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Abstract: Several plant-based nanoscale-encapsulated antioxidant compounds (rutin, myricetin,
β-carotene, fisetin, lycopene, quercetin, genkwanin, lutein, resveratrol, eucalyptol, kaempferol,
glabridin, pinene, and whole-plant bio-active compounds) are briefly introduced in this paper, along
with their characteristics. Antioxidants’ bioavailability has become one of the main research topics
in bio-nanomedicine. Two low patient compliance drug delivery pathways (namely, the oral and
topical delivery routes), are described in detail in this paper, for nanoscale colloidal systems and
gel formulations. Both routes and/or formulations seek to improve bioavailability and maximize
the drug agents’ efficiency. Some well-known compounds have been robustly studied, but many
remain elusive. The objective of this review is to discuss recent studies and advantages of nanoscale
formulations of plant-derived antioxidant compounds.
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1. Introduction

Plant-derived antioxidants have many beneficial effects on humans; one of these is the
reduction of the oxidative stress [1] that has been linked to the development of degenerative
diseases and cancers [2–4]. In addition, many antioxidants exhibit anti-microbial effects [5],
anti-inflammatory effects [6], and skin protection effects [7]. The present review focuses on
the properties of carotenoids, polyphenols, terpenes, and xanthophylls (Table 1).

Table 1. Classification, effects, and nanonization strategies for plant-derived antioxidants considered
in this paper.

Name Structure Classification Effect Nanonization Strategy

Rutin
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Rutin 

 

Polyphenol 
Anti-diabetic effects [8]  

Neuroprotective effects [9,10] 

Coacervation method  

Nano-spray drying methods [11,12]  

Anti-solvent precipitation technique [13] 

High-speed shearing and high-pressure 

homogenization technique [14,15] 

Myricetin 

 

Polyphenol 
Anti-cancer effects [16,17]  

Hyperglycemia reduction [18–20] 
Not considered in this review 

β-carotene 

 

Carotenoid Radical scavengers [21] Cold gelation method [22] 

Fisetin 

 

Polyphenol Anti-cancer effects [23,24] Nanoprecipitation method 

Lycopene 

 

Carotenoid 
Inhibition and prevention of pros-

tate cancer [25,26] 

Ultrasonication method  

Nanoprecipitation technique [27] 

Quercetin 

 

Polyphenol 

Inhibition of the cancer cell cycle 

progression [28–30]  

Regulation of cardiovascular dis-

ease [31] 

Electrostatic deposition  

Spontaneous emulsification technique  

SmartCrystals®  technology [32]  

Probe ultra-sonication method [33] 

Genkwanin 

 

Polyphenol Inhibition of breast cancer [34] Anti-solvent precipitation method [35] 

Polyphenol

Anti-diabetic
effects [8]

Neuroprotective
effects [9,10]

Coacervation method
Nano-spray drying methods

[11,12]
Anti-solvent precipitation

technique [13]
High-speed shearing and

high-pressure
homogenization technique

[14,15]

Myricetin
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Table 1. Cont.

Name Structure Classification Effect Nanonization Strategy
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Polyphenol Inhibition of breast cancer [34] Anti-solvent precipitation method [35] 

Carotenoid Radical
scavengers [21] Cold gelation method [22]

Fisetin
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Emulsion/evaporation method  

Liquid-liquid dispersion 

Resveratrol 

 

Polyphenol 

Anti-cancer effects [38–40]  

Reduction of cardiovascular risk 

[41,42] 

Melt emulsification with ultra-soni-

cation method 

Eucalyptol 

 

Terpene 
Anti-inflammatory effects [43,44]  

Lung protective effects [45–47] 
Spontaneous emulsification method 

Kaempferol 
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Reduction of Alzheimer’s disease 

risk [48–50] 
Not considered in this review 
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are introduced in this review as penetration enhancers. Terpenes are commonly present 

in conifers [67], and act as skin-penetration enhancers by disrupting the lipid bilayer [68]. 

Xanthophyll Beneficial eye
effects [36,37]

Emulsion/evaporation
method

Liquid-liquid dispersion
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Table 1. Cont.

