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Abstract
Nanobodies (Nbs), miniature antibodies consisting solely of the variable region of heavy chains, exhibit unique 
properties such as small size, high stability, and strong specificity, making them highly promising for disease 
diagnosis and treatment. The engineering production of Nbs has evolved into a mature process, involving library 
construction, screening, and expression purification. Different library types, including immune, naïve, and synthetic/
semi-synthetic libraries, offer diverse options for various applications, while display platforms like phage display, cell 
surface display, and non-surface display provide efficient screening of target Nbs. Recent advancements in artificial 
intelligence (AI) have opened new avenues in Nb engineering. AI’s exceptional performance in protein structure 
prediction and molecular interaction simulation has introduced novel perspectives and tools for Nb design and 
optimization. Integrating AI with traditional experimental methods is anticipated to enhance the efficiency and 
precision of Nb development, expediting the transition from basic research to clinical applications. This review 
comprehensively examines the latest progress in Nb engineering, emphasizing library construction strategies, 
display platform technologies, and AI applications. It evaluates the strengths and weaknesses of various libraries 
and display platforms and explores the potential and challenges of AI in predicting Nb structure, antigen-antibody 
interactions, and optimizing physicochemical properties.
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Introduction
Since their discovery, nanobodies (Nbs) have attracted 
extensive research interest due to their unique molecular 
structure and excellent physicochemical properties, dem-
onstrating great potential for diverse applications such as 
disease diagnosis and treatment. Derived from camelid 
heavy chain-only antibodies (HCAbs), Nbs comprise only 
the variable heavy chain domain (VHH) and the constant 
CH2 and CH3 domains [1]. Interestingly, HCAbs have 
also been discovered in some cartilaginous fish, such as 
sharks, known as novel antigen receptors (NARs), which 
recognize antigens via a single variable domain (V-NAR) 
[2]. However, significant differences in sequence and 
structure between V-NARs and camelid VHHs or the 
variable domains of human heavy chains render V-NARs 
less frequently discussed [3]. Figure  1 illustrates the 
structural differences among these antibodies.

VHHs consist of three complementarity-determining 
regions (CDRs) and four framework regions (FRs). Struc-
tural analyses reveal that VHH crystals, with dimensions 
of 2.5 nm × 4 nm and a molecular mass of approximately 
15  kDa, are the smallest known antigen-binding units 
[4, 5]. Despite sharing a scaffold formed by two β-sheets 
with the VH of conventional antibodies, VHHs exhibit 
distinctive features [6]. Variations in the length of the 
hypervariable regions enable VHHs to possess enhanced 
antigen-binding capabilities despite their smaller size. 
Furthermore, disulfide bonds in CDR1 and CDR3 
increase the stability of VHHs [7]. Additionally, VHHs’ 
CDR3 can form a finger-like convex structure, enabling 
it to bind to epitopes that are cryptic to conventional 
antibodies, for instance, deep clefts [8]. Substitution of 
FR2 hydrophobic residues with smaller and/or hydro-
philic amino acids enhances the solubility of Nbs [7]. 
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Comparison of the amino acid sequences of VHHs with 
human VH sequences reveals high similarity, which sim-
plifies the humanization of Nbs [6, 9]. Apart from these 
structural advantages, Nbs can be easily expressed in 
microorganisms, reducing production costs and facilitat-
ing widespread application [10].

The unique properties of Nbs enable their extensive 
applications as research or diagnostic tools, therapeutic 
agents. Nbs conjugated to fluorescent proteins, biosen-
sors, or enzymes can investigate complex intracellular 
signaling pathways [11], while a novel human SIRPα Nb 
has been developed for in vivo imaging of myeloid cells, 
allowing the visualization of myeloid cell tumor infiltra-
tion [12]. Notably, the fast targeting, quick extravasation, 
rapid blood clearance, and predominantly renal excre-
tion of Nbs make them ideal for imaging [13]. Moreover, 
Nbs have shown progress in treating viral infections 
and tumors [14–16]. As for the diagnosis and treatment 
of central nervous system diseases, Nbs can cross the 
blood-brain barrier, such as by adsorptive-mediated tran-
scytosis, which is difficult or impossible for larger anti-
body fragments [17].

The advent of Nbs has revolutionized antibody engi-
neering, providing a novel approach to target various 
biomolecules with unprecedented precision and affin-
ity, and has garnered widespread attention. Structural 
biology has played a crucial role in the rational design of 
Nbs, enabling researchers to visualize the atomic interac-
tions between Nbs and their targets. This facilitates the 
precise design of Nbs to improve their binding affinity, 
specificity, and stability [18]. Moreover, computational 
approaches, such as molecular dynamics simulations and 
machine learning algorithms, are increasingly used to 

predict and optimize the interactions between Nbs and 
their targets, expediting the design process [19].

To comprehensively understand the latest advance-
ments in Nbs engineering, this review thoroughly com-
piles and discusses recent research findings related to 
Nbs library construction, retrieval, and production tech-
nologies. Given the rise and rapid development of artifi-
cial intelligence (AI), integrating AI with Nbs engineering 
has shown immense potential and significance, which 
will be discussed in detail in the following sections. This 
work will provide a clear, up-to-date understanding of the 
current state of Nbs engineering, which will ultimately 
lead to the creation of novel Nbs with enhanced proper-
ties and expanded utility in biomedicine, biotechnology, 
diagnostics.

The construction of Nbs libraries
Accessing libraries containing the target genomic infor-
mation is crucial for generating Nbs with high specific-
ity and affinity. Currently, three major libraries are used: 
immune, naïve, and synthetic/semi-synthetic [9, 10]. Fig-
ure 2 illustrates the detailed steps to build the three Nbs 
libraries. The generation of immune and naïve libraries 
requires the involvement of animals, with the immune 
library serving as the primary source of Nbs due to the 
availability of affinity-matured antibodies. However, as 
an attractive alternative to animal use, synthetic/semi-
synthetic libraries have garnered significant attention. 
Table 1 outlines the differences among these three library 
types.

Immune library
Immune libraries are typically generated by immunizing 
camels (e.g., Bactrian camel, dromedary, alpaca, or llama) 

Fig. 1 Diagrams of the conventional heterotetramer antibody, the heavy chain-only antibody (HCAb), and the VHH fragment (i.e., nanobody). (a) The 
conventional heterotetrameric antibody (IgG) is shown schematically. The antigen binding fragment (Fab) comprises the complete light chain (VL and CL) 
and the partial heavy chain structure (VH and CH1), with the VH and VL domains forming the paratope. Such domains of IgGs can be derivatized to scFv 
fragments. (b) HCAbs are devoid of the VL and the CH1 domain, binding to the antigens through the single VHH fragment [1]. The VHH fragment contains 
four framework regions (FR1-4, grey) and three complementarity-determining regions (CDR1-3, green) [10]
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with target immunogens, usually administered through 
subcutaneous injections containing 1 to 5 antigens com-
bined with an adjuvant [20, 21]. In most cases, camels are 
immunized five times at weekly intervals, and 50–100 
mL blood samples are collected four to five days after the 
final immunization [22, 23]. Transgenic mice can also be 
immunized to obtain B lymphocytes that exclusively pro-
duce HCAbs [24]. For mouse genes in which B cells fail to 
generate immunoglobulins after triple knockout, human 
heavy chain genes (V, D, J genes) as well as the modified 

murine Cγ1 gene and the intact 3’ regulatory region were 
incorporated, at which point the B cells regained function 
and could yield HCAbs [25]. Lymphocytes are typically 
isolated from the collected blood, although some studies 
have extracted monocytes [26]. After mRNA conversion, 
cDNA is used to amplify the VHH gene regions [23], 
ideally through a nested PCR. A typical immune library 
should contain at least 106 unique transformations.

Table 1 Comparative properties of three types of libraries
Whether 
animal im-
munization is 
required

Properties of Nbs Blood 
requirements

Library 
size

Library universality Time span Ref.

Immune library Yes Affinity-matured 
Target-specific

50–100 mL 106–108 Multiple libraries will be 
required for various projects

Relatively long 
Several months

[9, 
21]

Naïve library No Works for non-immu-
nogenic targets

More than 10 L 109–1011 One library can be utilized 
for multiple projects

Relatively short 
Weeks to months

[29]

(Semi-) Synthetic 
library

No Works for non-immu-
nogenic targets

No demand 109–1015 One library can be utilized 
for multiple projects

Rather short Weeks 
to months

[37]

Fig. 2 General workflow of the construction of immune, naïve and (semi-) synthetic libraries. (a) The immune library requires immunization of camelids 
over 4 times in 2 months. After sampling 50–100 ml of blood and B lymphocytes isolation, mRNA is extracted [20, 21]. Following mRNA conversion, cDNA 
is used to amplify the VHH gene regions [23], ideally through a nested two-step PCR. The first PCR uses the mRNA template to amplify the VHH-hinge-
CH2 coding sequences of HCAbs and the VH-CH1-hinge-CH2 sequences from the heavy chain of classical antibodies, yielding the cDNA mixture. The 
mixture was then purified by agarose gel electrophoresis to obtain the target cDNA template. Primers containing suitable restriction enzyme sites are 
then utilized to amplify the fragments of the VHH-hinge-CH2 coding sequences of the HCAbs, resulting in amplified VHH sequences [9]. (b) The naïve 
library is constructed without the process of animal immunization, but instead require the collection of more than 10 L of blood from 10 to 20 camelids 
[29]. The subsequent steps are similar to those of the immune library. (c) Unlike the previous two library constructions, (semi-) synthetic libraries do not 
require animal participation and blood extraction. After the design of framework sequence and CDRs, it is frequently performed overlapping PCR to 
obtain amplified VHH sequences [37]

 



Page 5 of 27Liu et al. Journal of Nanobiotechnology           (2025) 23:87 

Naïve library
Naïve or synthetic Nbs libraries are viable alternatives 
when certain molecules are not immunogenic, cannot 
stimulate the generation of HCAbs, or are hazardous 
to animals. These libraries also address the time-con-
suming and expensive nature of immune libraries [27, 
28]. To screen for high-affinity Nbs, naïve libraries typi-
cally range in size from 109 to 1011. Due to the absence 
of in vivo affinity maturation, relatively large volumes of 
blood are required to obtain sufficient B lymphocytes. To 
build a naïve library with considerable scale and lower 
bias from individual prior immune responses, it is rec-
ommended to collect over 10  L of blood from 10 to 20 
animals [9, 29, 30]. Compared to immune libraries, Nbs 
obtained from naïve libraries have lower affinities. There-
fore, to overcome the lack of affinity maturation, isolated 
clones can be further improved by in vitro maturation 
[31, 32]. Phage display and ribosome display are the two 
primary methods for screening Nbs from naïve libraries 
[33]. The inability of bacterial cell transformation power 
to match the actual targeted diversity makes it challeng-
ing to have a highly diverse naïve library [9].

