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Abstract: During the last two decades, esports, a highly competitive sporting activity, has gained
increasing popularity. Both performance and competition in esports require players to have fine
motor skills and physical and cognitive abilities in controlling and manipulating digital activities in a
virtual environment. While strategies for building and improving skills and abilities are crucial for
successful gaming performance, few effective training approaches exist in the fast-growing area of
competitive esports. In this paper, we describe a non-invasive brain stimulation (NIBS) approach and
highlight the relevance and potential areas for research while being cognizant of various technical,
safety, and ethical issues related to NIBS when applied to esports.
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1. Introduction

Esports, or digital sports, is an emerging form of sport facilitated by electronic systems. Esports
is now broadly viewed as a competitive sporting activity [1–3] and in recent years has enjoyed
fast-growing popularity, both professionally and among amateur players [4,5]. Despite the highly
competitive nature of the activity, which is both physically intense and mentally demanding [3,6],
relatively little is known regarding effective esports training strategies designed to develop fine motor
skills and optimize performance [7]. In this paper, we present a non-invasive brain stimulation (NIBS)
approach [8] for esports training that has gained increasing attention in the non-digital (traditional)
sports literature [9–11]. We highlight the relevance of NIBS to esports in facilitating skill acquisition and
improving motor and cognitive performance. We also describe safety issues and caveats associated with
the use of NIBS-based techniques when applied to performance enhancement among esports players.

2. Essential Motor and Cognitive Skills in Esports

In esports, groups of players compete against others in competitive video games on personal
computers or gaming consoles. Therefore, training and competing in esports primarily involves
the use of control devices (e.g., keyboards, mice, or console controllers). Playing esports requires
efficient manual dexterity, good hand–eye coordination, highly focused attention, fast reaction times,
and rapid decision making [3,6] in a virtual and electronic environment [1]. Esports players need to
have strong physical, cognitive, and mental skills to endure long hours of daily training and must learn
to maneuver through fast-changing, unpredictable virtual environments to succeed in highly intense
and fiercely competitive tournaments. Many important esports skills also involve fine motor skills that
combine precise and accurately controlled movements with cognitive decision-making skills that may
take months or even years of practice to master [3]. Thus, the characteristics of esports require that a
holistic training approach, such as exergaming [7], be adopted.
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3. NIBS as a Neuromodulatory Technique of Brain Function

In what follows, we describe the application of non-invasive brain stimulation (NIBS),
a neuromodulation technique for non-invasively stimulating the brain and central nervous system,
for augmenting the performance of esports players, and for developing the skills they specifically need
at the physical, cognitive, and mental levels.

NIBS mainly involves the use of electrical currents or magnetic fields to stimulate targeted regions
of the brain. The rapid development of NIBS techniques in the past two decades has made a large
contribution to neuroscience [8,12], and these techniques have become more accessible in clinical and
non-clinical settings, such as sports [9–11,13,14]. Recently, cortical stimulation approaches, including
transcranial current stimulation (tCS), which includes transcranial direct current stimulation (tDCS)
and transcranial alternating current stimulation (tACS), as well as transcranial magnetic stimulation
(TMS), have all become well-established.

In tDCS, a device with two small electrodes (a positive “anode” and negative “cathode”) is placed
on the head in order to deliver a constant low level of electric current (1 to 2 mA) that results in the
alteration of neuronal excitability. tACS, instead of applying a direct electrical current to the brain,
oscillates a sinusoidal current at a chosen frequency that interacts with the brain’s natural cortical
oscillations. In TMS, an electromagnet is placed on the scalp. After the apparatus has been turned on,
the coils of the electromagnet change polarity, producing short magnetic pulses that result in activation
of axons in the brain, thus leading to fire action potentials. TMS can be applied in single pulses,
pairs of pulses, or repeated trains of pulses (rTMS) [15]. Relative to TMS and tACS, tDCS is currently
the most frequently used technique in the field of sport and exercise science [9]. Table 1 summarizes
the major methodological characteristics, stimulation protocols, and potential risks associated with tCS
and TMS techniques.