Name Structure Classification Effect Nanonization Strategy
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Terpene Anti-cancer
activity [53–55]

Spontaneous emulsification
method

In the present review, we consider carotenoids such as β-carotene and lycopene.
Carotenoids are synthesized not only by plants, but also by bacteria, fungi, and algae [56].
For example, carotenoids are present in salmon, tomato, and watermelon, explaining the
colors of these foods [57,58]. In addition, carotenoids have been implicated in the mitigation
of cardiovascular diseases, cancers [59], and osteoporosis [60,61]. Polyphenols, namely
rutin, myricetin, fisetin, quercetin, genkwanin, resveratrol, kaempferol, and glabridin are
discussed as well. It is well-known that, for example, chocolate [62] and green tea [63] are
enriched in polyphenols. Polyphenols have been shown to mitigate carcinogenesis [64],
cancers [65], and chronic diseases [66]. Terpenes, eucalyptol and pinene, are introduced in
this review as penetration enhancers. Terpenes are commonly present in conifers [67], and
act as skin-penetration enhancers by disrupting the lipid bilayer [68]. Terpenes have been
reported to exhibit radical-scavenging effects [69] and anti-inflammatory effects [70–72].
Xanthophylls such as lutein are discussed as well. Xanthophylls are abundant in green
vegetables and corn [73,74].

The effective delivery of drugs requires proper formulations. Drug properties (such
as release kinetics, effectiveness, and retention time) are affected by specific formulations.
Nanoscale miniaturization has been shown to improve the drugs’ bioavailability [75–77].
Owing to small particle sizes and high surface ratios, nanoscale formulations have become
very desirable [78,79]. With the adoption of nanoscale formulations, the importance of
nanoscale delivery systems has also increased [80,81]. The physical properties of nanoscale
formulations (such as size, porosity, geometry, surface charge, and hydrophobicity) impart
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them with unique characteristics [82]. Nanoscale formulations can be used for effective
targeting and delivery of drug agents, owing to the nanoparticles’ unique properties, which
make them resilient to metabolic processes and immune response [78]. Several nanocolloid
and nanogel formulations are discussed in this review. Colloidal systems are promising
for various formulations, including ointments, emulsions, and aerosols. The synthesis
of nanoparticles in colloidal systems has garnered significant attention. Gel (or nanogel)
formulations have also been widely considered for synthesizing nanoparticles. Owing to
the swelling effect of gels, they can be used for effectively delivering and/or controlling
molecules [83,84].

The delivery route is one of the most addressed research issues in the nanomedicine
field. Determining appropriate delivery routes is important for improving the drugs’ effi-
ciency, which is often hindered owing to the barriers imposed by the human body. The oral
and topical delivery routes are discussed in the present review. The oral delivery route is
one of the more convenient routes but suffers from low patient compliance. Topical delivery,
also among the more convenient drug delivery routes, allows the drugs to bypass the acidic
environment of the stomach and the gastro-intestinal tract, but topically administered
drugs have to overcome several hurdles in the skin layer [87]. Both routes (topical and
oral) should ensure safe and effective drug delivery to the target. In this review, we discuss
both the oral and topical routes for delivery of nanoscale colloidal and gel formulations
(Figure 1).
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2. The Oral Route
2.1. Gels

Mujtaba et al. studied nanogels containing rutin-loaded chitosan-alginate nanopar-
ticles [88]. Rutin is present in passionflower, apples, and buckwheat [89]. Rutin exhibits
anti-diabetic [8] and neuroprotective [9,10] effects. The absorption rate of rutin by the
human body is poor, owing to the low water solubility of rutin [90]. The objective of
the study by Mujtaba et al. was to formulate rutin-loaded nanoparticles with enhanced
bioavailability and better water solubility and dissolution. Rutin-loaded chitosan-alginate
nanoparticles were formulated using the coacervation method with slight modifications,
and gels were formed using the ionotropic pre-gelation technique. Using the novel for-
mulation, rutin was entrapped successfully by the nanogel particles. Rutin was released
rapidly and sustainably from the rutin-loaded chitosan-alginate nanogel particles, whose
positively charged surface enabled easy delivery of the payload to negatively charged
cellular membrane channels [91].

