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Background: Stability is one of the most fundamental intrinsic characteristics of proteins and can be determined
with various methods. Characterization of protein properties does not keep pace with increase in new sequence
data and therefore even basic properties are not known for far majority of identified proteins. There have been
some attempts to develop predictors for protein stabilities; however, they have suffered from small numbers of

Results: We took benefit of results from a recently developed cellular stability method, which is based on limited
proteolysis and mass spectrometry, and developed a machine learning method using gradient boosting of
regression trees. ProTstab method has high performance and is well suited for large scale prediction of protein

Conclusions: The Pearson’s correlation coefficient was 0.793 in 10-fold cross validation and 0.763 in independent
blind test. The corresponding values for mean absolute error are 0.024 and 0.036, respectively. Comparison with a
previously published method indicated ProTstab to have superior performance. We used the method to predict
stabilities of all the remaining proteins in the entire human proteome and then correlated the predicted stabilities
to protein chain lengths of isoforms and to localizations of proteins.
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Background

Stability is one of the most fundamental properties of
molecules. Protein stabilities have been determined with
several experimental methods including calorimetric,
denaturation and optical spectroscopy approaches. The
number of known proteins and their sequences is grow-
ing rapidly, but the characterization of their properties is
lagging far behind. Stability is of great interest because it
is related to most studies and applications of proteins
e.g. in medicine and biotechnology.

The available experimental protein stabilities have been
obtained in vitro, but in vivo stabilities can be different
due to many cellular effects. Some methods have been
developed for the prediction of protein stability, especially
for melting temperature, T,,. These tools are based on
different principles, including amino acid sequences [1, 2],
protein chain lengths [3, 4], physicochemical features [5],
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living temperature of organism and salt bridges [6],
temperature-dependent statistical potentials [7, 8], and
descriptors of protein surface [9], and reviewed in [10].
Numerous additional factors have been shown to have
correlation with protein stability, including flexibility
[11, 12], hydropathy [13], hydrogen bonding [14], packing
[15] and others.

Some of the predictions are rather simple to calculate,
such as lengths of protein sequences. More advanced
machine learning (ML) methods have utilized decision
trees and neural networks (NN) [5], and NNs and adap-
tive network-fuzzy inference system (ANFIS) [1].

Substantially larger number of prediction methods
forecast effects of single amino acid substitutions on
protein stability. Energy function-based methods use
either physical energy function from ab initio quantum
mechanics (QM) calculations, empirical energy function
or force field, or statistical energy function. ML-based
methods form the other major group. These tools are used
to predict the sign of AAG (stabilizing/destabilizing), the
value of AAG, or both. A wide array of algorithms have
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been used, including gradient boosting [16], neural net-
works [17, 18], random forests [19-21], support vector
machines [21-25], and a metapredictor [26]. All these
tools have been trained with data from the same source,
ProTherm database [27]. Performances of these methods
vary widely [28, 29]. Recently, we noticed a number of
problems and issues with ProTherm and therefore
cleaned and pruned the data before developing a novel
predictor [21].

The overall protein stability prediction methods have
suffered from limited amounts of available experimental
data. Therefore, many of the existing tools are based on
very small numbers of known cases, which negatively
affects the performance of methods since stability is a
complex property and several features contribute to it.
Small sample sizes do not allow identification of all
dependencies.

The situation has changed recently when a cellular sta-
bility method based on limited proteolysis and mass
spectrometry (LiP-MS) was introduced and applied to
cell-wide analysis of protein stability in four organisms,
namely Escherichia coli, Homo sapiens, Saccharomyces
cerevisiae and Thermus thermophilus [30]. This dataset
for altogether 3520 proteins was used to train a gradient
boosting-based ML method called ProTstab. The method
has good performance and is suited for large scale predic-
tion since it is very fast. We used ProTstab to predict
stabilities of the remaining proteins in human proteome
and their all sequence isoforms and correlated them to
sensitivity of these proteins for harmful variants and to
subcellular localization of proteins and isoform lengths.

Results

The availability of novel high-throughput dataset [30]
facilitated the development of a reliable predictor for
cellular protein stability. Gradient boosting-based method
was trained, tested and applied to prediction of various
cases.

Method training and development

We used REECV (Recursive feature elimination) algorithm
since it has been successful in previous bioinformatics ap-
plications including the development of support vector
machine (SVM) and random forest (RF) classification and
regression predictors [31, 32].