Studies have shown therapeutic benefits from the application of NIBS-based techniques in
clinical populations [16–18]. In the area of sports activities, several comprehensive reviews are
available [9–11,13,14] that summarize the benefits of applying tDCS/tACS and TMS techniques
for facilitating motor learning and motor skills. Indeed, there has been an increasing interest in
exploring the potential of using NIBS-based techniques in multiple domains, including physical
capability and athletic performance [13], as well as muscular strength, endurance, and fatigue [9,14].
Additional evidence also suggests the effectiveness of NIBS in improving working memory [19,20],
decision making [21], attention [22,23], multi-tasking [24], reaction time [25], and motor learning and
skill acquisition [26–28]. These performance-related outcomes are highly relevant to the training and
performance characteristics of esports [6,7].
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Table 1. Summary of methodological characteristics, stimulation parameters, and potential risks associated with transcranial current stimulation (tCS) and transcranial
magnetic stimulation (TMS) techniques.

NIBS Methods NIBS Techniques Polarity for tES and Pulse
Mode for TMS Variable Parameter Current for tES(mA) and

Pulses Per Session for TMS
Duration of Each

Session (min) Risks References

tES methods
tDCS Polar

Anodic stimulation:
excitatory effect

Cathodic stimulation:
inhibitory effect

0.5–2 5–30 Mild burning/Itching
sensation/Mild

headaches/Fatigue

Nitsche MA., and Paulus W.
[29,30];

Dedoncker J., et al. [31];
Dissanayaka T., et al. [32]tACS Alternating Frequency (0.1–640 Hz) 0.5–2 5–30

tRNS Alternating Frequency 0.5–2 5–30

rTMS methods

HF Single pulse ≥10 Hz 3000 30 Headache/Scalp
discomfort/Tingling, spasms or

twitching of facial
muscles/Lightheadedness

Rosa MA., and Lisanby SH., [33];
Rossi S., et al. [34];

Huang YZ., et al. [35]

LF Single pulse ≤1 Hz 1200 20
iTBS Pulses per burst 3 (at 50 Hz) 5 Hz 600–900 4–7
cTBS Pulses per burst 3 (at 50 Hz) 5 Hz 600–900 2–3

NIBS = non-invasive brain stimulation; tES = transcranial electric stimulation; tDCS = transcranial direct current stimulation; tACS = transcranial alternating current stimulation;
tRNS = transcranial random noise stimulation; TMS = transcranial magnetic stimulation; TBS = continuous theta-burst stimulation; HF = high frequency; iTBS = intermittent theta-burst
stimulation; LF = low frequency; rTMS = repetitive transcranial magnetic stimulation.
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4. Potential Benefits and Areas of NIBS Applications in Esports

Just as in traditional sports, playing and competing in esports gaming requires fine motor skills,
mental agility, and cognitive ability [3,6]. Therefore, benefits of NIBS observed in the sports literature
may have direct implications for esports and can thus serve as a scientific premise for exploring the
practical utility of NIBS-based techniques in improving skill acquisition and performance among
esports players [9]. In what follows, we highlight a few areas of research relevant to esports (see Figure 1
for a schematic representation of our proposed framework for potential research), and Table 2 briefly
summarizes the studies for the potential benefits of NIBS applications in esports.

Improving manual dexterity. Esports players can reach up to 400 keystrokes per minute,
suggesting a highly demanding activity that requires a high level of dexterity [7,36]. NIBS techniques
such as tDCS and high-definition tDCS, when applied to premotor and primary motor cortices,
have been shown to improve motor performance of unimanual [37] and bimanual dexterity in healthy
adults [38]. These outcomes suggest that tDCS may be applied as a training protocol aimed at
improving manual dexterity.

Improving physical exertion. Esports performance is both physically and mentally demanding
and requires great physical exertion, with increased heart rates up to 160 to 180 beats per minute,
especially during competition [36]. Research using anodal tDCS over the left temporal cortex (an area
that is associated with autonomic nervous system (ANS) control) has been found to modulate activity
in the ANS and alter rating of perceived exertion and improve exercise performance (i.e., peak power
output) by 4% [39]. Similarly, Kamali et al. showed that, compared to those in a sham condition,
bodybuilders who received tDCS in the primary motor cortex and left temporal cortex experienced
significant reductions in physical exertion and heart rate and improvements in strength and endurance
during performance of knee extension exercise [40]. Another study showed that, compared to sham
stimulation, the application of anodal tDCS during the performance of a fatiguing activity significantly
increased time to task failure [41]. These findings indicate that physical exertion and fatigue, which fit
the competitive profile of esports training, can be modulated through proper tDCS and that tDCS has
the potential to augment the capability of performing and competing under the intense and challenging
conditions of esports.