Yao et al. studied chitosan-based nanogels of myricetin, for oral delivery [92]. Myricetin
is abundantly found in berries and vegetables [93]. Myricetin was reported to inhibit can-
cers [16,17] and reduce hyperglycemia [18–20]. The nanogel formulation was prepared by
following a typical procedure [92]. Nanogels with three-dimensional physical structures
exhibited sustainable release properties [94], as well as good solubility and cellular uptake
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properties [95]. Myricetin-loaded nanogels exhibited the sustained and controlled release
of myricetin, with good bioavailability.

Liu et al. studied β-carotene-encapsulated internal-phase emulsion gels, for edible
applications, for improving the retention of β-carotene; for their studies, these authors
simulated the gastro-intestinal tract conditions [96]. β-carotene is among the more well-
known antioxidant components [21]. β-carotene-encapsulated internal-phase emulsion
gels were formulated using a slightly modified cold gelation method [22]. Increasing the gel
network density and antioxidant capacity improved the stability of β-carotene-loaded high-
internal-phase emulsion gels. In addition, the improved bio-accessibility of β-carotene was
demonstrated for β-carotene-loaded gels and was attributed to their gel network structure.

Whole flavonoids of Satsuma mandarin (Citrus unshiu) peel extracts with pectin
nanoparticles were considered by Hu et al. for effective delivery [97]. Before loading with
pectin nanoparticles, Satsuma mandarin peels were extracted, and whole components of
Satsuma mandarin were used in the studies. Then, the Satsuma mandarin peel extract
was loaded with pectin nanoparticles, using the gelation technique [98]. Owing to the
novel formulation, Satsuma mandarin peel gels exhibited improved bio-accessibility and
controlled release of bioactive compounds.

Mahmoudi et al. formulated gels with chitosan nanoparticles containing the Chinese
lantern (Physalis alkekengi L.) extract [99]. The Chinese lantern extract contains bioactive
compounds, including carotenoids [100] and flavonoids [101]. This extract has been used in
traditional medicine [102]. The seeds of the Chinese lantern were dried, ground, and then
extracted using the percolation method. Next, the Chinese lantern extract was entrapped
in chitosan nanoparticles using the ionic gelation method [103]. Polycationic chitosan
presents high bio-affinity to a negative charged cell surface, including a negative charged
cancer cell or bacteria membrane [104,105]. Using this formulation, high-biocompatibility
oral consumption became possible. Chitosan nanoparticles containing the Chinese lantern
extract exhibited good antioxidant effects and stability, enabling the protection of bioactive
compounds using the novel formulation.

2.2. Colloids

Sechi et al. studied the encapsulation of fisetin with polymeric nanoparticles, for con-
trolled oral delivery and release (Figure 2) [106]. Polymers in this work were biodegradable
and biocompatible, of the type that is typically used for the encapsulation of drugs to
enhance oral bioavailability. Fisetin, commonly found in fruits and vegetables, such as
onions and strawberries [107], was reported as an antioxidant flavonoid [108,109] with
anti-cancer effects [23,24]. Fisetin was loaded into nanoparticles, using a modified nano-
precipitation method [110]. With polymeric nanoparticles, fisetin-loaded nanoparticles
exhibited an effective fisetin-loading capacity and controlled release of fisetin, in simulated
gastro-intestinal conditions.

Regiellen et al. studied rutin-loaded bovine serum albumin nanoparticles for address-
ing the low oral bioavailability of rutin [11]; the study was performed using nanoscale
spray drying methods [12]. Rutin-loaded bovine serum albumin nanoparticles exhibited
improved radical scavenging after 72 h, implying a sustained release of rutin. Rutin pene-
trated into the tissue, owing to the fine particle size of rutin-loaded nanoparticles, yielding
better performance than original drugs for similar in vivo conditions.