Synthetic/semi-synthetic library
When immunization is impractical or sufficient bio-
logical samples are scarce, synthetic or semi-synthetic 
libraries provide a promising alternative for construct-
ing Nbs libraries. To date, the creation of synthetic/semi-
synthetic Nbs libraries has mainly referred to sequences 
from llama derived Nbs due to their high melting tem-
perature (Tm), which implies that they are better heat-
tolerant, with a wider range of applications, and llamas 
have a lower cost of care. Hence, the number of reported 
llamas-derived sequences is quite substantial [34, 35].

The design of Nbs in synthetic libraries involves two 
crucial steps. The first is the framework sequence design, 
which focuses on stability and universality. The second is 
the hypervariable loops/CDRs design, which emphasizes 
diversity and effectiveness [36, 37].

Designing the framework for synthetic Nbs librar-
ies relies on two main sources. The first is previously 
reported universal or Nb-derived frameworks, such 
as the highly versatile cAbBCII10, which maintains its 
functional structure without disulfide bonds and has 
been widely used as a scaffold for new synthetic libraries 
[38]. Its humanized version (e.g., hs2dAb) and derivative 
frameworks have also been extensively studied [39–41]. 
The second source is consensus sequences generated 
from natural gene libraries [42]. For example, the Mac-
Mahon library’s consensus scaffold originates from the 
llama IGHV1S1-S5 gene, providing a convenient and 
user-friendly approach for constructing robust scaf-
folds [43]. However, the properties may not always meet 
the desired requirements, necessitating comprehensive 

experimental characterization, such as grafting experi-
ments [36]. Notably, selecting scaffold sequences 
(humanized or not) from databases is a common 
approach [44]. For instance, Davide Ferrari et al. used the 
ABVDDB database for framework selection [45], while 
other database options include SAbDab-nano, iCAN, etc 
[37].

CDRs design is crucial for synthetic Nbs libraries, 
with CDR3 being the most critical due to its high vari-
ability and frequent interaction with antigens. CDR1 
and CDR2 are also important and are typically designed 
based on the amino acid variability found in natural Nbs 
repertoires, although some studies have randomized all 
three CDR positions [46]. For CDR3, common methods 
include complete randomization, such as the NaLi-H1 
library, which randomized all amino acids except cys-
teine [40], and the McMahon library, which excluded 
cysteine and tryptophan [43]. Chen et al. used a simi-
lar approach but included cysteine [42]. Another study 
adjusted CDR3 randomization by altering its length, 
obtaining three different geometric shapes of Nb bind-
ing sites: concave, loops, and convex [47]. Mixing and 
matching CDR sequences from natural llama and human 
antibody libraries is also feasible [48]. Notably, structure-
guided semi-synthetic library design, which uses known 
structural information of antibody-antigen complexes for 
targeted randomizations, can be more precise and tar-
geted than conventional synthetic library design [49].

Amino acid variability is usually achieved using 
degenerate codons [50]. NNS and NNK (N = A/T/C/G, 
K = G/T) are cost-effective for encoding all the 20 amino 
acids but have drawbacks, such as generating termina-
tion codons and excess of particular amino acids due to 
the bias of high codon redundancy. Designing degener-
ate codons under certain criteria is a more efficient way 
than complete randomization, and designing with refer-
ence to the databases containing naturally occurring Nbs 
sequences mentioned above is a common option [37]. 
Trinucleotide DNA assembly can overcome these defects 
but is more expensive [40]. Its superiority lies in its ability 
to encode the desired amino acid at every location.

Notably, one study developed a method to generate 
synthetic Nbs (sybodies) targeting any protein within 
3 weeks [51]. Another study introduced two novel 
approaches for constructing synthetic libraries from 
mammalian cells, reducing the uncertainty of library 
construction by obtaining more than one million unique 
sequences without plasmid transformation extraction 
[52]. Additionally, researchers have engineered molecules 
by substituting the variable regions of conventional het-
erotetramer antibodies with two distinct Nbs, creating 
a molecule clip that biparatopically binds the receptor-
binding domain (RBD) with high potency [53]. Similarly, 
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a biparameric Nb, termed Nb1-Nb2, demonstrates even 
greater potency than the aforementioned antibodies [54].

Display platform
High-quality Nb libraries significantly enhance the effi-
ciency of selecting antibodies with high affinity and 
specificity. However, constructing Nb libraries alone is 
insufficient to obtain Nbs with superior performance. Nb 
production involves a series of processes, including iden-
tification, affinity maturation, purification, and ultimately, 
mass production, which necessitates the use of various 
well-established display technology platforms [9]. Until 
now, Nbs have been expressed in several kinds of produc-
tion systems, ranging from virus, prokaryotic cells(E.coli 
e.g.), eukaryotic cells(yeasts, fungi, mammalian cell e.g.) 
and many more emerging technologies [55]. Display plat-
forms can be broadly categorized into two main groups: 
surface display techniques, encompassing virus and cell-
surface approaches, and non-surface display techniques, 
such as ribosome and mRNA-based methods [56]. This 
section will provide an in-depth exploration of the most 
widely utilized display methods within each category, 
critically assessing their strengths and limitations, and 
highlighting the latest research advances and future per-
spectives in the field.

Virus-surface display
Virus-surface display systems primarily include phage 
display and eukaryotic virus display, which can infect 
protozoa, fungi, plants, and animals, including human 
cells. Among all these, the bacteriophage-based system 
is one of the most widely used. The concept of phage 
display was first introduced by George P. Smith in 1985 
when he successfully incorporated a DNA sequence 
encoding a display peptide into the filamentous phage 
gene III and expressed it as a fusion to the capsid pro-
tein III [57]. Phage display is a molecular technique that 
involves genetic modification of phage DNA to express 
peptides, proteins, or antibody fragments (such as Nbs) 
on the phage surface by fusing them to one of the phage 
membrane proteins [58]. The standard phage display pro-
cess has been presented in Fig. 3(a) [59]. The M13 phage 
is most commonly used for phage display due to its abil-
ity to accommodate long fragments of exogenous DNA 
into its genome [60]. The expressed Nb fragment is typi-
cally displayed fused to the N-terminal end of the protein 
III (pIII) coat protein on the surface of the M13 phage 
[56].

Screening for Nbs with high affinity is an impor-
tant part of the production process, and a general 
phage display requires 3 ∼ 5 rounds of biopanning fol-
lowed by ELISA and other means to further character-
ise the affinity of the Nb. Phage display technology has 
matured considerably, with the development of advanced 

antigen presentation methods and screening strategies to 
enhance Nb selection efficiency. In addition to traditional 
direct and indirect antigen presentation approaches, 
novel techniques such as whole-cell panning, liposomes, 
nanodiscs, and virus-like particles (VLPs) have been 
adopted [61]. These methods are particularly well-suited 
for membrane antigen presentation and help maintain 
conformational integrity.

Regarding screening strategies, the nontarget selec-
tion strategy effectively minimizes the enrichment of Nbs 
against off-target antigens [62]. Epitope-specific deselec-
tion can be employed to select receptors that cluster with 
a specific locus. In this way enrichment can be achieved 
through epitope masking, where Nbs bind to and occlude 
certain epitopes of the antigen, rendering specific epit-
opes inaccessible to new Nb in the selection step [63]. To 
investigate the influence of the in vivo microenvironment 
on proper protein folding and post-translational modifi-
cations, researchers have developed in vivo phage display 
techniques. This involves intravenous injection of phage 
libraries, followed by intracardiac perfusion to remove 
unbound phages. Phages from target tissues are then 
extracted for sequencing analysis. Enrichment of phages 
can be determined by comparing sequences from target 
tissues with those from input or unrelated tissues. The 
enriched sequences are subsequently selected for further 
characterization [64].

Phage display offers significant advantages, primarily its 
capacity to present an extensive diversity of Nbs (> 10^11 
unique clones) and the ability to replicate continuously 
without compromising host bacterial viability [65]. Due 
to limitations in display size and the absence of certain 
eukaryotic post-translational modifications(PTM) [55, 
66], Nb formats like VHH is preferred for phage display 
compared to full-length immunoglobulins with mul-
tiple disulfide bonds [67]. Although, as previously men-
tioned, Nbs theoretically do not require N-glycosylation 
or post-translational modifications due to the absence of 
the Fc region and the presence of highly conserved CH2 
sequences, making them suitable for any production 
platform, Nbs are sometimes designed to include other 
protein domains that may undergo glycosylation, such 
as Fc tags (which can enhance therapeutic effect [68]), or 
structures that require PTMs [69, 70], Additionally, Nbs 
often undergo glycosylation during production in hosts 
with glycosylation modification capabilities [55]. This gly-
cosylation can potentially impact their immunogenicity, 
stability, half-life, and biological activity. Therefore, it is 
necessary to introduce the glycosylation and PTM func-
tions of various production platforms. A comparative 
analysis of phage display with alternative platforms is 
presented in Table 2.

Despite these challenges, phage display remains a 
promising approach, particularly in the development 
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of therapeutic antibodies(such as Nbs) [61]. Advanced 
strategies in library design and screening methodologies 
may facilitate the direct isolation of drug-like molecules 
[71]. The integration of phage display with emerging 
technologies, such as deep sequencing and bioinformat-
ics, presents opportunities for enhanced data mining and 

rare clone identification [72]. Nevertheless, addressing 
plasmid vector instability remains a critical hurdle for 
further advancement in this field [73].

Fig. 3 Generalized protocol for three Nb display platforms: (a) Phage display: Nb/VHH cDNA from libraries (Immune, Naive, or Synthetic) cloned into 
phagemid adjacent to capsid protein gene (e.g., pIII) [58]. E. coli transformed and infected with helper phages [76]. Phage library undergoes 3–5 rounds 
of biopanning for antigen-specific selection [76]. Validation by ELISA [72]. (b) Bacterial surface display: Nb/VHH gene fragments cloned into plasmid 
vector and expressed on E. coli surface [80]. Screening by MACS using biotinylated antigen and antibiotic-conjugated magnetic beads [84]. FACS for fur-
ther identification and characterization [84]. Selected clones undergo chromatographic purification and culture optimization [91]. (c) Ribosome display: 
mRNA without stop codon transcribed in vitro from Nb DNA library [147]. In vitro translation produces peptide-ribosome-mRNA (PRM) complexes [144]. 
Affinity selection against immobilized antigens [144]. Bound peptides isolated after dissociation [151]. RT-PCR of mRNA generates enriched DNA library 
for subsequent rounds [144]
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Cell-surface display
Yeast
Yeast, a eukaryotic unicellular microorganism belong-
ing to the fungal kingdom, utilizes its targeted secre-
tion pathway to produce functionalized heterologous 
proteins [74]. The ability to undergo proper protein 
folding and PTM in vivo is a key advantage of yeast dis-
play [55]. Commonly used yeasts for Nb display include 
S.cerevisiae and P.pastoris, with S.cerevisiae being the 
most frequently employed species [74].