We trained seven regression predictors with the top 50,
100, 200, 300, 500, 1000 features or with all the 2077 fea-
tures (Table 1). To avoid problems with excessive number
of features that can cause overfitting and other problems,
we chose the best predictor with the smallest number of
features. The best performance was obtained with 100 fea-
tures, and we call the tool as ProTstab. The features and
their importance scores are given in Additional file 1:
Table S1. Overall, the importance scores are very small,

Page 2 of 9

Table 1 Performance of prediction methods on 10-fold cross
validation and blind test

Performance with top importance features

Measure 50 100 200 300 500 1000 2077
pCC 0790 0793 0790 0786 0779 0772 0767
RMSE 0165 0164 0165 0166 0169 0171 0173
R 30.5 478 28.2 35.7 39.2 27.7 324

MSE 0030 0024 0030 0028 0026 0029 0026
MAE 0133 0125 0141 0133 0134 0133 0135
Blind test

Blind PCC 0702 0736 0735 0740 0756 0755 0758
Blind RMSE  0.197 0189 0189 0187 0183 0184 0.183
Blind R? -109 -85 =122 =51 =11 -520 -67

Blind MSE 0039 0036 0036 0035 0033 0034 0033
Blind MAE 0160 0146 0145 0145 0142 0142 0143

indicating small impact of individual features, however
together they yield rather good performance. Group 5 fre-
quency has the highest impact. Amino acids have been
classified to six categories based on their properties, group
5 contains residues N, Q and S. The other informative
features represent numerous types of characteristics.

Five measures were used to chart the full performance
of the predictors. We tested the methods both in 10-fold
cross validation (CV) as well as with a blind test set sep-
arated in the beginning and not used during training
(Table 1). ProTstab has the highest PCC and the lowest
RMSE both in the 10-fold CV and in blind test, 0.793
and 0.763, and 0.164 and 0.189, respectively. R* indicates
the goodness of fit of a model on how well the regres-
sion predictions approximate the real data points. Value
of 1 indicates perfect fit to the data. In the CV R* indi-
cates that about half (47.8%) of the data is explained by
the model. The corresponding number for the blind set
is 8.5%.

Comparison to other methods

We wanted to compare the performance of ProTstab to
published tools, presented in the Introduction. However,
this was possible only for the method of Ku et al. [2]
since the other methods were not available as service or
for download. The tool of Ku and coworkers is some-
what different, as the statistical method classifies
proteins into three melting point categories (T, > 65,
T <55, or 55< T, <65). We submitted proteins in our
blind test dataset to the web service [33]. For these pro-
teins, the classification accuracy of ProTstab is 0.60 (180
correct out of 300) and for the Ku et al. predictor it is
significantly lower, 0.38 (114 correct out of 300). The
low accuracy likely reflects the small size of the training
set, only 35 proteins.
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A recent publication analyzed and discussed the rela-
tions between T,, and a series of factors that are ex-
pected to influence protein stability [10]. These factors
were then combined to build an improved prediction
method. It has a very good performance and very low
published RMSE value on their test data but may suffer
from the very small training dataset of only 45 proteins.
This method could not be compared as it is not publicly
available. We used their 45 proteins for blind testing
ProT'stab, gaining low performance (PCC 0.40, RMSE = 0.26
after normalization).

Previously, sequence length has been considered as a
strong predictor of stability [3, 4]. Figure 1 clearly shows
that there is no correlation between protein chain length
and the experimental T, values (PCC=-0.237) and
thus this feature cannot be used for predictions.
Sequence length was not among the features used for
training ProTstab. On the ranked list of features it is on
position 1903 out of 2077 i.e. towards the end of least
significant features.

Distribution of stabilities in isoforms
Numerous proteins appear in several isoforms due to
alternative translation initiation, alternative mRNA spli-
cing, proteolysis or other post translational modifica-
tions. Analyses of N-terminal [34] and entire proteomes
[35] showed that isoforms often have different cellular
stabilities (turnover rates). The turnover has strong
correlation with thermal stability.

We predicted stabilities for all isoforms in all the hu-
man proteins to study whether isoform length correlates
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with stability. In Fig. 2 a is shown the distribution of the
predicted stabilities for the longest isoforms of human
proteins and they do not differ from those for the
second longest isoform (Fig. 2b) or for even shorter
isoforms (Fig. 2c). Only proteins that had at least two
isoforms of different lengths were included to the
analysis. The PCC values is - 0.288 for data in Fig. 2a,
-0.298 in Fig. 2b, and - 0.186 in Fig. 2c, all indicating lack
of significant correlation between protein stabilities and
isoform chain lengths.