Effects on reaction time. Perceptual reaction times are crucial in esports. Therefore, understanding
whether NIBS can positively impact performance on reaction times is of practical importance.
The evidence, however, is inconclusive. In one study [25], healthy adults received real (with 1 mA) or
sham tDCS over their dorsolateral prefrontal cortices during two 30-min mathematics training sessions
involving body movements. To examine the impact of training, an active control group received tDCS
during a non-mathematical task. Results showed that 2 months after the training, participants who
received real tDCS performed significantly better in game response times (20% faster) and accuracy
than the sham group, indicating that 2 days of 30-min training with tDCS could have long-lasting
impact on neuroplasticity. However, in a recent study, Seidel and Ragert [42] showed that, compared
to a sham condition, an application of a 20-min anodal tDCS over the primary motor cortex (leg area)
resulted in no tDCS-induced change on reaction time and tapping performance tasks of the lower
extremity for both athletes and non-athletes. Results from this study suggest that neither athletes nor
non-athletes benefit from a brief period of tDCS application in speed-related motor tasks.
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Figure 1. A framework for potential research on non-invasive brain stimulation in esports.
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Improving motor learning and skill acquisition. Techniques such as tDCS and tACS have been
shown to improve motor learning and skill acquisition, which make them applicable in esports training.
One study showed that anodal tDCS of the primary motor cortex increased performance of a serial
reaction-time task, suggesting involvement of the primary motor cortex in skill acquisition and early
consolidation phase of implicit motor learning [43]. Another study showed that, compared to a
sham condition, greater total skill acquisition in learning a novel and challenging motor skill task
occurred when anodal tDCS was applied [27]. In studies involving tACS, research has shown that
when tACS is applied over the left primary motor cortex within the alpha- and beta-frequency bands,
the stimulation significantly improves sequence learning, as indexed by a serial reaction-time task,
and promotes quicker skill acquisition [44]. A review by Luber and Lisanby [45] provided some
evidence that TMS-modulated cortical networks produce cognitive performance enhancements in a
variety of tasks involving perceptual, motor, and executive processes in healthy individuals.

Improving endurance. Esports players often undergo long training hours daily [46,47] and thus
spend excessive time in a sitting position [48], which argues for the importance of having muscular
endurance for efficiently practicing esports skills. NIBS may help players to increase endurance
for sustaining strenuous daily training. One study showed that tDCS, with the anode over both
motor cortices and using a bilateral extracephalic reference, improved endurance performance among
healthy adults during a cycling time-to-task-failure test [48]. Specifically, the researchers assessed
neuromuscular performance, both before and after tDCS, by measuring time to task failure among
participants engaged in cycling sessions. The results of the study showed that placing the anodes over
both motor cortices augmented the cyclists’ endurance; thus, those who received anodal stimulation
biked longer before quitting than did those under the cathodal and sham conditions.

Several review articles [9–11,13,14] have identified other areas where NIBS may be applicable and
beneficial to esports players. These areas include muscular strength, motor coordination, and motor
sequence learning.
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Table 2. A summary of studies for the potential benefits and areas of non-invasive brain stimulation (NIBS) applications in esports.

Potential Benefits and Areas Relevant Skills and Abilities in Esports NIBS Techniques Main Effects Study

Performance

Finger speed and dexterity tDCS/HD-tDCS Improving motor performance of unimanual and bimanual
dexterity

Pavlova E., et al. [37];
Pixa NH., et al. [38]

Hand–eye coordination tDCS Enhancing visuo-motor learning and visuomotor coordination Antal A., et al. [49,50];
Kwon YH., et al. [51]

Reaction time tDCS/tACS Improving performance in gaming response times;
Shortening reaction time to solve complex logic problem;

Looi CY., et al. [25];
Santarnecchi E., et al. [52];

Movement precision and muscle control tDCS Enhancing precise hand movement and proprioception Matsuo A., et al. [53];
Beck E., et al. [54]

Strength and power tDCS Improving performance-related capacities of athletes Okano AH., et al. [39];
Kamail A., et al. [40]

Endurance tDCS Extending time to task failure; Improving endurance
performance

Williams PS., et al. [41];
Angius L., et al. [48]

Mental & cognitive abilities Decision making tDCS Producing a reliable speeding of response times during
decision-making; Enhancing advantageous decision-making

Filmer HL., et al. [55];
Julien O., et al. [21]

Mental & cognitive abilities

Working memory HD-tDCS/tACS/rTMS
Increasing learning rates of performance metrics; Increasing
working memory storage capacity score; Improving n-back
task performance

Ke Y., et al. [56];
Jausovec N., et al. [57]
Esslinger C., et al. [58]

Multi-tasking tDCS
Enhancing performance for multi-tasking paradigm and
visual search tasks; Improving information processing
capabilities during a multi-tasking environment