Aga1p and Aga2p are two membrane proteins of 
S.cereviasiae, which are interconnected by disulfide 
bonds on the cell wall surface [71]. The displayed Nb 
fragment is located at the C-terminal end of the Aga2p 
subunit, forming the biological basis of yeast display. The 
expression of both Aga2p and Nb-Aga2p products is reg-
ulated by the GAL1 promoter, so Nb display only occurs 
in the presence of galactose [71].

The yeast display process involves library construction, 
gene cloning, transformation, and selective culturing. 
Library construction is achieved using overlap-exten-
sion PCR or transforming cells with a linearized plasmid 
vector and DNA fragments [75]. The target Nb gene is 
cloned into a yeast display plasmid, fused to the Aga2p 
gene, and transformed into yeast cells by electroporation 

or lithium acetate treatment. Transformed cells are selec-
tively cultured to ensure fusion Nb expression on the cell 
surface [76]. Magnetic-activated cell sorting (MACS) and 
fluorescence-activated cell sorting (FACS) play crucial 
roles in this process [77]. MACS mimics the screening 
process of phage display and can greatly reduce non-
reactive background, allowing a reasonable number of 
yeast cells to be used for subsequent FACS screening 
[71]. In flow cytometry, by using lasers to individually 
detect cells with different morphologies, structures, and 
fluorescent properties within a cell stream, rapid, objec-
tive, and sensitive multi-parameter analysis of cells can 
be achieved [78]. Compatibility with FACS is a signifi-
cant advantage of yeast display over phage display, which 
allows for a highly controlled and real-time selection step, 
enabling fine differentiation of Nbs with different proper-
ties and easy access to conjugates capable of distinguish-
ing highly homologous antigens. After specific Nb clones 
are obtained, the Nbs can be purified by expanding the 
culture of selected clones and using techniques such as 
protein A/G affinity chromatography to enrich for cells 
that produce high-affinity, specific Nbs [76].

One of the extraordinary advantages of yeast display 
over phage display and prokaryotic cell display systems 
is that, as a unicellular eukaryote, yeast facilitates the 

Table 2 Comparison of properties of several Nb Display platforms
Features phage Yeast E.coli Fungi Mammalian

Cells
Plant cell Insect cell Ribosome 

display
Ref.

Production 
time

7 ∼ 10 days 46 ∼ 72 h 30 ∼ 48 h 5 ∼ 7 days 2 ∼ 3 
weeks after 
pre-culture

Weeks 10 days after 
transfection

3 ∼ 5 days [69, 
96]

Library size 109∼1010 106∼107 109∼1011 1010∼1012 106∼108 106∼108 106∼108 1012∼1014 [144, 
159]

Expression 
level

High Medium ∼ High Medium High Medi-
um ∼ High

High High High [56, 
69, 
80]

N-linked 
glycosylation

- High mannose
No sialic acid, 
non-human 
sugars

None Mammalian type 
core
none human 
sugars

Similar to 
human

Complex
no sialic acid
non-human 
sugars

Complex
no sialic acid
non-human 
sugars

- [55, 
79, 
97, 
131]

Protein folding Refolding 
required

Refolding
sometimes 
required

Refolding 
required

Refolding some-
times required

Proper 
folding

Proper folding Proper 
folding

Refolding 
required

[96]

Advantage Simple
Technically 
robust
Automated 
[71]

Mimic natural 
selection [76]
Scalability and 
cost-effective 
[80]

Rapid cell 
division, 
simple 
scale-up, 
high pro-
tein yields 
[56]

Productive
Eukaryotic PTMs 
[101]

Human 
PTMs [117]

Eukaryotic 
PTMs
Not prone to 
mammalian 
pathogens 
[114]

Infection
Eukaryotic 
PTMs [138]

Bigger library 
size [144]
In vitro 
induced 
mutagenesis 
[153]

disadvantage Limited 
library size 
[72]
Plasmid 
instability 
gene dele-
tion [65]

Limited 
library size [84] 
Transformation 
efficiency [80]

Limited 
expression 
levels [159]

Protease associ-
ated secretion 
[105]
Relatively low 
heterologous 
protein produc-
tion [104]

Limited 
diversity
Elevated 
cost [112]

Immunogen-
ic glycosyl-
ation pattern 
[114]

Glycosyl-
ation pattern 
[131]

Limited selec-
tion scope 
[72]
Technically 
sensitive [146]
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expression and folding of eukaryotic proteins [79]. Its 
highly efficient post-translational modification (PTM) 
mechanism allows for better functionalization of Nbs. 
Additionally, yeast display can generate polyclonal pop-
ulations with different binding specificities in a single 
experiment, which is useful for diagnostic analysis of 
complex biological systems [43]. Main drawback lies 
in the potential misfolding of displayed proteins, which 
may lead to loss of Nb function [80]. Furthermore, in the 
production of Nbs, most do not contain N-glycosylation 
sites due to the lack of the fragment crystallizable (Fc) 
structural domain. However, approximately 10% of Nbs 
still contain potential glycosylation sites and are N-gly-
cosylated [55], which can decrease the capacity of VHHs 
to bind to the antigen and increase their immunogenicity 
[81].

Recent optimization strategies for yeast display include 
improving display Nbs, promoters, signal peptides, 
library diversity, and Nb expression levels [76]. High-
throughput methods like CRISPR/(d)Cas technologies 
are enhancing screening efficiency in S. cerevisiae-based 
systems [82]. A novel hybrid approach combining phage 
and yeast display has emerged, leveraging phage display 
for initial Nb enrichment and yeast display with FACS 
for fine-tuned Nb selection. This method integrates the 
strengths of both techniques, significantly improving 
overall screening efficiency [83].

Bacterial
Bacterial surface display, especially using E.coli, has 
shown impressive performance in producingNbs due 
to its advantages in cloning, amplifying, and maintain-
ing large Nb gene libraries [80]. The process involves 
inserting a vector containing exogenous protein gene 
sequences into bacteria and expressing the Nb through 
various pathways [84]. E. coli is popular due to its genetic 
tractability and transformation efficiency. Its structure 
consists of two cell membranes with a periplasmic space 
in between, and Nb must pass through the inner mem-
brane and periplasmic space to be anchored to the outer 
membrane. Various methods are used to display Nb, with 
inner membrane protein fusions being optimal for Nb 
libraries [84, 85]. Gram-positive bacteria like staphylo-
cocci, streptococci, and mycobacteria are also used for 
surface display.

Bacterial surface display starts with the construction of 
cloned plasmid vector with amplified Nb/VHH fragment 
from Nbs library. Methods like FACS, MACS, or direct 
screening on live tumor cells are used to identify and 
screen bacteria expressing surface antigens [84]. MACS 
and FACS are often combined to screen antigen-binding 
colonies, identify binders, and characterize their antigen-
binding properties, such as specificity, ligand competi-
tion, and KD assay. Flow cytometry can also be used to 

classify Nbs [86]. The process is illustrated in Fig.  3(b). 
In E. coli, Nbs can be produced through periplasmic, 
cytoplasmic, or extracellular expression [87]. Each cel-
lular compartment has unique properties: (i) Periplasmic 
expression is well-suited for Nb production due to its 
oxidative environment and presence of chaperones and 
isomerases [88]. However, low yields may occur due to 
insufficient chaperone proteins, which can be addressed 
by using plasmids containing chaperone proteins (e.g., 
pTUM4) [89]. (ii) Cytoplasmic expression is necessary 
for large fusion proteins, but the reducing environment 
hinders disulfide bond formation and proper folding. 
This can be overcome by constructing double mutant 
strains with defects in both the thioredoxin and glutathi-
one pathways [90]. (iii) Extracellular expression provides 
an oxidative environment and effective protein folding 
milieu while reducing impurities [91]. The three expres-
sion patterns are shown in Fig. 4.

Bacterial display offers advantages like high yield, pro-
ductivity over other commonly used display systems 
such as phage, yeast, and mammalian cells. Bacterial 
systems like E. coli can accommodate libraries of up to 
1011 clones, providing a 10- to 10,000-fold higher library 
diversity compared to the 10^10 limit for phage display 
and 10^7 for yeast display, enabling screening of sig-
nificantly larger and more varied libraries [56, 80]. The 
absence of the Fc domain in Nbs makes bacterial dis-
play well-suited for their production. E. coli’s simple and 
inexpensive medium compositionand compatibility with 
high-throughput screening methods like FACS further 
enhance its appeal [92]. Most notably, the rapid growth 
rate (20 min doubling time), low culturing costs of E. coli 
make Bacterial display a more widely used and efficient 
platform for library screening and Nb engineering [80]. 
However, prokaryotes lack human-like post-translational 
modifications, which can affect Nb stability and immu-
nogenicity [56]. Another potential drawback is the pres-
ence of endotoxins [55]. Other disadvantages include 
inclusion body formation, codon bias, metabolic burden, 
and Nb degradation [91].

Researchers have made significant efforts to improve 
bacterial display systems by optimizing fermentation cul-
ture conditions, using genetically engineered expression 
vectors like pOPE101 and pETDuet-1 [92], and devel-
oping new expression methods such as the constitu-
tive outer membrane F (OmpF) high-expression system 
[93]. “Bacterial glycoengineering,” which utilizes the pro-
karyotic glycosylation system of E. coli, is an emerging 
approach with great potential for the N-glycosylation of 
Nb production [94]. This development could help over-
come the constraints of bacterial display systems in gen-
erating more stable and less immunogenic Nbs.
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Fungi
Fungi, particularly Aspergillus, Xylaria, Penicillium, 
Fusarium, Rhizopus, and Trichoderma, have emerged 
as powerful cell factories for heterologous protein pro-
duction [95]. Their eukaryotic post-translational protein 
processing mechanisms significantly influence protein 
secretion, activity, stability, and immunogenicity [96, 
97]. Fungi require transfection with gene expression 
vectors to express heterologous proteins such as Nbs, 
using methods like Polyethylene Glycol -mediated pro-
toplasmic transformation, Agrobacterium-mediated 
transformation, electroporation [98], and underwater 
shockwaves, which can enhance efficiency by 5400-fold 
[99]. Aspergillus species are proficient in producing and 
secreting natural and heterologous proteins, organic 
acids, and secondary metabolites [100].

In terms of production yield alone, fungi are more suit-
able as cell factories for large-scale Nb production [96, 
101]. Phage display technology, although mature and 
widely used in Nb antibody preparation, is better suited 
for library screening and analysis rather than direct Nb 
production [102]. Bacterial display allows for large-scale 
Nb production, but E. coli is best used for expressing 
non-glycosylated Nbs due to the lack of N-linked gly-
cosylation [103]. However, bacteria remain the most 
common display platform for Nb production, owing 
to their outstanding cost advantage and high yields. 
Fungi, despite their potential, have consistently shown 

unsatisfactory production capacity for heterologous pro-
teins (including Nbs) compared to homologous proteins, 
which is a major limitation [104], possibly due to the 
influence of proteases during secretion [105].