Collectively Figs. 1 and 2 showed that protein chain
length is not correlated to cellular stability whether for
different forms of the same protein or for different pro-
teins. Chain length was one of the features describing
our proteins, however was not among the selected im-
portant features, actually being among the least signifi-
cant features.

Stability and overall sensitivity of proteins for
substitutions

Proteins present widely different vulnerabilities for amino
acid substitutions. We have previously investigated the
sensitivity of nine groups of proteins for all 19 possible
amino acid substitutions in all positions [36]. The sensitiv-
ities of the proteins were obtained by predicting with a
highly reliable variant pathogenicity/tolerance tool PON-
P2 [37]. The studied groups were for actionable, cancer,
cardiologic, developmental, epilepsy, neurodegenerative,
and primary immunodeficiency diseases, as well as for
housekeeping and non-disease non-housekeeping
proteins [36].
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Fig. 1 Correlation of protein length and Tm for the experimentally defined training dataset
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Fig. 2 Differences in predicted stabilities of isoforms vs chain length. Top, the longest isoform, middle, second longest isoform; bottom: other
isoforms. Data are only for proteins with at least two isoforms. The graphs show melting temperature (T,;,) vs protein sequence length

The results for 929 unique proteins in the 9 groups variants, varies greatly for proteins that tolerate almost all
(some of the proteins belong to more than one group) in-  possible single amino acid substitutions to those in which
dicated that the sensitivity, i.e. the ratio of harmful only a very small number of variants are considered to be
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benign. However, a number of tendencies were seen
between the groups.

We correlated protein T, values to the predicted per-
centage of pathogenicity of variants and plotted Fig. 3.
There is no significant correlation (PCC =-0.286), in-
stead the stability values show very random distribution.
Thus, although effects on protein stability are among the
most common effects for disease-causing amino acid
substitutions [38, 39], the sensitivity for these variants
does not correlate with T,,.

Protein localization and stability
Proteins are localized to various compartments within
cells or secreted outside of them. The environments
within the compartments are widely different, therefore
one might expect it to be reflected to the stabilities of the
included proteins. To address this, we obtained the most
common localizations of proteins from Human Protein
Atlas [40], where there were data for 19,327 proteins.
Since several proteins can localize to several compart-
ments, we concentrated on the major compartments for
every protein. The results are in Additional file 1: Figure S1.
Totally 20 compartments contained at least 100 proteins
and were included to the analysis. The T, distributions are
practically identical in all the tested compartments, thus
protein stabilities are similar throughout the cells irrespec-
tive of the organelles.

Stabilities in human proteome
In Additional file 1: Figure S2 is shown the overall distri-
bution for predicted human protein stabilities. Since
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ProTstab was found to have good performance, we used
it to predict stabilities of all human proteins and iso-
forms not included to the training set. These data are
available at our website at [41]. Experimental data were
available for 1009 human proteins in our training set.
The predictions contain stabilities for 32,117 proteins
and isoforms.

Discussion

Altogether seven predictors were trained with different
numbers of features. ProTstab has the best scores for all
the measures for CV data indicating that the top 100
features optimally capture the property space (Table 1).
Similar result was obtained with the blind dataset,
although some individual scores were slightly better for
some other feature combinations.

Three out of the five quality measures used indicate
errors in predictions (RMSE, MSE and MAE). The
smaller the scores, the better the method is. All these
values indicate ProTstab to be reliable. The scores are
better for all the tested predictors on the CV data. In
conclusion, the performance is good and the method
can be used for various applications. The tool can be
used to predict stabilities for proteins from any organism
and of any length as it has been trained to generalize
from proteins with different origin and properties. How-
ever, we anticipate that very short proteins or polypep-
tides, shorter than ~ 40 amino acids, would be predicted
with lower accuracy, because these molecules are usually
not well ordered, whereas the features are for compact
molecules with sigmoidal denaturation patterns.