Singh et al. considered a lipid-based lycopene nanoemulsion system for improving
oral bioavailability [111]. Lycopene, a carotenoid, is found in tomatoes [112] and olives [113].
It is well-known that lycopene inhibits and prevents prostate cancer [25,26]. Singh et al.
formulated lycopene-loaded nano-lipid carriers, using the ultra-sonication method. Lipid
nanoparticles participated in lipophilicity of the drug, so that the drug entered easily to
the central nerve system (CNS) [114]. Lycopene-loaded nano-lipid carriers exhibited no
precipitates or phase separation, yielding high dispersibility. Lipid nanoparticles delivered
the drug inside of the cells for nucleoside transporters so the drug could access rapidly
with lycopene into the cells. High stability of this formulation, good gut permeation,
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and good cytotoxicity against human breast tumor cells were shown for lycopene-loaded
nano-lipid carriers.

Hao et al. considered quercetin-loaded polymeric nanocapsules with soybean lecithin [115].
Quercetin is a flavonoid that is abundantly present in onions, berries, and apples [116].
Quercetin was reported to inhibit the progression of the cancer cell cycle [28–30], and to
downregulate cardiovascular diseases [31]. Hao et al. used the electrostatic deposition
method for encapsulating quercetin with chitosan-coated liposomes. Quercetin-loaded
nanoparticles in an aqueous solution exhibited higher stability, reducing power, and cyto-
toxicity with respect to the human liver hepatocellular carcinoma cells compared with free
quercetin. Trypan blue staining in the MTT assay revealed cytotoxicity to the human liver
hepatocellular carcinoma cells by observation of blue spots inside of the cells.
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Li. et al. considered a nanosuspension system with genkwanin [117]. Genkwanin
is found in the seeds of black alder (Alnus glutinosa) [117] and laurel-leaf cistus (Cistus
laurifolius) [118]. Genkwanin has been reported to inhibit breast cancer [34,119]. A nanosus-
pension system containing genkwanin was synthesized using the anti-solvent precipitation
method [35]. Genkwanin nanosuspensions demonstrated a stronger anti-tumor effect and
tolerance, enabling the oral delivery route.

Zhou et al. studied whey protein isolate-based nanoemulsions for the bio-accessibility
of edible β-carotene [120]. Interestingly, Zhou et al. used whole edible ingredients in their
formulation. The bio-accessibility and stability of β-carotene increased owing to the smaller
particle size, suggesting a suitable formulation of this oil-based bioactive compound.

For management of osteoporosis, Gera et al. developed a rutin-nanoparticle colloidal
system [121] using the anti-solvent precipitation technique [13]. The rutin nanosuspension
exhibited a high drug absorption rate, good solubility, and good intestinal permeability.
Enhanced bioavailability, dose reduction, and long-term stability were also demonstrated
by this novel formulation.

Kumar et al. formulated isradipine-loaded solid lipid nanoparticles with rutin [122]. Solid
lipid nanoparticles were also formulated using a method developed by Gardouh et al. [123].
Isradipine was shown to treat stroke and heart attacks by blocking calcium channels [124].
Isradipine released from the formulated solid lipid nanoparticles exhibited enhanced
sustainability and a higher absorption rate than original isradipine, owing to rutin.

For improving the oral bioavailability of lycopene, Mishra and Kumari developed
lycopene nanosuspensions [75]. The nanoprecipitation method was used for formulating
a lycopene nanosuspension system [27]. Lycopene nanosuspensions decreased the level
of triglycerides; at the same time, they improved the effect of insulin. It was also shown
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that lycopene nanosuspensions increased the amount of the released drug and reduced the
blood glucose level.

3. Topical Use
3.1. Gels

To develop topical delivery through the eye, Bodoki et al. considered a thermosensi-
tive lutein nanogel system for treating selenite-induced cataracts [125]. Lutein is present
in kale [126] and spinach [127,128]. Lutein has been widely shown to exert beneficial
effects on eyes [36,37]. Lutein-loaded poly(lactic-co-glycolic acid) (PLGA) nanogels were
formulated using the emulsion/evaporation method, while lutein-loaded zein nanogels
were formulated using a liquid-liquid dispersion. Lutein-loaded nanogels demonstrated
better stability and more efficient delivery to the lens, compared with the similar amounts
of free lutein. These nanogels were shown to reduce selenite-induced cataracts, with better
bioavailability and longer antioxidant retention.