Filmer HL., et al. [59]
Nelson J., et al. [60]

Attention control tDCS/tACS
Improving executive attention; Improving performance of a
visual search attention task; Decreasing reaction time in a
continuous performance test

Miler JA., et al. [61];
Mauri P., et al. [62]
Müller, NG., et al. [63]

Motor Learning & skill acquisition

Motor learning speed tACS/TMS Stabilizing the newly learned motor task; Enhancing motor
skill acquisition

Pollob B., et al. [44];
Butts RJ., et al. [64]

Movement coordination tDCS Improving motor adaptation in the upper limb; Fasting
intentional switches between coordination patterns

Weightman M., et al. [65];
Carter MJ., et al. [66]

Acquisition of complex motor skills tDCS Increasing greater total skill acquisition; improving implicit
motor learning

Reis J., et al. [27];
Nitsche MA., et al. [43]
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5. Safety and Risk Factors Related to NIBS

Although there are currently no safety guidelines with respect to tES, both TMS and tDCS
techniques have generally been shown to be safe for use in human subjects [9,34,67]. Although tDCS
is not currently approved by the U.S. Food and Drug Administration for clinical use, TMS is as an
approved treatment modality for depression [68]. However, there are some safety and risk factors
that researchers, practitioners, and clinicians alike should be aware of. These include (a) both acute
and chronic NIBS, (b) the potential long-term adverse effects of prolonged stimulation or repetitive
application of NIBS, and (c) individual differences (e.g., sex) in response to NIBS [69,70]. These issues
are magnified in light of the fact that most players, including professional players, are children and
adolescents [71,72], which puts them at greater risk.

6. Caveats

Although most studies show positive effects on motor skills from the application of NIBS techniques,
the underlying mechanisms through which each of these techniques influences the outcomes of interest
remain largely unexplored and can be highly complex [70]. It is, however, commonly postulated
that application of a stimulation (e.g., anodal tDCS) to a targeted brain area induces brain (cortical
neuron) excitability, which elicits action potentials that can subsequently increase motor output and
therefore improve performance ability [9,73]. Other researchers suggest that the excitability resulting
from targeted stimulation may reduce the need for generating effortful output required for muscle
recruitment. This, in turn, may result in a low perception of exertion for a given force or power output,
which may serve as a mechanism for improved performance [14]. Simulation techniques such as
cathodal tDCS decrease cortical excitability (i.e., inhibition) [74].

There remain many methodological issues that must be addressed before the evidence is conclusive
on the effectiveness of NIBS in improving motor and cognitive performance in esports [9]. For example,
in addition to significant variability of NIBS-induced effects [75], optimized experimental protocols
such as stimulation duration, electrode montage, and stimulation amplitude for applying tDCS
techniques remain to be determined. Furthermore, because many studies have used an experimental
design, the extent to which NIBS’s enhancement effects can be meaningfully generalized to actual
sport competitions remains unknown [76,77].

Drawing exact boundaries for using NIBS techniques for improving performance-related training
outcomes and enhancing performance immediately prior to competition for the sole purpose of winning
the event (and perhaps winning prize money) are challenging. The application of NIBS techniques
in real-world settings is not currently regulated by any group of technical experts—governmental,
academic, or otherwise. However, there is consensus in the scientific community that NIBS should
not be intentionally used as a neurodoping or ergogenic aid in seeking a “marginal gain” or “elusive
edge” in performance during competition [11,78,79]. With the increasing use of NIBS in sports
and esports, ethics and regulatory guidelines will need to be established in order to avoid misuse of
these neuroenhancement techniques as a tool for supercharging performance in sports.

Finally, we are fully cognizant of the many health issues that participating in esports [6,80] can raise,
including gambling disorders, overuse injuries, and doping behaviors. These issues constitute yet
another avenue for research in which the use of neuromodulation can address the negative health
consequences of esports.

7. Conclusions

The use of NIBS as a neuromodulation technique has received increasing research attention.
The application of NIBS in the fields of sports and physical exercise has led to mounting evidence that
suggests both health and performance benefits. Though this research is in its infancy, this evidence has
provided the scientific premise and impetus for exploring the potential of NIBS-based techniques in
helping improve learning and performance of motor and cognitive skills in esports. Within this context,
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we highlight the relevance of NIBS to esports and the potential areas in which NIBS can be integrated
into esports training (Figure 1). At the same time, we remain cognizant of the various technical, ethical,
and regulatory aspects of NIBS when applied to esports.
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