Researchers have developed strategies to augment 
yield, including promoter assembly, codon optimization 
[106], signal peptide replacement, carrier protein use, 
glycosylation site engineering, regulation of unfolded 
protein response and endoplasmic reticulum-associated 
protein degradation, optimization of intracellular trans-
port, regulation of unconventional protein secretion, and 
construction of protease-deficient strains [101]. Myce-
lial cell polarity impacts protein secretion in filamen-
tous fungi, with effective secretion primarily occurring 
at hyphal tips. Highly branched phenotypes typically 
exhibit enhanced protein secretion efficiency [107]. Strat-
egies to promote branching hyphae formation include 
environmental modifications [108] and genetic engineer-
ing approaches [109].

While filamentous fungi offer advantages as cell fac-
tories, including excellent protein production efficiency, 
PTM capabilities, and generally recognized as safe status, 
further research using transcriptomics, genomics, pro-
teomics, and metabolomics is essential to elucidate the 
expression, regulation, and secretion mechanisms of het-
erologous proteins in these organisms [110].

Fig. 4 Functional Nb expression in different cellular compartments of E. coli. (a) In the cytoplasm, Nbs are synthesized in a reducing environment 
maintained by thioredoxin (Trx) and glutathione (GSH) systems [55]. (b) For periplasmic expression, Nbs are initially synthesized in the cytoplasm and 
then transported across the inner membrane via Sec, SRP, or Tat pathways through the translocon [55]. In the oxidizing environment of the periplasm, 
chaperones and oxidases assist in protein folding [88]. Surface display can be achieved through various structures including outer membrane proteins 
(OMPs), pili, lipoproteins, and autotransporter (AT) proteins [80]. (c) For extracellular expression, Nbs can be secreted directly from the cytoplasm to the 
extracellular medium through the tripartite protein channel (TolC/HlyB/HlyD) that spans both inner and outer membranes [269]
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Mammalian cells
Mammalian cells is well-suited for the production of 
functional antibodies(including Nb), due to their close 
evolutionary relationship to humans, resulting in pro-
teins that are more functionally intact and Nbs with 
reduced immunogenicity and enhanced safety profiles 
[55]. Traditional mammalian cell display techniques 
involve transfecting recombinant gene vectors [111], fol-
lowed by screening to select the most productive and 
stable clones [112].

However, this process can be time-consuming. Novel 
methods like transient gene expression and recombinase-
mediated cassette exchange have emerged to enhance 
protein production efficiency. Transient gene expres-
sion (TGE) eliminates the need for cell line cloning [113], 
while Recombinase-mediated cassette exchange (RMCE) 
enables targeted integration of the recombinant con-
struct into a stable and transcriptionally active genomic 
hotspot [114]. Furthermore, lentiviral vectors have also 
proven to be powerful tools for gene delivery and Nb 
production [112].

The mammalian cell expression platform primar-
ily includes CHO, HEK293, PER.C6, and CAP/CAP-T 
cell lines [112], each with distinct characteristics [111]. 
CHO cells are the predominant host for industrial-scale 
protein production due to their adaptability to serum-
free conditions, while HEK293 cells are well-suited for 
laboratory settings due to their transient and semi-stable 
expression characteristics and distinct human glycan 
profiles. CAP cells, derived from human amniocytes, 
are notable for their high protein production rates and 
human-like glycosylation patterns. To enhance CHO 
productivity, researchers have developed various strate-
gies, including advanced culture methods [115] and cel-
lular engineering approaches [111]. However, CHO cell 
lines face challenges under high genomic and metabolic 
demands, leading to decreased productivity and product 
quality. Stable, high-yielding CHO clones often exhibit 
deletions in the telomeric region of chromosome 8 [116], 
and recent progress in transcriptomics has provided fur-
ther insights into this phenomenon.

Precise regulation of cellular phenotypes is equally 
important for studying Nb production in disease con-
texts. Researchers employ synthetic biology tools, includ-
ing gene editing techniques, regulatory expression tools 
[117], and bioinformatic tools for multi-omics analysis, 
to achieve optimal phenotypic characterization. Mam-
malian expression systems still present challenges in 
post-translational modification optimization, particu-
larly glycosylation. Mammalian glycosylation patterns 
can modify the backbone sequence of proteins [103], 
which in turn influences the stability, half-life, and bio-
logical activity of Nbs. Cell culture conditions have been 
shown to influence glycan profiles [118], highlighting the 

complexity of optimizing mammalian cell-based protein 
production and the need for a holistic approach to cell 
line development and process optimization.

Plant cell
Plant cell display systems offer a viable alternative to 
mammalian systems, providing similar post-translational 
modifications while being generally safe and harmless to 
humans [119]. Heterologous protein expression in plants 
primarily employs three methods: stable nuclear genome 
display [55], transient viral transfection [120], and plas-
tid genome display [69]. While Nb production mainly 
utilizes Agrobacterium-mediated stable nuclear genome 
integration, transient viral transfection is gaining trac-
tion due to its rapid production cycle, yielding proteins 
within days compared to the years required for develop-
ing transgenic plant lines.

For Nb production, N. tabacum, N. benthamiana, and 
A. thaliana [121] are the predominant plant hosts [121]. 
These plants offer versatile expression options, with anti-
body accumulation possible in leaves, seeds, and roots, as 
well as various subcellular compartments including the 
cytoplasm, chloroplasts, vesicles, endoplasmic reticulum, 
and apoplasts [121]. Although leaves account for major-
ity of Nb production, seeds present unique advantages. 
They can preserve Nb stability and functionality dur-
ing long-term storage and are particularly suitable for 
oral applications [122]. This dual benefit of seeds - long-
term stability and oral delivery potential - makes them 
an attractive option for certain therapeutic applications, 
complementing the high-yield capability of leaf-based 
production [123].

Nb production primarily utilizes stable nuclear genome 
expression infiltrated by Agrobacterium strains, but 
transient viral transfection expression is gaining popu-
larity due to its high production efficiency and rapid 
turnaround time [121]. Nbs can be produced in various 
plant tissues (such as leaves, roots, seeds) and accumu-
late in different subcellular compartments (cytoplasm, 
chloroplasts, vesicles, endoplasmic reticulum, apoplasts) 
[124]. Seeds can be stored for long periods of time to 
maintain antibody stability and functionality and are suit-
able for oral application despite approximately 70% Nbs 
being produced in leaves [125]. The transient viral trans-
fection expression process typically involves construct-
ing a recombinant vector, transforming it into E. coli for 
purification, introducing the purified vector into Agro-
bacterium, culturing in selective media, agro-infiltrating 
the resulting bacterial culture into targeted plant tissues, 
and finally, purifying and characterizing the recombinant 
proteins [69].

Plant expression systems offer advantages in pro-
duction speed and flexibility for product and pro-
cess optimization. Utilizing transient expression, 
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plant-manufactured VHHs for medical applications 
can be produced within a few weeks [69]. However, 
plant-specific secondary modifications to proteins can 
increase immunogenicity. Strategies to address this 
include genetic engineering to promote mammalian-
type glycosylation [126] and retaining glycoproteins in 
the endoplasmic reticulum to block plant-specific gly-
can attachment [127]. Despite these challenges, plant-
expressed Nbs can maintain biological activity even with 
differences in glycosylation [121]. Another obstacle is the 
high downstream purification cost [128]. Standard purifi-
cation involves extraction, chromatographic techniques, 
and analysis using SDS-PAGE, Western blot, ELISA, and 
surface plasmon resonance (SPR), accounting for approx-
imately 80% of the total process cost [69]. Strategies such 
as antibody recycling and producing less processed oral 
therapeutics are being explored to reduce costs.

Insect cell
Insect cells offer significant advantages for Nb produc-
tion due to their eukaryotic nature and ability to perform 
post-translational modifications similar to mammalian 
cells [129–131]. The Baculovirus Expression System 
(BES) has emerged as a productive, safe, and cost-effec-
tive alternative to traditional insect cell fermentation 
[55], exploiting the baculovirus life cycle by inserting 
exogenous genes while replacing polyhedrin and P10 
genes to drive target protein(Nb) expression [132]. Con-
structing an insect cell Nb expression system involves 
inserting the target Nb gene into a plasmid vector [133], 
generating a recombinant baculovirus through homolo-
gous recombination, and co-transfecting insect cells with 
the engineered plasmid and baculovirus genomic DNA. 
Alternatively, recombinant baculoviruses can be pro-
duced via site-specific transposition of the Tn7 trans-
poson into a baculovirus vector (Bac-to-Bac expression 
system) [134], though its industrial application is limited 
due to inherent instability during amplification [135].

Lepidoptera cells, particularly those from undifferenti-
ated ovarian and embryonic tissues, are preferred for Nb 
production. The Autographa californica multiple nuclear 
polyhedrovirus (AcMNPV) is the most widely used bac-
ulovirus vector [136]. Ongoing genetic modifications of 
the AcMNPV backbone and transfer vectors have led to 
improvements such as the flashBAC GOLD backbone, 
enhancing secretory pathway efficiency and reducing 
recombinant Nb degradation. Adaptive Laboratory Evo-
lution (ALE) offers a promising approach to enhance pro-
tein production efficiency in BES by subjecting cells to 
non-standard culture conditions and applying continu-
ous selection pressure [137], facilitating the emergence of 
more resilient cell populations adapted to the production 
environment.

Insect cell expression offers several advantages for Nb 
production, including high yields, proper folding, and 
post-translational modifications. While insect cells offer 
similar expression and processing pathways to higher 
eukaryotes, they produce N-chain glycosylated Nbs with 
simple oligomannose chains [138], contrasting the com-
plex glycans with terminal sialic acids found in mam-
malian cell-produced glycoproteins, enhancing their 
immunogenicity. Current research focuses on obtaining 
high yields of secreted proteins and improved glycosyl-
ation patterns [139]. Despite this limitation, the rapid 
production timelines and scalability of the baculovirus-
insect cell expression system make it an attractive plat-
form for Nb display and manufacturing.

Considerable research has been conducted on opti-
mizing insect cell culture environments for large-scale 
expression production, including improved media, bio-
reactor design, and operation strategies, coupled with 
investments in process optimization, production, and 
quality control of proteins using the Insect cell Baculo-
virus Expression Vector System (BEVS-IC) [138]. Recent 
research has also focused on the downstream process of 
BES, with contaminants categorized into host cell DNA, 
baculoviruses, host cell proteins, baculoviral proteins, 
media residues, and wastes [140]. A generic purification 
process can be designed around these contaminants, dra-
matically shortening development time once established. 
Methods include selecting appropriate elution buffers, 
capturing the product of interest using affinity and/or ion 
exchange chromatography, applying cell line or baculo-
virus vector engineering [136], RNA silencing [141], and 
DNA enzyme application [136].