Andleeb et al. developed yarrow (Achillea millefolium) extract-loaded nanoethosomes
for topical delivery through skin (Figure 3) [129]. Yarrow is well-known as a traditional
medical plant [130]. The yarrow extract reportedly exerts choleretic effects [130,131]. An-
dleeb et al. used a simple cold method for loading the yarrow extract into nanoethosomes.
In the case of dermal delivery, ethosomes cause skin disruption. More and deeper etho-
somes could permeate inside of the skin [132]. By loading the yarrow extract into nanoetho-
somes, ethanol helped to penetrate easily through the skin. In addition, with a narrow
distribution of particle sizes, small-size yarrow extract-loaded nanoethosomes successfully
delivered bioactive compounds into deep skin layers. These unique properties imparted
the nanoethosomes with better skin penetration characteristics than common gels [133,134],
demonstrating a higher efficiency of the yarrow extract.
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Imran et al. studied a nanostructured lipid carrier gel for loading two drugs, quercetin
and resveratrol, to improve the disposition for their topical delivery [135]. Resveratrol is a
polyphenol compound found in grapes, peanuts [136], mulberry fruit, and Jamun seed [137]
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and was shown to exhibit anti-cancer effects [38–40] and the reduction of cardiovascular
risk factors [41,42], which explains the beneficial effects of the wine [138]. Nanostructured
lipid carriers were prepared by melt emulsification using the ultra-sonication method and
formulated to the gel form using the methods of Naz et al. [139]. The nanostructured
lipid carrier gel exhibited better skin hydration, owing to its nanoscale particles with the
novel formulation, leading to better permeation of drugs encapsulated in the gel particles.
The nanostructured lipid carrier gel demonstrated lower IC50 and better drug permeation
than the conventional gel, implying the better topical bioavailability of the former. In
addition, the nanostructured lipid carrier gel demonstrated the inhibition of migration in a
bidirectional wound-healing assay, owing to its anti-metastatic effect.

Gokhale et al. developed a gel based on a quercetin-loaded nanoemulsion [140].
Quercetin was used as a drug agent for treating rheumatism, while the nanoemulsion
formulation was used for effective topical delivery. The formulation was made using the
spontaneous emulsification technique. Then, gels were synthesized based on the prepared
nanoemulsion [141]. Quercetin-loaded gels exhibited good solubility, diffusion rate, skin
permeability, and physicochemical stability.

Rutin nanocrystal gels were studied by Li et al. for improving the bioavailability
and efficiency of rutin [142]. Rutin nanosuspensions were formulated using high-speed
shearing and the high-pressure homogenization technique [14,15]. After preparing rutin
nanosuspensions, they were freeze-dried [143] and dispersed to form a nanocrystal gel.
There was a remarkable improvement of the saturation solubility, release behavior, trans-
dermal bioavailability of the drug, and antioxidant activity of the rutin nanocrystal gel.
In addition, the nanocrystal gel inhibited the oxidative damage associated with the skin
photoaging.

3.2. Colloids

Hatahet et al. formulated a quercetin smartCrystals® into a nanosuspension sys-
tem [144]. As mentioned above, quercetin has some beneficial health effects; on the other
hand, its bioavailability is poor. By formulating quercetin into nanocrystals, its bioavailabil-
ity can be improved, owing to the nanocrystals’ high performance when delivered through
the dermal route [145]. Hatahet et al. synthesized quercetin nanosuspensions, using the
smartCrystals® technology [32]. Using this novel formulation, quercetin nanosuspensions
exhibited higher saturation solubility, better antioxidant activity, and better physical sta-
bility. In addition, the protective activity on Vero cells with respect to hydrogen peroxide
toxicity was demonstrated and the MTT assay revealed that quercetin smartCrystals® do
not show cellular cytotoxicity at a higher concentration than crude quercetin.