1.0
0.8 -
0.6 e :
0.4-

0.2 1

Percentage of Pathogenic Variants

0.0 T T
55 60

Fig. 3 Analysis of the relationship of T, to predicted sensitivity for harmful variants
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Most of the previous methods suffer from small data-
sets. Only 22 proteins were used for the development of
Volsurf [9]. The sequence length methods are based on
65 proteins [3, 4], and the growth environment method
on 127 proteins [6], and those using temperature-
dependent statistical potentials on 45 [8] and 166 pro-
teins [7]. The amino acid sequence-based method was
trained on 230 proteins [1]. These numbers are very
small considering the difficulty of the task. The only tool
with a larger dataset of 2057 proteins [5] does not pro-
vide any information about the included proteins, their
origin, stability or other details. This method is not avail-
able, either. Thus, it was impossible to compare with
these methods. ProTstab was trained with significantly
larger dataset of 3520 proteins than the others.

ProTstab could be compared only to one previously
published method, and it showed superior performance.
We could extent the comparison to two additional
methods which are based on sequence length [3, 4]. Our
results in Fig. 1 indicate that protein chain length does
not correlate with the stability. This is evident also from
the ranking of features, the chain length is on position
1903 among the 2077 features tested, i.e. it is among
features with least significance. As a further test for the
relationship of polypeptide chain length and stability we
predicted the stabilities of all alternative protein isoforms
(Fig. 2). The distributions are identical in all cases, thus
also this analysis indicated missing correlation between
chain length and stability.

Proteins are known to show different vulnerability for
amino acid substitutions. PON-P2 is a highly reliable
predictor of variant pathogenicity. T,, values and protein
sensitivity do not show correlation (Fig. 3), which was not
even expected as the sensitivity is a sum of very large
number of factors. To further test the properties of pro-
teins and their relation to stability we investigated 20 sub-
cellular localizations of human proteins for which there
were at least 100 proteins in the dataset (Additional file 1:
Figure S1). The distributions are very similar for all the
tested compartments.

Finally, we shared the predicted stabilities for all the
isoforms in the human proteome and made the dataset
publicly available. We believe that ProTstab will be a
valuable tool for estimating protein cellular stability in
various organisms. Stability is an important property and
affects many experimental studies such as protein
production, purification and characterization and can be
modified with protein engineering with the help of the
developed tool.

Conclusions

Knowledge of protein stabilities has numerous applications
in experimental design, protein structural studies, expres-
sion, purification, medical applications, biotechnology etc.
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Although some tools have been presented for the pre-
diction of protein cellular stability they have been
based on very small datasets and thus had poor per-
formance. We utilized a novel large-scale dataset and
trained an ML predictor that has good performance.
The method can be used for predictions of all kinds
of proteins irrespective of origin allowing also de-
signed ones to be predicted. The method was used to
predict all the human proteins and their length iso-
forms. The results were correlated to the protein
chain length, sensitivity of proteins for substitutions,
and protein subcellular localization. No major correla-
tions were seen in these studies. ProTstab can be
used for predictions of proteins from any source or
size, possibly excluding short polypeptides that do not
have well defined structures.

Methods

Dataset

We used a dataset of 3520 proteins, 729 from E. coli,
709 from S. cerevisiae, 1073 from T. thermophilus, and
1009 from human [30]. Three hundred proteins (E. coli
60, S. cerevisiae 60, T. thermophilus 90, human 90) were
extracted and randomly partitioned as a blind test data-
set. The remaining 3220 proteins were used for method
development. Sequences for the proteins were obtained
from UniProtKB [42]. The dataset is available from
VariBench [43] at [44].

Features

A large number of features were collected to describe
characteristics of proteins. These include physicochemical,
structural, and composition features that describe proper-
ties of entire proteins. The features were generated with
three services. PROFEAT [45] calculates structural and
physicochemical features from amino acid sequences.
PROTEIN RECON [46] provides protein charge density-
based electronic properties based on atomic charge den-
sity fragments computed from ab initio wave functions.
The method is based on the quantum theory of atoms in
molecules (QTAIM) [47]. ProtDCal [48] was used to gen-
erate sequence-based descriptors. On top of these features
we included protein chain length, molecular weight,
isoelectric point, CHNSO (carbon, hydrogen, nitrogen,
sulphur, oxygen) counts for element types and their
frequencies, 6 amino acid group counts and frequencies,
count and frequencies of negatively charged, positively
charged, hydrophilic and hydrophobic residues, as well as
dipeptide counts. After removal of redundant ones we had
altogether 2077 features, of which 1437 were from
ProFEAT, 140 from PROTEIN RECON, and 19 from
ProtDCal. We used sequence-based features since three
dimensional structures were not widely available for the
proteins for which there was stability information. Further,
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we wanted to develop a generic predictor and therefore
structure-based features were not included.