Non-surface display
Cell-free display systems offer an innovative approach to 
Nb expression and selection, circumventing the necessity 
for constructing Nb vectors and transforming cell hosts. 
These systems utilize transcription/translation machin-
ery extracted from ribosome-rich sources, such as wheat 
germ or E.coli, to establish a genotype-phenotype link-
age through covalent interactions between protein, DNA, 
RNA, and ribosomes [142]. Researchers have developed 
a diverse array of cell-free in vitro display platforms, 
including ribosome display, mRNA display, covalent and 
noncovalent DNA display, and in vitro compartmental-
ization [56]. Among the various cell-free display plat-
forms, two prominent methodologies have emerged as 
particularly noteworthy: ribosome display and mRNA 
display.

Ribosome
The ribosome display system couples genotypes 
and phenotypes by forming protein(Nb)-ribosome-
mRNA (PRM) complexes, eliminating cell culture and 
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transfection steps, shortening the isolation and selection 
cycle of high-affinity functional proteins, and circum-
venting microbial cell transformation [143, 144]. The 
Ribosome Display System couples genotypes and pheno-
types by forming PRM complexes, eliminating cell cul-
ture and transfection steps, shortening the isolation and 
selection cycle of high-affinity functional proteins, and 
circumventing microbial cell transformation [145]. How-
ever, RNase contamination and PRM complex instability 
are major challenges, requiring an RNase-free environ-
ment [146].

In ribosome Nb display, DNA encoding Nb library is 
transcribed into mRNA lacking a stop codon, ensuring 
the attachment of the newly synthesized peptide and 
encoding mRNA [66]. The mRNA is then transcribed and 
translated in vitro to form the PRM complex, which is 
affinity-selected by binding to immobilized antigens. The 
displayed Nb peptide chain is recovered, and the mRNA 
is reverse-transcribed and PCR-amplified into Nb-encod-
ing DNA [144]. A typical production cycle is displayed in 
Fig. 3(c). Both eukaryotic and prokaryotic cell-free trans-
lation systems can be used, with no confirmed superior-
ity [147].

Ribosome display allows in vitro Nb evolution through 
mutation construction and selection, making Nb affin-
ity and maturation its most successful application [148]. 
Successful biopanning requires PRM complex stability, 
which can be improved by high magnesium ion concen-
trations, appropriate temperatures, and antisense RNA 
[146, 149, 150]. RT-PCR generates a purified DNA library 
encoding the desired antibody phenotype for multiple 
rounds of demonstration [151]. Ribosome display has 
emerged as a powerful tool in Nb engineering, offer-
ing advantages over cell-based display systems [144]. It 
enables the generation of vast libraries (10^12 to 10^14 
unique clones) [144], surpassing the capabilities of cell 
surface display methods like yeast display (10^6 to 10^7) 
and bacterial display (10^8 to 10^10), thereby enhanc-
ing the likelihood of identifying high-affinity Nbs. Fur-
thermore, Ribosome display allows in vitro Nb evolution 
through mutation construction and selection, making 
Nb affinity and maturation its most successful applica-
tion [152]. In vitro diversification strategies can be cat-
egorized into two main groups: targeted approaches 
and random mutagenesis [153]. Targeted methods, such 
as hotspot mutagenesis and parsimony mutagenesis, 
allow stochasticity to occur at a given location, whereas 
random mutagenesis methods, including error-prone 
PCR and shuffling, are closer to random mutagenesis in 
vivo [154]. Error-prone PCR utilizes low-fidelity poly-
merase to randomly generate point mutations in the gene 
sequence during PCR amplification [155], which has 
been used to obtain more stable and specific Nbs [156].

However, the instability of PRM complexes and ribo-
some-ribosome collisions due to the lack of a stop codon 
can hamper translation efficiency, necessitating care-
ful optimization of the mRNA-to-ribosome ratio [152]. 
Future research could explore synergistic integration of 
ribosome display with other selection platforms (e.g., 
phage or yeast display) to leverage the strengths of each 
technology [47]. Integrating ribosome display with next-
generation sequencing and AI could revolutionize the 
throughput and precision of antibody discovery and opti-
mization [157].

mRNA
mRNA display, another cell-free technique akin to ribo-
some display, begins by transcribing a constructed DNA 
library into mRNA, which then forms protein-mRNA 
complexes via in vitro cell-free translation [158, 159]. 
Unlike ribosome display, mRNA display uses a short 
DNA-puromycin linker attached to the displayed protein 
to prevent peptide chain release, instead of relying on the 
absence of a stop codon. Puromycin mimics the amino 
terminus of a typical tRNA, acting as a translational 
repressor by entering the ribosomal A-site and binding to 
the resulting protein [160].

The covalent bond between mRNA and the displayed 
protein makes the complex more stable than in ribosome 
display, eliminating the need for complex-specific stabili-
zation [161]. Furthermore, the smaller size of puromycin 
DNA linkers, compared to ribosomes, reduces the inter-
action with fixed selection targets, leading to less biased 
mRNA display results [162]. However, mRNA degrada-
tion remains a challenge, requiring RNase-free experi-
mental conditions. Interestingly, a recent study showed 
that up to 60% of mRNA display libraries could be recov-
ered intact after cell incubation [163], suggesting that the 
impact of RNase on experimental outcomes may be less 
significant than previously thought.

Emerging technologies
Recent advancements in antibody screening and pre-
sentation have introduced techniques that leverage 
computer analysis and NGS/LC-MS, such as Nestlink, 
Sybody, and high-throughput sequencing combined 
with mass spectrometry identification [9]. Nestlink is 
particularly suitable for complex screening, like Nb 
identification in organisms [9]. It overcomes the limita-
tions of traditional biopanning and low peptide counts in 
LC-MS/MS due to extensive sequence homology in bind-
ing collections [164].

Nestlink uses genetically encoded barcode peptides 
called “flycodes,” linked to a binding Nb library through 
“library nesting“ [164]. NGS assigns flycodes to their 
corresponding binding Nb, and the nested library is 
expressed as a pool of flycodes from selected binders. 
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These flycodes are then separated and detected, enabling 
unambiguous identification and high-throughput char-
acterization of thousands of binding Nbs [165]. By inte-
grating NGS and LC-MS/MS data, Nestlink establishes 
a genotype-phenotype linkage independent of physical 
entities, allowing simultaneous monitoring of biodistri-
bution, tissue penetration, immunogenicity, and serum 
half-life of numerous biopharmaceutical drug candidates 
in a single disease-associated model organism [165].

Sybodies are useful when binding agents cannot be 
generated by immune library due to high sequence con-
servation, toxicity, or insufficient target protein stability. 
Sybody generation involves a single round of ribosomal 
display using mRNA-encoded sybody libraries, followed 
by two rounds of phage display and ELISA to screen for 
Nbs with good binding activity [51]. SPR determines 
sybody affinity [166] and facilitates further purification. 
Compared to other display systems, sybody offers faster 
and more efficient screening, the ability to screen highly 
conserved proteins, recognition of three-dimensional 
(3D) epitopes, and broader target coverage [47]. Sybody 
can also be tailored to various applications by adding or 
removing tags through expression vectors [166].

High-throughput sequencing and mass spectrom-
etry identification eliminates the need for intermediate 
expression systems [167]. A cDNA library from immu-
nized alpaca bone marrow lymphocytes is amplified by 
PCR and subjected to high-throughput DNA sequencing. 
Concurrently, serum from the same alpaca undergoes 
affinity purification of VHH protein fragments, which are 
analyzed by LC-MS/MS. The resulting MS data is com-
pared with the sequence database generated from DNA 
sequencing reads to determine the corresponding VHH 
sequence [168]. This approach eliminates the need for 
efficient exogenous expression, folding, and clonal pre-
sentation, enabling rapid screening of numerous Nbs 
targeting multiple epitopes of a specific antigen within 
a relatively short timeframe (10 days post-sample col-
lection). It can generate a large library of different Nbs, 
although its dependence on the camel’s immune system 
may present a potential limitation [167].

These emerging technologies are revolutionizing anti-
body discovery and optimization, offering increased 
throughput, broader applicability, and enhanced effi-
ciency in identifying and characterizing novel bind-
ing proteins for various applications in research and 
therapeutics.

Artificial intelligence in Nb engineering
Currently, most Nbs are developed through animal 
immunization, which confers advantages in terms of 
antibody affinity and specificity [169]. However, advance-
ments in in vitro techniques and ethical concerns sur-
rounding experimental animals have propelled the 

emergence of novel approaches [170]. AI technologies 
have already achieved remarkable success in various 
domains. The powerful learning capabilities of deep neu-
ral networks enable them to automatically learn multi-
faceted features from diverse data types, constructing 
highly flexible and robust models. In particular, excel-
lent models such as Graph Neural Networks (GNNs) 
and Transformer have demonstrated outstanding per-
formance [171, 172]. In the biomedical field, by analyz-
ing vast amounts of genomic or imaging data, AI can 
accurately identify and predict disease-associated genetic 
variations or clinical outcomes [173–176]. AI tools like 
AlphaFold have showcased exceptional predictive accu-
racy, precisely determining the 3D structure of proteins 
based on their amino acid sequences [177–179]. In the 
realm of drug discovery, AI has significantly accelerated 
the development process and reduced research costs and 
timelines through virtual screening and drug design [180, 
181] (Fig. 5a).

The introduction of AI is imperative in the Nb design 
process. Conventional laboratory and computational 
methods suffer from several limitations, including being 
time-consuming, labor-intensive, and reliant on data-
bases containing known structures [47, 178]. Moreover, 
the screening efficiency and functional performance 
of the three major libraries currently available are still 
restricted [182]. Therefore, integrating AI into Nb engi-
neering will overcome the bottlenecks of traditional Nb 
development and design (Fig.  5b). On one hand, com-
puter simulation and prediction can greatly reduce work-
load, accelerate the development process, and lower 
costs. On the other hand, AI can efficiently explore the 
vast sequence landscape of Nbs, identifying potentially 
superior candidate sequences while considering multiple 
performance criteria such as affinity, specificity, stability, 
and polyreactivity, which is particularly crucial for Nb 
discovery and performance optimization.

