings

were obtained a low heart rate (25–60 bpm) and in normal sinus
rhythm. This study necessitated the development of an algo-
rithm to parse (annotate) the ECG signal to detect the QT, TQ,
and RR intervals and output them in a format suitable for ECG
restitution analysis. Here we investigate the hypothesis that
proarrhythmic background present between fibrillation epi-
sodes in paroxysmal AF might be detected by restitution analy-
sis of apparently normal sinus-rhythm ECGs in low heart rates,
employing the k-NN classifier to interpret the outcome of resti-
tution analysis.

Materials and Methods
Subject Recruitment

This study did not require an ethical review and received appro-
priate faculty level approval based on the ethical assessment re-
view checklist by the Non-ASPA Sub-Committee at the
University of Surrey. Two-subject cohorts were recruited from
Thoroughbred horses of racing age and in race training pre-
sented for routine clinical work at Rossdales Equine Hospital
and Diagnostic Centre (Newmarket, Suffolk, UK). The control
group consisted of 55 healthy horses not displaying clinically
significant cardiac abnormalities. The PAF group consisted of 10
horses for which the diagnosis of PAF has been confirmed by
ECG analysis. The ECG strips used in this study were obtained
during the routine clinical examinations of these horses. These
data were previously used to determine the feasibility of com-
plexity analysis of equine telemetric ECG15 and to establish the
link between heart rate and ECG complexity, as well as to estab-
lish the link between ECG complexity and PAF diagnosis.16

Data Recording

Continuous telemetric ECG traces were recorded using a
TeleVet 100 recorder (Engel Engineering Services GmbH,
Germany), which has signal bandwidth of 0.05–100 Hz and sam-
pling rate of 500 Hz. ECGs were primarily recorded at rest; how-
ever, these recordings included a range of heart rates as horses
respond to their environment. The duration of recorded ECGs
ranged from approximately 15 min to 51 h, with median dura-
tion of 83 min.

Figure 1. Principles of ECG restitution analysis using k-nearest neighbors classifier machine learning technique. (A) Schematic of data classification using the k-NN

classifier with k¼3. Data points (crosses) are classified as either in Class 1 or Class 2 based on their k closest neighbors (a,c,d—Class 1, b,e,f,g—Class 2). (B) Data flow for

the patient classification using the k-NN classifier. Extensive preclassified training set (red and blue dots) is used to create the model. Query points from the patient’s

records (crosses) are classified individually by classification of three neared neighbors and the outcome for each is decided by a simple majority vote. The final outcome

is then decided by subsequent majority vote on all records for that patient.
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Data Preparation

The original data files were exported as comma-separated value
(CSV) text files using the built-in function of TeleVet ECG soft-
ware version 7.0.0. The exported files were plotted using a cus-
tom R17 script and locations of artifact-free 60-s segments were
recorded by a human evaluator. Among others, exclusion crite-
ria included atrial flutter, rapid changes in the heart rate, bi-
geminy, abrupt baseline alterations, tremors, and identifiable 50
Hz interference to prevent any confounding factors in the ana-
lyzed strips. Another R script was used to extract the lead II sig-
nal (most commonly used lead to generate rhythm strips18)
from the accepted segments, resampled to 125 Hz sampling rate
and filter using filtfilt function. A zero-phase shift digital low-
pass fourth-order Butterworth filter was employed with widely
used cut-off frequency of 40 Hz.19

ECG Restitution Analysis

ECG strips with heart rates greater than 25 bpm were processed
by a custom ECG parsing algorithm written in Cþþ, which
detected the peak of the Q, R, and T waves, and termination of T
wave in each heartbeat waveform (Figure 2) to measure the RR,
TQ, and QT intervals. The data for each heartbeat were exported

to a CSV file. To eliminate the artifactual detections, only heart-
beats where RR and TQ intervals shorter than 2.4 s (correspond-
ing to heart rates of �25 bpm) were considered.

The ECG annotation method focused on simultaneous
analysis of first derivative of the voltage (dV) and the voltage it-
self. Briefly, the location of R peak onset was detected as a loca-
tion where a sequence of 5-samples with low dV (less than 0.1 �
SD of dV in the entire signal) was followed by 5 samples of rap-
idly increased dV (more than 0.2 � SD of dV in the entire signal).
The exact location of R peak was refined by a peak search algo-
rithm exploring the area following the detected R wave onset.
Then, the signal in the area starting at one-eighth and ending at
half of heartbeat duration after R peak was scanned by peak de-
tection algorithm for the T wave peak. The termination of T
wave was detected by the decrease of dV below the threshold
value (based on the SD of the voltage in the ECG signal). Finally,
location of Q peak was detected by peak finding algorithm ana-
lyzing the area preceding the R peak. This technique, although
crude, was found to be adequate to analyze the high-quality low
heart rate equine ECG sampled at 125 Hz, with any abnormali-
ties in the heart rhythm being excluded.