Regression algorithm

Gradient boosting machine learning algorithm [49] was
trained for regression to predict T, values. Gradient
boosting of regression trees (GBRT) is a general ML
technique for classification and regression. The algo-
rithm is highly resistant to overfitting. GBRT combines
weak regression models iteratively into a single strong
model to minimize the mean squared error (MSE) of
prediction value, according to the empirical risk
minimization (ERM) principle. It utilizes the residuals
between prediction values and actual values at each
stage of iteration to improve the original weak model,
i.e. the original regression tree model.

We used Scikit-learn toolkit [50] to implement the
GBRT training and testing. Hyper parameters were
tuned with a grid-based search. The maximum depth
(max_depth) and the minimum required number of
samples at a leaf (min_samples_leaf) were set as 3 for
each tree, and the total number of regression trees
(n_estimators) was set to 3000.

Feature selection

Previously, numerous factors have been presented to
correlate with protein stability. We collected a very
large set of characteristics and used all of them as train-
ing features for GBRT algorithm. As too many features
may lead to problems including lowered prediction
performance, longer training times and overfitting, we
performed a feature selection based on feature impor-
tance ranking.

In GBRT, the rank (i.e. depth) of a feature as a de-
cision node in a tree can be utilized to assess the
relative importance of the feature in respect to the
predictability of the target variable. Features used at
the top of the tree contribute to a larger fraction of
input samples and have thus higher relative rank. The
expected fraction of the samples each feature con-
tributes to was used as an estimate of the relative
importance of the feature [50].

We used recursive feature elimination with CV in the
GBRT algorithm and implemented with the Python
package Scikit-learn toolkit. By recursively eliminating
features ranked with low importance and using cross
validated selection to optimize the features selected for
regression, we got a list of sieved features and used them
to train GBRT predictors.

Performance assessment
We used totally five measures to describe and estimate
the method performance in regression.
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Pearson correlation coefficient (PCC) is defined as the
covariance of the two variables (X and Y, in our case ex-
perimental and predicted values) divided by the product
of their standard deviations. It provides a correlation
between the two variables, as follows

NYXY-Y XYY

PCC = )
N T X (T X NS Y (DY)

where N is the number of data items.

The root mean square error (RMSE) measures the
differences between predicted and experimental values.
The RMSE represents the sample standard deviation
of the differences between predicted and observed
values:

ZZI(YI_XL,)Z‘

RMSE =
N

Mean absolute error (MAE) measures the difference
between predictions and real values

N
[ YioXi],

MAE =

Mean squared error (MSE) measures the average of
the squares of errors as follows

1 N
MSE = ﬁZ,-:1<Yt—Xf>2»

where Y; is a vector for predictions and X; is a vector for
observations. N is the total number of predictions.

The R? provides the percentage of variation explained
by the model with the approach of least squares. In
regression, R? estimates how close the data are to the
fitted regression line. The better the regression model,
the closer the value is to 1. The most general definition
of the R? is

2 _ SSres o

2
wop SSe | SXi-Y)
SStot

Ei(Xi_)_()z’

where ss,s is sum of squares of residuals and ss,,, is total
sum of squares.

Correlation of predictions to protein properties

The predictions with ProTstab were correlated with data
for various aspects related to proteins. Information for
protein isoforms were obtained from UniProt database.
Protein subcellular localizations were retrieved from
Human Protein Atlas (HPA) [40]. PCC was used to
reveal the significance of the observations.
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Implementation of web service

The web service of ProTstab was implemented using a
free and open source framework Django based on Py-
thon language [51]. Users submit a sequence in FASTA
format along with a protein name. The prediction result
will then be sent back by email after calculation. There is
also a batch submission available for simultaneous sub-
mission of several protein sequences. The web service is
freely available at [52]. There are also pre-calculated
results for all human proteins and their isoforms.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6138-7.

Additional file 1: Table S1. Numbers of proteins in membrane
subcellular localizations. Table S2. Performance of subcellular localization
predictors on MP1289 restricted to one subcellular localization per
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stability values within the most populated subcellular localizations.
Figure S2. Distribution of the predicted stabilities of human proteins.
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