Moreover, the rapid advancement of high-throughput 
sequencing technologies has provided unprecedented 
volumes of Nb sequence data, which serve as a critical 
foundation for AI-driven optimization [183–185]. These 
datasets capture the inherent diversity of Nbs, including 
rare and unconventional sequence motifs, enabling deep 
learning models to identify subtle patterns linked to affin-
ity, specificity, and stability [184, 186, 187]. For example, 
by analyzing sequencing data from immune and synthetic 
libraries, AI models can uncover sequence-function rela-
tionships, such as key residues in CDR3 loops that drive 
antigen specificity or structural stability [42, 188, 189]. 
Furthermore, these large-scale datasets enhance model 
generalizability by expanding the diversity of training 
sets, particularly for predicting novel Nb conformations 
or optimizing sequences for improved physicochemi-
cal properties [183, 187, 190]. To efficiently manage and 
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utilize these vast datasets, several specialized databases 
have been developed, forming the backbone of AI-driven 
optimization in Nb engineering [191–196]. These data-
bases not only provide structured and high-quality data 
but also support critical tasks, such as sequence-function 
relationship analysis, structure prediction, and thermal 
stability optimization. By integrating these resources, AI 
frameworks can bridge the gap between experimental 
discovery and computational design, significantly accel-
erating the identification of superior Nb candidates while 
maintaining high precision [42, 184–186, 188]. Table  3 

provides a summary of representative nanobody data-
bases, highlighting their primary features and roles in 
supporting AI-based Nb engineering.

In summary, AI can overcome the shortcomings of tra-
ditional Nb engineering, enabling more flexible, efficient, 
and precise antibody design. It plays a vital role in tasks 
such as antibody structure or antigen-binding site predic-
tion, and physicochemical property optimization (Fig. 5c; 
Table 4).

Fig. 5 Artificial Intelligence in Nb Engineering. (a) The integration of AI into nanobody (Nb) engineering has revolutionized the field, with AI models 
already being extensively applied in genomics, medical imaging, protein structure prediction, and drug discovery [176–182, 197, 198]. (b) AI algorithms, 
trained on Nb sequence and structural data, enable more efficient and accurate predictions in several key areas. (c i) AI models like AlphaFold and 
NanoNet are used to predict Nb 3D structures, focusing on the critical VHH region [178, 184, 209, 215, 221]. (c ii) AI is also leveraged to predict Nb-antigen 
interaction sites and optimize binding conformations, using algorithms like NanoBERTa-ASP and NbX to improve precision in predicting the binding sites 
and structural interactions [186, 234]. (c iii) AI-powered models have contributed to addressing Nb polyreactivity, enhancing performance by predicting 
the impact of amino acid mutations on polyreactivity and optimizing Nb stability [240]. (c iv) AI tools like nanoBERT are specifically designed to explore 
the effects of sequence mutations on Nb physicochemical properties, significantly improving the affinity, stability, and functional characteristics of Nbs 
[263]. These innovations collectively enhance the rational design of Nbs for therapeutic and diagnostic applications
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AI in Nb structure prediction
The quest for determining the 3D structure of proteins 
has navigated a winding road of advancements [197–
203]. Recently, owing to the development in GPU and 
algorithmic innovations, deep learning-based methods 
have elevated the accuracy of protein structure prediction 
to new heights [177, 178, 204], ushering in breakthroughs 
for the study of Nbs 3D structures. The powerful feature 
extraction and learning capabilities of deep neural net-
works [171], coupled with the unique advantages of state-
of-the-art deep learning models like GNNs [172] and 
Transformer [205] in processing sequence and graph-
structured data, enable the automatic learning of intrin-
sic patterns in Nb structures from vast amounts of data.

General and specialized AI tools for VHH structure prediction
VHH, the variable region of the heavy chain of Nb, is 
the functional core of Nbs responsible for recognizing 
and binding specific antigens [182]. Elucidating their 3D 
structure is crucial for understanding their unique anti-
gen recognition mechanisms and providing guidance for 
subsequent affinity maturation and functional optimiza-
tion. Current research on it primarily focuses on their 
antigen-binding mechanisms [51], conformational fea-
tures [206] and the dominant role of CDR3 in the binding 
process [207, 208]. The unique conformational character-
istics of VHHs, such as the β-hairpin or helix-loop con-
formations [208], despite the specific features remain 
unclear, may play a unique role in recognizing specific 
antigenic epitopes. Deep learning-based tools have sig-
nificantly advanced the prediction of VHH structures, 
providing valuable insights for rational design.

Protein and antibody structure prediction has been 
revolutionized by deep learning-based tools such as 
AlphaFold2 [178], RoseTTAFold [209], OmegaFold 
[210], ESMFold [211], OpenFold [212], IgFold [213] and 
ABodyBuilder3 [214]. These tools, while not specifically 
designed for Nbs, have demonstrated substantial util-
ity in predicting VHH structures due to their ability to 
model general sequence-structure relationships. Alpha-
Fold2 utilizes multiple sequence alignment (MSA), resi-
due pairing information, and structural templates for 
modeling [178], while RoseTTAFold employs a three-
track neural network to simultaneously refine MSAs, 
inter-residue contacts, and 3D structures [209]. Emerg-
ing tools like OmegaFold and ESMFold further enhance 
modeling capabilities, especially for unique or poorly 
aligned sequences, by reducing dependence on MSA data 
[210, 211]. OpenFold, as an open-source implementa-
tion of AlphaFold, retains the core strengths of Alpha-
Fold while offering open-source flexibility and improved 
efficiency, enabling further customization for specific 
research needs [212]. In antibody fragment modeling, 
IgFold takes a step further by focusing on the accurate 
prediction of long variable CDR regions, such as CDR3, 
demonstrating significant advantages in speed and preci-
sion [213] . Complementing this, ABodyBuilder3 adopts 
a broader scope, modeling general antibody structures 
while also accommodating nanobody-like fragments due 
to its diverse training dataset  [214]. However, despite 
their strengths, their lack of optimization for the unique 
features of nanobodies, such as elongated CDR3 loops 
and compact β-sheet structures, limits their performance 
in nanobody-specific structure prediction.

Table 3 Summary of existing nanobody databases
Database 
Name

Data Scale Data Content Features Application Website Link

iCAN
[191]

2391 nanobody 
entries

Includes sequences, structures, 
target antigens, and functional 
information from patents, RCSB 
PDB, and EMBL

First comprehensive nanobody 
database with a user-friendly 
interface and prediction tools

Facilitates nanobody 
research with analysis tools 
such as Blast and Clustal

http://ican.ils.
seu.edu.cn/

INDI
[192]

Over 11 mil-
lion nanobody 
sequences

Nanobody sequences from Gen-
Bank, patents, NGS repositories, 
and scientific publications, with 
metadata

Automated data integration 
with extensive coverage, suit-
able for computational design

Supports immunoin-
formatics research and 
accelerates nanobody drug 
development

 h t t p  : / /  n a t u  r a  l a n  
t i b  o d y .  c o  m / n a n 
o b o d i e s

NanoLAS
[193]

Consolidated 
data from vari-
ous sources

Includes structures, sequences, 
and target information, emphasiz-
ing applications in COVID-19 and 
cancer

Comprehensive data integration 
with a user-friendly interface, 
especially for SARS-CoV-2 and 
cancer research

Provides a unified data 
platform to advance 
biomedical applications of 
nanobodies

https://www.
nanolas.cloud/

NbThermo
[194]

564 nanobody 
thermostability 
entries

Contains melting temperature 
(Tm), sequences, antigens, and 
structures

First database focused on 
nanobody thermostability, with 
manually curated data

Provides thermostability 
references for nanobody 
engineering

 h t t p  s : /  / v a l  d e  s - t  r 
e s  a n c o  - m  s . g  i t h  u 
b . i  o /  N b T h e r m o

SAbDab-
nano
[195]

Over 800 struc-
tural entries

Includes nanobody structures, 
resolution, CDR sequences, and 
antigen-binding affinities

Updated weekly with detailed 
annotations, suitable for struc-
tural analysis

Enables 3D structure 
analysis and development 
of biotherapeutics

 h t t p :   /  / o p i  g .  s t a  t  s 
.   o x .   a c   . u  k / w e  b a  p  
p s  / n e w s a b d a b /

sdAb-DB
[196]

Over 788 nano-
body sequences

Provides sequences, target 
information, binding affinities, and 
experimental data

Open-source community 
database, ideal for sharing and 
redesigning antibody sequences

Supports bioengineer-
ing and synthetic biology 
design

http://www.
sdab-db.ca/

http://ican.ils.seu.edu.cn/
http://ican.ils.seu.edu.cn/
http://naturalantibody.com/nanobodies
http://naturalantibody.com/nanobodies
http://naturalantibody.com/nanobodies
https://www.nanolas.cloud/
https://www.nanolas.cloud/
https://valdes-tresanco-ms.github.io/NbThermo
https://valdes-tresanco-ms.github.io/NbThermo
https://valdes-tresanco-ms.github.io/NbThermo
http://opig.stats.ox.ac.uk/webapps/newsabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/
http://www.sdab-db.ca/
http://www.sdab-db.ca/
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Table 4 Comparison of Advanced AI models for Nb
Algo-
rithm 
Name

Basic Principles/Methods Basic Architecture Main Uses Prediction 
Accuracy/
Performance

Calcula-
tion Speed

Comprehensive Evaluation

Alpha-
Fold2
[177]

Deep learning using multiple 
sequence alignment (MSA), 
residue pairing information 
and structural templates

Evoformer module 
processes inputs;
Structure mod-
ule predicts 3D 
coordinates

General protein 
structure 
prediction

Very high, 
approaching 
experimental 
structure 
accuracy

Slow Extremely high accuracy
Wide applicability
High computational resource 
requirements

RoseT-
TAFold 
[209]

Three-track (1D, 2D, 3D) neural 
network processing MSAs, con-
tacts and structure refinement

1D and 2D neural 
networks process se-
quence and contact 
information;
3D refines structure

General protein 
structure 
prediction

High, slightly 
lower than 
AlphaFold2

Medium Faster than AlphaFold 2
Lower accuracy

NanoNet
[183]

Deep learning using CNN 
and residual neural networks 
(ResNet)

Two 1D ResNets for 
frameworks/CDRs 
and inter-residue 
interactions

Specifically for 
VHH structure 
prediction

Very high for 
VHHs

Fast Specifically optimized for VHHs
High accuracy
Fast

NbBuild-
er2
[215]

Deep learning based on 
AlphaFold-Multimer optimized 
for VHHs

Similar to 
AlphaFold-Multimer

Specifically for 
VHH structure 
prediction

Very high for 
VHHs

Fast Specifically optimized for VHHs
High accuracy
GPU-accelerated

H3-OPT
[221]

AlphaFold2 combined with 
pre-trained protein language 
model

Template module
PLM-based structure 
prediction module

Nb structures 
prediction, 
especially CDR3 
loops

Outperform-
ing Alpha-
Fold2 and 
IgFold

Slow High CDR3 prediction accuracy
Lower computational efficiency
Difficulty with very long CDR-
H3 loops

Nano-
BERTa-
ASP [185]

Pretrained language model 
based on RoBERTa

Transformer archi-
tecture based on 
RoBERTa

Predict Nb 
antigen-binding 
sites from amino 
acid sequences

Outperforms 
existing 
methods

- Direct prediction from 
sequence
High interpretability
Requires large labeled datasets 
for training

NbX 
[234]