To improve the delivery of drugs and large-molecular-weight compounds into deep
skin layers, Kahraman et al. formulated nanomicelles with a combination of terpenes and
tacrolimus, obtaining an aqueous formulation for topical delivery [146]. Tacrolimus is an
immunosuppressive drug that is used in transplant medicine [147,148]. Comprehensive
terpenes were used for enhancing the tacrolimus penetration for topical delivery. Terpenes
are powerful skin-penetration enhancers [149,150] and anti-inflammation agents [151,152].
Tacrolimus monohydrate-loaded polymeric micelles were prepared using the thin film
hydration method [153]. Nanomicelles enhanced the drug delivery through skin [154,155].
Owing to this novel formulation, tacrolimus-loaded nanomicelles exhibited improved col-
loidal stability, higher drug-loading efficiency, and higher accumulation of large molecules
in the viable epidermis and dermis.

Chao et al. studied a kaempferol-loaded nanoemulsion system for topical deliv-
ery [156]. Kaempferol has poor water solubility, which implies a low bio-absorption
rate [157]; thus, a kaempferol-loaded nanoemulsion system has been considered for over-
coming this problem. Kaempferol is abundantly found in broccoli, spinach, beans, and
kale [48]. Importantly, it was reported that kaempferol reduces the risk of Alzheimer’s dis-
ease [48–50]. The kaempferol-loaded nanoemulsion system exhibited enhanced permeation
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capacity, a higher drug accumulation over the period of 12 h, a higher deposition amount
in skin, and a lower lagging time.

Using glabridin, Wang et al. designed a nanosuspension system for topical deliv-
ery [158]. Glabridin, a flavonoid, is typically found in licorice [159,160], and was reported
to inhibit the tyrosinase activity [51]. Wang et al. formulated a glabridin nanosuspen-
sion system using the anti-solvent precipitation-homogenization method [52]. Using this
method, Wang et al. demonstrated that the glabridin nanosuspension system is promising
for topical use. Glabridin nanosuspension has higher solubility due to its reduced size, so
that several advantages are demonstrated. A specially formulated glabridin nanosuspen-
sion system demonstrated enhanced stability for short-term storage, with no significant
particle aggregation; it also enhanced skin permeation, thanks to enhanced skin penetration
due to an enhanced concentration gradient, both in vitro and in vivo.

Nikolic et al. studied curcumin-loaded nanoemulsions containing eucalyptol and
pinene, for evaluating a curcumin-loaded low-energy nanoemulsion containing terpenes,
for curcumin delivery [161]. Curcumin, a plant-derived polyphenol, is used in skin dis-
ease treatments [162,163]. Terpenes, eucalyptol, and pinene were used as penetration en-
hancers. Eucalyptol was reported to exhibit anti-inflammatory [43,44] and lung-protective
effects [45–47]. Pinene is a major component of the essential oil in sage [163] and was
reported to exhibit anti-tumor activity [53–55]. The spontaneous emulsification method
was used for formulating the nanoemulsion systems. Both eucalyptol and pinene acted
as surfactants, imparting the nanoemulsions with a low interface energy, and reduced the
amount of the surfactant needed for maintaining a stable formulation, which resulted in
higher safety with enhanced penetration effects of the nanoemulsions.

In another study, solid lipid nanoparticles were formulated with a mixture of surfac-
tants [164]. Bose et al. developed a solvent-free solid lipid-based nanoscale system for
topical delivery. Quercetin was used as a drug agent, and quercetin nanoparticles were
prepared using the probe ultra-sonication method [33]. Owing to the drug enrichment
in the outer shell, the diffusion path of the active component was shorter. Remarkable
physical stability and a high initial burst-like release, as well as a prolonged release, were
observed for quercetin-encapsulated solid lipid nanoparticles.

4. Conclusions

In this article, we reviewed some recent studies on plant-derived antioxidants. Appli-
cations of plant-derived antioxidants have been widely discussed. Several plant-derived
antioxidants were reviewed in this paper, but the discussion is by no means exhaustive,
implying additional discoveries. In addition, while some components have been well-
characterized, others remain elusive.

Much remains to be discovered in the field of nanomedicine. The unique properties
of nanoscale compounds are notable but remain elusive, implying the need for additional
research and optimization [165,166]. At the same time, nanomedicine approaches are very
promising for improving the efficiency of drug delivery systems, which in turn is likely to
improve the quality of life.
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