Patient Classification Using Machine Learning

To quantify the results of restitution analysis, we submitted the
detected intervals to k-NN classifier algorithm fitcknn imple-
mented in MATLAB (Mathworks, USA). Due to low prevalence of
PAF in horses,20,21 the PAF cohort was underrepresented com-
pared to controls. As such imbalance in data could significantly
impact the performance of machine learning classifier,22 we
chose to oversample the minority class to match with the ma-
jority class, using synthetic minority oversampling technique
(SMOTE).23 This technique oversamples the minority class by
generating synthetic points on straight lines between neighbor-
ing points.

Lastly, a simple majority vote is performed on the model
predictions of all records (beats) for each subject to determine
the final classification of that subject. This step improves the
classification performance by combining the predictions using
the restitution data derived from the individual heartbeats, so
the final predicted classification of a subject is decided by the
most predicted classification from all its individual record
predictions.

Cross-Validation for Machine Learning Model

To assess the performance of the model produced by the k-NN
classifier, we performed a repeated random sampling cross-
validation with stratification.24 This technique splits the whole
data into training and test sets by randomly choosing a subset
of subjects for each set. Here the training and validation pro-
cesses were repeated for different combination of datasets. In
each such combination, 48 control horses and 7 PAF horses
were selected for a training set and the remaining 7 control and
3 PAF subjects were used as a test set. The process was repeated
1000 times with unique combination of subjects in each run, so
the average performance of the model when dealing with un-
known data can be estimated.

Results
ECG Restitution Analysis

To estimate the link between arrhythmogenic substrate and
PAF we performed three analyses of relationships: between QT
and RR intervals, TQ and RR intervals, and TQ and QT intervals
(Figure 3A–C). We observed that the distribution of data points
is similar in both cohorts however the distribution patterns
were slightly different in cases and controls. Given that RR, TQ,
and QT intervals for each heartbeat are strongly correlated, we
decided to evaluate whether the spatial distribution of data
points might provide an additional insight. We thus plotted the
QT, TQ, RR intervals in a 3D space (Figure 3D–E). It became ap-
parent that most data point clusters around an inclined plane.
Traditionally restitution analysis is performed using 2D rela-
tionships11 using either QT and RR, or TQ and RR, or QT and TQ
interval pairs. However, here we identify the relationship is in
fact 3D; thus, analysis using 2D relationships might be subopti-
mal in estimating the differences between PAF and control.

Application of k-Nearest Neighbor Algorithm to the
Restitution Data

The characteristic distribution of data points on the 2D and 3D
graphs suggested the possibility that diagnosis of PAF might be
associated with specific pattern of distribution of the data. To
quantify this association, we used models built using the k-NN

Figure 2. Determination of ECG cardinal points and intervals for restitution

analysis. Detected are the Q, R, and T peaks and termination of T wave. Note

that while QT interval is defined as the interval between Q peak and termination

of T wave, TQ interval is defined as the interval between T and Q peaks.
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machine learning algorithm, to analyze the QT and RR, TQ and
RR, QT and TQ interval pairs as well as QT, TQ, and RR intervals
all together.

To assess the overall performance of the models produced
by the k-NN classifier on different combinations of restitution
intervals, we performed the stratified repeated random sam-
pling cross-validation technique as previously described, with
1000 runs for consecutive odd values of neighbors k ranging
from 3 to 41. Small k-values tend to produce complex models
which overfit to the data and they are more susceptible to noise
(high variance, low bias), while large k values tend to produce
simple models that are typically unaffected by noise but may
fail to capture the true boundaries between different classes
(low variance, high bias) and it is more computationally expen-
sive. Therefore, it is important to identify the optimal k value
for the k-NN classifier. The distance function of the k-NN classi-
fier was chosen to be the standardized Euclidean distance, and
we also normalized the data intervals (RR, QT, TQ) by their
means and SDs to eliminate any influence caused by magnitude
differences between the restitution intervals.