Decision tree classifier for 
native-like poses

XGBoost decision tree Re-rank Nb-
antigen docking 
poses

Improved me-
dian ranking 
of native-like 
poses by 
8-fold

Fast Significantly improves ranking 
of native-like poses
Computationally efficient
Struggles to differentiate very 
similar poses

Nano-
body 
Polyreac-
tivity Pre-
dictor & 
Optimizer
[240]

Data acquisition, model train-
ing, mutation design

Machine learning on 
yeast-displayed Nb 
sequences

Predict/reduce 
Nb polyreactivity

AUC > 0.8;
Spearman 
ρ ≈ 0.77–0.79

- High accuracy
Effective optimization
User-friendly
Limited to Nbs
Lack of broader validation

Nano-
body 
Affinity 
Classifier
[223]

CNN learns features from Nb 
sequences

Typical CNN Classify high/low 
affinity Nbs
Identify key se-
quence features 
affecting affinity

92% accu-
racy for affinity 
classification

- High accuracy
Automatic feature extraction
Lack of comparison with other 
methods

nanoBERT
[263]

BERT-based transformer model Transformer with bi-
directional attention 
mechanism

Nb sequence 
infilling predic-
tion/nativeness 
assessment/
Fine-tuning for 
downstream 
tasks

Outperforms 
human anti-
body-specific 
models and 
general pro-
tein models

- Superior performance in Nb 
sequence prediction
Applicable to various down-
stream tasks
Lack of broader validation

Modi-
Bodies
[186]

Monte Carlo-based mutation 
analysis and molecular dynam-
ics (MD) simulation for energy 
optimization

Energy optimization 
module with iterative 
Monte Carlo and MD 
simulation

Affinity and 
specificity 
optimization for 
nanobody-anti-
gen complexes

Improves 
KD by up to 
fivefold in 
benchmarks

Medium High efficiency in improving 
affinity and specificity;
High-quality structural data 
and computational resource 
dependency
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To address this, several specialized algorithms have 
been developed for nanobody modeling, offering higher 
precision and efficiency tailored to the unique features 
of Nbs. As the first deep learning structure prediction 
method tailored for VHHs, NanoNet employs a convo-
lutional neural network (CNN) and two one-dimensional 
residual neural networks (ResNets) to directly gener-
ate 3D coordinates of the backbone and Cβ atoms from 
antibody sequences within milliseconds, greatly enhanc-
ing computational efficiency [184]. This makes it highly 
suitable for high-throughput analysis of large antibody 
libraries, providing valuable structural information for 
optimizing Nb stability, specificity, and rational design 
[184]. However, it still faces limitations in predicting 
longer CDR3 loops. In contrast, NanoBodyBuilder2 has 
achieved significant improvements in accuracy and reli-
ability. As part of the ImmuneBuilder toolkit, NanoBody-
Builder2 utilizes a deep learning architecture tailored 
specifically for nanobodies, excelling particularly in the 
prediction of CDR3 loops [215]. Moreover, it introduces 
uncertainty estimation for each residue, providing crucial 
support for the interpretability and reliability of predic-
tions. Most impressively, NanoBodyBuilder2 is 100 times 
faster than AlphaFold2, offering a tremendous advantage 
in scenarios requiring rapid generation of high-accuracy 
structural models, such as large-scale sequence screening 
and design [215].

Overall, NanoNet and NanoBodyBuilder2 demonstrate 
complementary strengths in efficient modeling and pre-
cise predictions, providing robust technical support for 
researchers in the field of nanobody engineering. In the 
future, further optimization and integration of these 
tools’ features may drive innovative developments in 
nanobody design and application.

High-precision CDR3 structure prediction
CDR3 is the key region for Nbs to perform antigen rec-
ognition functions [182]. Predicting the structure of 
CDR3 remains a significant challenge. Compared to 
conventional antibodies, the CDR3 of Nbs possesses 
unique sequence and structural features, with lengths 
reaching up to 24 amino acid residues [216] and special 
conformations like loops, hairpins, and arms [47, 216], 
enabling CDR3 to penetrate the concave regions on the 
antigen surface and recognize hidden epitopes [217]. 
Moreover, the amino acid composition of CDR3 is highly 
variable, and certain specific sequence fragments may 
confer Nbs the ability to recognize special antigens [9]. 
Hence, it’s of great significance to explore the unique 
sequence-structure-function relationships of CDR3 to 
provide guidance for subsequent Nb engineering [169, 
218]. The performance of AlphaFold2, IgFold, Immune-
Builder, and NanoNet was compared [219]. By analyzing 
the interaction between the predicted CDR3 and the Nbs 

framework and the orientation of CDR3 residues, it was 
found that the CDR3 conformations obtained by homol-
ogy modeling, IgFold, and ImmuneBuilder were relatively 
similar and consistent with the stretched-twisted or con-
vex conformations inferred from the length [219]. In con-
trast, the CDR3 conformations predicted by AlphaFold2 
and NanoNet deviated more from the typical structures 
[219], suggesting that the two may not be well-suited for 
the task. The latest data shows that the median root mean 
square deviation (RMSD) for modeling CDR1, CDR2, 
and CDR3 by various models is 1.4–2.1Å, 0.8–1.5Å, and 
2.5–4.7Å, respectively, with CDR3 having the highest 
RMSD [220]. As CDR3 length increases, RMSDs between 
AI-predicted CDR3 conformations and experimental 
structures generally increase, indicating decreased pre-
diction accuracy [220]. It is necessary to focus on refining 
the training data for CDR3 conformations and improving 
deep learning algorithms. Fortunately, H3-OPT cleverly 
combines existing models’ strengths, achieving a 2.24Å 
average RMSD on a high-quality Nb test set, outperform-
ing other general or Nbs-specific models, such as Alpha-
Fold2 (3.79Å), RoseTTAFold (3.75Å), NanoBodyBuilder2 
(3.44Å), and NanoNet (4.37Å) [221]. The uniqueness of 
H3-OPT lies in its comprehensive utilization of template 
alignment, AlphaFold2 structural features, and the ESM2 
language model, maximizing the advantages of differ-
ent methods [221]. H3-OPT’s exceptional performance 
in high-precision CDR3 structure prediction brings new 
hope for computational Nb design and optimization. 
Reliable CDR3 structures will deepen our understanding 
of Nbs’ unique molecular structures, facilitating analysis 
of key interactions and epitopes with antigens, and pro-
viding important clues for subsequent antibody-antigen 
docking and property optimization.

Nb-antigen interaction prediction challenges
Predicting Nb-antigen binding sites and modes is chal-
lenging but crucial for understanding the specificity 
and antigen recognition mechanisms, which will guide 
vaccine design, drug development [222]. Nb-antigen 
interactions can be considered a special classification of 
traditional antibody-antigen interactions, and molecu-
lar docking approaches have been used to obtain struc-
tural models of a large number of Nb-antigen complexes 
[223]. Other representative algorithms include ClusPro 
[224] and HADDOCK [225], but high-throughput char-
acterization of Nb-antigen interactions still faces chal-
lenges [184]. Computational methods often have issues 
such as high false-positive rates and difficulty in obtain-
ing unique solutions when modeling the 3D structure of 
antibody-antigen complexes [184]. Although AlphaFold-
Multimer has advanced protein complex modeling, it 
still struggles with critical challenges such as CDR mod-
eling and glycosylated antigens, limiting its accuracy in 
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capturing Nb-antigen binding modes [226]. While Yin 
et al. specifically focused on Nb-antigen complexes and 
optimized AlphaFold-Multimer to achieve near-native 
accuracy in 50% of cases, this still leaves a substantial gap 
in reliability and precision for many Nb-antigen interac-
tions  [227]. Despite leveraging large-scale sampling strat-
egies and incorporating Nb-specific features, such as the 
diversity of the CDR3 loop, their approach highlights 
both the progress made and the challenges that remain 
in creating a universally reliable predictive framework 
for Nb-antigen interactions  [226, 227]. Another concern 
is that Nbs differ significantly from traditional antibodies 
in both sequence and structure [228], such as the longer 
and more diverse amino acid composition of the CDR3 
loop [206, 207, 229].

To address those above challenges, a new tool called 
NanoBERTa-ASP has been proposed [186]. It is a 
sequence-based method aimed at directly predicting the 
antigen-binding sites of Nbs from amino acid sequences 
[230, 231]. NanoBERTa-ASP is based on the RoBERTa 
model architecture and introduces an attention mecha-
nism that can focus on key regions in the sequence, such 
as the highly variable CDR3 region, capturing the struc-
tural features of Nbs [232]. By treating binding site pre-
diction as a binary classification task, NanoBERTa-ASP 
can accurately predict whether each residue in the Nb 
sequence is a binding site [186]. It is worth noting that the 
realization of antibody-antigen interactions depends not 
only on the sequence features of the binding epitopes but 
also on the formation of suitable conformations between 
the antibody and antigen in 3D space [233]. Therefore, 
it is also necessary to consider the structural features 
and interaction patterns of Nb-antigen complexes [207]. 
NbX has been specifically designed to improve the reor-
dering of docking conformations of Nb-antigen com-
plexes [234]. Unlike NanoBERTa-ASP, which focuses on 
sequence features, NbX employs a set of structural fea-
tures including energy, contact, and interface property. 
It learns the feature patterns of conformations similar to 
the native state by training a decision tree classifier, sig-
nificantly improving the ranking performance of docking 
conformations [234]. On the test set, NbX increased the 
median ranking of native-like conformations by 8-fold, 
greatly outperforming existing docking algorithms such 
as ClusPro and deep learning-based protein interaction 
prediction methods like DOVENbX [224, 235]. Interest-
ingly, by analyzing SHAP values, important features that 
contribute significantly to NbX’s predictive performance 
were revealed. The proportion of CDR3 residues in the 
antigen-binding site was considered the most important 
feature by NbX, consistent with previous reports [206, 
229]. Interface energy density and the hydrophobicity of 
the epitope and antigen-binding site were also considered 
important features [234]. These findings not only validate 

known Nb characteristics but also provide new design 
ideas.

In summary, NanoBERTa-ASP and NbX form a good 
complementary pair, with NanoBERTa-ASP utilizing 
sequence information to predict antigen-binding sites 
while NbX optimizing binding conformations at the 
structural level. The combination enables a comprehen-
sive understanding from sequence to structure, guiding 
the computational design and optimization of Nbs at 
multiple levels and perspectives.