The receiver operating characteristic (ROC) curve provides
the sensitivity and specificity of a model at different classifica-
tion thresholds, and its area under the curve (AUC) measures
the overall predictive power of the model.25 In this case, the
models produced mean AUCs of up to 0.836þ 0.107� 0.188 (RR,
QT), 0.795þ 0.137� 0.221 (RR, TQ), and 0.832þ 0.113� 0.193 (QT,
TQ) within the 2.5th and 97.5th percentiles of the data. For these
cases, higher mean AUCs were obtained at large k-values with
the highest values achieved at k¼ 41. Using all three intervals
(RR, TQ, QT), the machine learning model gave rise to mean
AUC of up to 0.827þ 0.114� 0.192 which is similar to the values
obtained using only two intervals, however, there are less varia-
tions in the mean AUC values and other metrics across different

k values (see Tables S1–S4). By choosing PAF as the positive
class, this is also reflected in Figure 4 where we observed much
more dramatic increases in the mean true positive rates (TPRs)
of up to around 0.74 with rising k values for the model predic-
tions that used only two intervals, whereas the mean TPR (of up
to around 0.76) stabilizes very quickly for the model prediction
using all three intervals and the changes in the mean AUCs are
also smaller as previously mentioned. The TPR is an important
metric that measures the PAF detection ability of the model, es-
pecially since our data are imbalanced. Additionally, decreases
in the mean true negative rates (TNRs) indicate the models be-
come less specific as k increases, as shown in Figure 4. The ROC
curves for specific values of k (k¼ 5, 13, 23, 37) can be found in
Figures S2–S3 where we observed a better performance for
model using all three intervals compared to those using only
two intervals, especially for small k values.

The final scores produced by a machine learning model are
the posterior probabilities of the records, which correspond the
likelihood of each record being PAF, with values ranging from 0
(control) to 1 (PAF). The classification threshold is unknown as
it is determined by the internal k-NN algorithm. The posterior
probability produced by the machine learning model for specific
values of k (k¼ 5, 13, 23, 37) are shown in Figures S4–S5 where
we observed higher sensitivity (higher posterior probabilities for
most records) for large k-values, and as expected this change is
more prominent for models using two intervals. For k¼ 5, we
see the models cannot distinguish between control and PAF
records by using only 2 out of 3 interval measures since the cor-
responding plots in Figure S4 shows that the posterior probabili-
ties of the control and PAF have similar distributions, whereas
the posterior probability distribution of PAF is weighted more
heavily toward 1 compared to control for classification using all

Figure 3. ECG restitution analysis using two and three parameters simultaneously. Each dot represents an individual heartbeat; blue for controls and red for cases

(PAF). The total number of analyzed heartbeats is 43 331 (34 861 from control and 8470 from PAF). (A) Dependence of the action potential duration (represented by QT in-

terval) on the basic cycle length (RR interval). (B) Dependence of the diastolic interval (represented by TQ interval) on the basic cycle length (RR). (C) Dependence on the

action potential duration on the diastolic interval. (D–F) Snapshots of data at different angles reveal a complex interdependence between all three parameters used for

restitution analysis.
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3 interval measures as shown in the top right image (with RR,
QT, TQ) of Figure S4.

Majority Vote on Individual Record Classification

As means to improve the analysis outcome, we performed the
majority vote on all patient’s records to make a final classifica-
tion on the subject. Results using majority vote (Tables S5–S8)
were found to have noticeably better performance. Although
the performances in the mean TPRs are worse for models using
two intervals at low k values (k < �13), nearly all metrics are
more consistent and stay the same levels using all three inter-
vals compared the corresponding record classification as shown
in Figure 5. For model with all three intervals, the mean TPRs,
TNR, and AUCs have all increased by around 10%–31%, 1%–4%,
and 9%–20%, respectively, for different k-values using majority
votes (see Figure 6 for detail). Note that the large uncertainties
in metrics obtained using majority votes are due to the small
test size of the data (7 control and 3 PAF subjects), and they are
expected to decrease when more data become available which
allow for a larger test data size.

The posterior probability threshold in the case of majority
vote was chosen to be 0.5 since it is a simple majority vote of
the individual records. Figures 7–8 show the posterior probabil-
ity by majority votes of each animal for k¼ 5, 13, 23, 37. We ob-
served that the models with only two combinations of the
interval measures cannot distinguish between control and PAF
at low k-values (e.g., k¼ 5) and they can barely distinguish the
two classes at k¼ 13, whereas the performance of the model
with all three interval measures is more consistent for all the
chosen k-values, which shows a similar pattern to the individ-
ual record classification results from the previous section.