AI-guided nb polyreactivity optimization
Polyreactivity, the ability of a single antibody to bind 
multiple different antigens, contrasts with specificity 
and poses a troublesome issue for developers, leading 
to unfavorable pharmacokinetics and clinical applica-
tion limitations [236–238] and increased development 
costs [239]. Currently, various experimental methods 
are available to assess antibody polyreactivity, but they 
have low throughput and require antibody purification 
[240]. AI provides a new perspective for understanding 
Nb polyreactivity. A set of supervised machine learning 
models, including logistic regression, CNNs and recur-
rent neural networks (RNNs), have been developed to 
predict the polyreactivity of Nbs from sequence data and 
quantitatively predict the impact of amino acid muta-
tions on polyreactivity [240]. The specific contributions 
of different amino acids to polyreactivity at each posi-
tion in the CDRs vary. For example, acidic amino acids 
in CDR2 and CDR3 are generally positively correlated 
with low polyreactivity, while arginine shows the oppo-
site trend. However, at specific positions in CDR1, argi-
nine also reduces polyreactivity, suggesting the existence 
of position-dependent effects [240]. Based on these find-
ings, which provide a more detailed and comprehensive 
understanding of polyreactivity, researchers can design 
targeted amino acid substitutions to optimize antibodies. 
Taking the AT118i4h32 Nb as an example, which is a Nb 
antagonist of the angiotensin II type receptor (AT1R)37, 
researchers performed amino acid substitutions, reduc-
ing polyreactivity while maintaining high affinity and 
functionality for the target receptor [240]. This demon-
strates the feasibility of optimizing polyreactivity through 
site-directed mutagenesis, removing a major obstacle for 
the rational design and clinical application of Nbs.

AI-guided nb physicochemical property optimization
Despite Nbs’ advantageous low immunogenicity, high 
stability, and affinity for practical applications, per-
formance optimization to further adapt to application 
purposes remains crucial before implementation [182, 
241]. Various experimental strategies, such as gene 
fusion, enzyme conjugation, and chemical crosslink-
ing, have been formulated to improve the application 
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characteristics of Nbs [9]. Specifically, traditional meth-
ods including chimerization [242], CDR grafting [243, 
244], specificity determining region grafting [245, 246], 
scaffold screening [247], and surface replacement [248, 
249] have been used to enhance antibody humanization. 
Nbs have been developed into multivalent and bipara-
topic forms through covalent linking [250–254], and sta-
bility mutations targeting the CDR framework junctions 
have been designed [255]. Affinity maturation has been 
achieved by substituting amino acids in the VHH-CDR3 
region [256]. Multivalent binding forms [257, 258] or the 
introduction of albumin-nucleic acid structures [259] 
have also led to improved biostability and serum half-life.

Technological advancements have led to new com-
puter and AI-based strategies to address the inefficiency 
of traditional experimental methods. Protein electro-
statics play a crucial role in regulating antibody stability, 
dimerization, complex formation, and interactions with 
other molecules [260]. By modifying the charged amino 
acid residues on Nbs, their affinity and selectivity can be 
modulated [261]. Cheng et al. used computational affinity 
maturation to optimize an anti-CD47 Nb, yielding four 
mutations with improved binding and thermal stability 
[262]. This demonstrates that electrostatic engineering 
combined with other design strategies can achieve bet-
ter protein performance. However, when introducing 
charged residues through site-directed mutagenesis to 
enhance the binding affinity of Nbs, it is important to bal-
ance their impact on structural stability [260]. Further-
more, deep learning has advanced this field. Xiang et al. 
established a deep learning model capable of accurately 
learning key amino acid combination features associated 
with binding affinity from massive antigen-specific Nb 
omics data [223], providing a new perspective for under-
standing the high-affinity binding mechanism between 
Nbs and antigens. The length and charge distribution 
of the CDR3 region, as well as the charge and position 
of amino acids and other structural bases, significantly 
influence affinity [223]. It is worth noting that for infilling 
Nb sequences, the nanoBERT model has been proposed 
[263], which is a transformer model specifically designed 
for Nbs. By learning the evolutionary diversity of Nbs, 
this model can predict the feasibility of amino acid muta-
tions, enabling the exploration and evaluation of the 
impact of these mutations on the structure and function 
of Nbs to improve stability and reduce immunogenicity. 
In this context, the computational model ModiBodies 
has demonstrated its effectiveness in enhancing binding 
affinity by systematically identifying and mutating hyper-
variable residues within CDR regions [187]. Through 
molecular dynamics simulations and iterative energy 
optimization, it achieves improved antigen-binding prop-
erties while maintaining structural stability [187]. Addi-
tionally, using combinatorial algorithms can also achieve 

substantial improvements in the affinity and stability of 
Nbs [264]. Melting temperature (Tm) is another critical 
parameter in Nb engineering, reflecting their structural 
integrity under thermal stress and directly influenc-
ing stability and functionality in diverse applications 
[182]. Building on databases like The NbThermo [194] 
which contains Tm data for 564 nanobodies, Alvarez et 
al. developed the TEMPRO tool, which employs protein 
embedding techniques and deep learning algorithms 
to achieve high-accuracy Tm predictions, significantly 
reducing the time and cost of experimental measure-
ments [265]. These advancements enable the rapid iden-
tification of thermally stable nanobody candidates and 
lay the groundwork for integrating tools to optimize mul-
tiple traits, such as solubility and binding affinity, thereby 
broadening the scope of nanobody engineering.

Is AI-assisted nb engineering ready?
Despite the significant progress made by computational 
methods in Nb structure prediction and design, we 
must remain clear-headed because those cannot replace 
the entire Nb development process. Currently, the vast 
majority of Nb development is still laboratory-based, 
including animal immunization and mature in vitro dis-
play technologies [169]. However, we must acknowledge 
the tremendous value brought by AI technologies, which 
guide rational Nbs design and optimization while maxi-
mizing time and cost savings [266]. Structure prediction, 
utilizing AI, offers profound insights into Nb, elucidates 
antigen-antibody binding mechanisms, and facilitates 
optimization of binding affinities and physicochemi-
cal properties. This approach provides crucial guidance 
for experimental and clinical translation, positioning it 
as an indispensable component in future Nb design and 
development processes. At the same time, it is gratifying 
to see that public data related to Nbs is growing rapidly 
and becoming more diverse [266], and the construc-
tion of a more comprehensive Nb sequence and struc-
ture database is being realized. This will serve as a solid 
cornerstone, providing higher-quality training data for 
deep learning models. Based on this data, more accurate 
AI models can be trained, further improving prediction 
accuracy. Moreover, multimodal learning methods that 
integrate various data are expected to reveal new insights 
into the relationship between sequence, structure and 
function [267], promoting the maturity of computational 
antibody design methods.

However, this will inevitably bring new challenges. 
On one hand, computationally designed proteins have 
potential immunogenicity issues [221], which require 
more comprehensive preclinical and clinical studies. On 
the other hand, the standardization, normalization, and 
determinability of data collection and management are 
also worth attention. To achieve effective management 
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and utilization of data from different sources and for-
mats, unified data standards must be established to 
improve data interoperability [268]. Moreover, with the 
rapid development of AI technologies, exploring the 
application of novel machine learning architectures in Nb 
design and enabling researchers without a background in 
computer programming to understand and skillfully use 
AI models are also worth broader attention.

Conclusion and perspective
Nbs, derived from camelid HCAbs or cartilaginous fish 
NARs, have emerged as potent tools for disease diagno-
sis and treatment due to their unique properties, such as 
small size, high stability, and excellent antigen-binding 
specificity [1, 2, 8]. Currently, three main types of Nb 
libraries - immune, naïve, and synthetic/semi-synthetic 
- are constructed through various strategies, each offer-
ing distinct advantages [9, 10]. Immune libraries provide 
affinity-matured, target-specific Nbs but require animal 
immunization, while naïve and synthetic libraries cir-
cumvent this need and are suitable for non-immunogenic 
targets, with synthetic libraries offering the greatest 
diversity [28, 29, 34].

To effectively screen and optimize Nbs, efficient dis-
play platforms are crucial. Phage display, being the most 
widely used biological platform, can present a wide range 
of protein diversity [58, 59]. Yeast and bacterial display 
systems offer the advantages of eukaryotic post-trans-
lational modifications and compatibility with fluores-
cence-activated cell sorting (FACS) screening [71, 74, 84]. 
Mammalian, plant, and insect cell expression systems can 
provide more complex modifications and human-like gly-
cosylation patterns [111, 119, 129]. Moreover, Cell-free 
display methods, such as ribosome display and mRNA 
display, enable rapid selection cycles and in vitro protein 
evolution [142, 143]. We are also excited to witness the 
emergence of novel technologies like Nestlink, Sybody, 
and the combination of high-throughput sequencing and 
mass spectrometry, which signify the ongoing revolution 
in Nb discovery and characterization methods [164, 166, 
167].

As display platforms advance, AI holds promise in 
overcoming the limitations of traditional Nb engineer-
ing approaches. Deep learning models have achieved 
remarkable success in protein structure prediction [178, 
209], with Nb-specific algorithms like NanoNet and 
NbBuilder2 further optimizing VHH structure predic-
tion [184, 215]. Although predicting Nb-antigen inter-
actions remains challenging, tools like NanoBERTa-ASP 
and NbX are making significant progress [186, 234]. 
Furthermore, AI is being applied to optimize the physi-
cochemical properties of Nbs, such as polyreactivity, 
affinity, and stability [223, 240, 262]. As AI continues to 
progress, it will play an increasingly important role in 

Nb engineering, spanning from structure prediction and 
antigen interaction modeling to property optimization 
and de novo design.

Looking to the future, the continuous development 
and optimization of Nb libraries, display platforms, and 
AI-assisted design will be key to driving Nb applications. 
Synthetic and semi-synthetic libraries are expected to 
become more complex by incorporating novel scaffolds 
and design strategies to enhance their diversity and func-
tionality, such as integrating computationally optimized 
frameworks and using advanced mutagenesis techniques 
like error-prone PCR and DNA shuffling [155, 156]. 
Moreover, the integration of multiple display methods 
and the development of hybrid approaches may further 
improve screening efficiency and enable the identifica-
tion of rare, high-performance clones [83].

Notably, AI will play an increasingly important role in 
Nb engineering, from structure prediction and antigen 
interaction modeling to property optimization and de 
novo design. The growing availability of Nb sequence and 
structural data will fuel the development of more accu-
rate and versatile AI models. However, challenges such 
as data standardization, immunogenicity concerns, and 
the need for more user-friendly AI tools will need to be 
addressed [268]. Establishing unified data standards and 
improving interoperability will be essential for the effec-
tive utilization of the ever-expanding Nb data [268]. 
Immunogenicity concerns associated with computation-
ally designed Nbs will require comprehensive preclini-
cal and clinical studies to ensure their safety and efficacy. 
The development of intuitive, user-friendly AI tools will 
be crucial for enabling researchers without a background 
in computer programming to leverage these powerful 
technologies.

In summary, the synergistic combination of advanced 
library construction, display technologies, and AI-guided 
design will accelerate the development of Nbs as power-
ful tools for research, diagnostics, and therapeutics. As 
these three key areas continue to evolve and integrate, 
Nbs are poised to usher in a new era of precision medi-
cine and biotechnology, offering unprecedented oppor-
tunities for targeted disease diagnosis, treatment, and 
beyond.
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