The differences between the metrics for the individual
records and the metrics obtained using majority votes of the
records are significant, especially for the mean TPRs and AUCs,
with their, respectively, P-values being near zero (less than

10�64 and 10�107, respectively) using the Wilcoxon signed-rank
test26 (see Tables S9–S12) as the two sets of metrics are related
(paired) and non-Gaussian. For models with two intervals, there
are increases for the mean TPRs for k> 13, and increases in the
mean AUCs for all tested k-values with significant differences
(P-values less than 10�98 for RR, QT; 10�8 for RR, TQ; and 10�63

for QT, TQ) which indicates the overall predictive powers of the
models have indeed increased using majority votes.

Discussion

During recent years, a strong interest has emerged in detection
of PAF by nonlinear analysis of normal sinus rhythm ECG. This
research was facilitated by the appearance of freely accessible
public ECG databases and massive increase in processing power
available for biomedical research. One notable example is
Physionet27 which contains a large collection of open-access
datasets of physiological signals including ECG recordings for a
variety of conditions. Together with the emergence of new arti-
ficial intelligence technologies, this suggested that an acute
problem of developing a reliable biomarker for PAF could poten-
tially be solved using an inexpensive technique that can be eas-
ily automated. In particular, this has led to several studies in
the detection of various arrhythmia conditions including AF us-
ing machine learning in recent years. Many machine learning
methods have been proposed for classifying various arrhythmia
conditions using ECG features with great success by achieving
extremely high accuracies.28–31 However, the problem of detect-
ing condition using only normal sinus rhythm signals is much
harder. One recent study on detection of AF in human using
normal sinus rhythm ECGs has achieved good result with an
AUC of 0.87 (95% CI 0.86–0.88).10 Their study involves more than
180 000 patients with multiple ECGs recorded for longer than a
month, and they use deep learning technique for the classifica-
tion, which requires a vast amount of data. Our approach has

Figure 4. Results of model for classifying individual records, over 1000 repeated random cross-validation runs. Each run uses randomly selected 48 controls and 7 PAF

horses for training set and 7 controls and 3 PAF horses for validation set out of 55 controls and 10 cases. Blue bars show the mean TPRs; red bars show the mean TNRs;

yellow bars show the mean AUCs. The error bars show the corresponding 2.5th and 97.5th percentile of the metrics.

6 | FUNCTION, 2021, Vol. 2, No. 1

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaa031#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaa031#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaa031#supplementary-data


the advantage of using far less subjects with significantly
shorter ECGs, and we achieved similar result (see Table S8).

Our study highlights the feasibility of equine model to study
the mechanisms of spontaneously developing PAF. Widely used
in cardiovascular research rodents have typical heart rate
range of 310–840 bpm for mice or 250–490 bpm for rats,32

which is very different for the human heart rate range. Typical

resting heart for adult horses range between 32 and 38 bpm33

and can peak up to around 240 bpm34 at high exercise inten-
sity rate. Human athletes have been previously reported to
have a “lowest resting heart rate” of between 24 and 48 bpm.35

A healthy adult human depending on age (e.g., 20–60 years
old) may have a maximal heart rate of between 160–200 bpm
based on established calculations.36 These data suggest the

Figure 5. Results using majority votes on all records in each animal, over 1000 repeated random cross-validation runs. Each run uses randomly selected 48 controls

and 7 PAF horses for training set and 7 controls and 3 PAF horses for validation set out of 55 controls and 10 cases. Blue bars show the mean TPRs; red bars show the

mean TNRs; yellow bars show the mean AUCs. The error bars show the corresponding 2.5th and 97.5th percentile of the metrics.

Figure 6. The percentage increases from using majority votes on all records in each animal, over 1000 repeated random cross-validation runs. Each run uses randomly

selected 48 controls and 7 PAF horses for training set and 7 controls and 3 PAF horses for validation set out of 55 controls and 10 cases. Blue bars show the percentage

increase in mean TPRs; red bars show the percentage increase in mean TNRs; yellow bars show the percentage increase in mean AUCs.
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horses and human have much closer comparable heart rate
ranges.

We have previously demonstrated that complexity analysis
of low heart rate ECG might be indicative of PAF in horses.16 Our
current finding suggests that not only complexity analysis,
which analyses the changes of the information content in ECG,
determined by changes in the heartbeat waveforms resulting

from the pathological alterations in the myocardium, but also
ECG restitution analysis, which analyses the ability of the heart
to recover after the heartbeat can reveal proarrhythmic back-
ground associated with PAF. Since complexity analysis evalu-
ates different aspects of a signal compared to restitution
analysis it could be speculated that a combination of such bio-
markers might provide additional increase in performance in

Figure 7. Posterior probability of using majority votes on all records in each animal, over 1000 repeated random cross-validation runs, for k¼5, 13. Subjects belong to

the control class are denoted by blue solid dots and PAF class by red solid dots. Results were averaged over 1000 random cross-validation runs. Dashed line indicates

the majority vote threshold which is at 0.5.

Figure 8. Posterior probability of using majority votes on all records in each animal, over 1000 repeated random cross-validation runs, for k¼23, 37. Subjects belong to

the control class are denoted by blue solid dots and PAF class by red solid dots. Results were averaged over 1000 random cross-validation runs. Dashed line indicates

the majority vote threshold which is at 0.5.
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detection of this condition. One may also expect that the future
prospective studies might consider other factors, for example,
basic clinical data (age, sex, weight, blood pressure), or any
blood-based biomarkers6 as additional prognostic factors.

Our study highlights the potential of a simple machine
learning algorithm that allows for use of diagnostic markers
that are hard to quantify using more conventional techniques,
like regression analysis. However, the k-NN classifier we use is a
computationally intensive technique that compares the distri-
bution of data points in the “unknown” queried data set with a
“teaching” data set. This might cause systematic error if the pa-
tient data are obtained by a different acquisition hardware, with
different sampling rates and different low-pass filter parame-
ters. To facilitate comparison of ECG recordings obtained from
different sources, we used strong ECG filtering with low cut-off
40 Hz and resampled the signal to 125 Hz sampling rate. Still, it
could be argued that to make the analysis results less depen-
dent on the properties of “teaching” data set other machine
learning techniques should be explored in the future studies.

The optimal choice of k varies from the combination of the
intervals chosen, however, the variations in the performance
metrics caused by different values of k are much smaller for
model with all three interval measures compared to those using
only two intervals. This is important since the inclusion of more
data to our current model or model trained using different data
may have different optimal k-values, and a model that is less
sensitive to the choice of k is clearly more desirable in practice.
Additionally, we found models using only two intervals tend to
perform worse for small k values, whereas model using all three
intervals perform much better for small k-values which are pre-
ferred since k-NN can be very computationally expensive for
large k-values especially if the dataset is large, though the
trade-off between large k and the additional dimension is
unclear at this stage.

A common feature of both complexity and ECG restitution
analysis is that they require ECG strips that are substantially
longer than the standard ECG strip duration which is currently
accepted in the healthcare settings. Currently, a typical 12-lead
human ECG recording has about 6–10 s of Lead II data. This
would limit the detection ability for many nonlinear analytical
methods. The necessity of longer strips (30–120 s) was already
highlighted in the literature.37 Of course, requiring longer
recordings may consume additional clinical time. However,
considering the time it takes to setup and places the ECG elec-
trode on patients, an additional 30–120 s would not noticeably
increase the time budget for an ECG procedure. Thus, it seems
reasonable to expect that going forward it should be standard
practice to take longer recordings between 30 and 120 s.

One of the interesting observations of this study is a link
between QT, TQ, and RR intervals used in the ECG restitution
analysis. While the existence of inter-relationship between
these intervals is not surprising and should be considered
as trivial, we demonstrate that “traditional” restitution analy-
sis11,13,38–40 is in fact dealing with projections of the 3D inclined
plane defined by the durations of these intervals on the three
planes defined by the pairs of QT, TQ, and RR axes. As the incli-
nation of data plane in relation to projection surfaces leads to
the compression of distances between data points and shape of
the pattern formed by them, it could be argued that the defini-
tive form of ECG restitution analysis should probably consider
the distribution of the data points on the inclined surface in the
3D feature space.

Our results suggest that identification of AF in horses, or at
least identification of very high-risk groups might possibly be

achieved using short ECG recordings. Screening programs to de-
tect asymptomatic disorders have long become the routine for
human athletes, and we suggest that such screening could be
introduced in veterinary practice. Translation of this study to
human medicine might be an interesting endeavor due to the
similarity of AF dynamics in both species.41

Our study has some limitations. The retrospective nature of
this research has limited data availability and we were not able
to conduct the extensive validation, resorting instead to boot-
strapping techniques. Our equine ECG parsing (annotation) al-
gorithm is intentionally limited to the analysis of the high
quality and low heart rate (<90 bpm) recordings, which do not
contain any artifacts. Therefore, a robust algorithm has to be
created and verified in an appropriate study.

To conclude, while the “classic” ECG restitution analysis
considers the combination of two parameters,11,39 we propose a
novel method of restitution analysis (which could be defined as
3D ECG restitution analysis or 3D-ERA) which simultaneously
uses three easily detectable intervals. It could be expected that
the combination 3D-ERA and machine learning might allow de-
tection of PAF in both equine and human patients.
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