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A gene browser of colorectal  
cancer with literature evidence 
and pre-computed regulatory 
information to identify key tumor 
suppressors and oncogenes
Min Zhao1,*, Yining Liu1,*, Fuda Huang2,* & Hong Qu2

Colorectal cancer (CRC) is a cancer of growing incidence that associates with a high mortality rate 
worldwide. There is a poor understanding of the heterogeneity of CRC with regard to causative genetic 
mutations and gene regulatory mechanisms. Previous studies have identified several susceptibility 
genes in small-scale experiments. However, the information has not been comprehensively and 
systematically compiled and interpreted. In this study, we constructed the gbCRC, the first literature-
based gene resource for investigating CRC-related human genes. The features of our database include: 
(i) manual curation of experimentally-verified genes reported in the literature; (ii) comprehensive 
integration of five reliable data sources; and (iii) pre-computed regulatory patterns involving 
transcription factors, microRNAs and long non-coding RNAs. In total, 2067 genes associating with 
2819 PubMed abstracts were compiled. Comprehensive functional annotations associated with all the 
genes, including gene expression profiles, homologous genes in other model species, protein-protein 
interactions, somatic mutations, and potential methylation sites. These comprehensive annotations 
and this pre-computed regulatory information highlighted the importance of the gbCRC with regard 
to the unexplored regulatory network of CRC. This information is available in a plain text format that is 
free to download.

Colorectal cancer (CRC) is the third most diagnosed cancer, resulting in high mortality rates worldwide1. In 2012, 
approximately 1.4 million individuals were diagnosed with CRC across the globe. The highest rates of incidence 
are in developed countries such as New Zealand, Australia, and Western Europe. Not surprisingly, the prognosis 
often decreases substantially for those individuals in which the disease has metastasized to other tissues and 
organs. Only 11% (colon cancer) and 12% (rectal cancer) of patients with distant metastases survive the first five 
years2. Therefore, the development of effective biomarkers to monitor CRC development is needed to improve 
the diagnosis rate at late stages.

Similar to other malignancies, CRC is caused by uncontrolled cell growth. However, it is remarkably het-
erogeneous at multiple cellular and molecular levels. For example, uncontrolled cell proliferation in CRC may 
result from the abnormal gene expression of tumor suppressors and oncogenes3, promoter methylation4, copy 
number alterations of cancer genes that control cell proliferation and death5, microRNA mutations and abnormal 
expression6, and long non-coding RNAs7. Thus, it is critical to prioritize the genetic and genomic suspects with an 
understanding of their tumorigenic mechanisms in future studies.

Before the development of high-throughput genome-wide sequencing, countless biochemical experimen-
tal and genetic association studies resulted in the accumulation of much data without systematic integration. 
To reuse and mine these published articles, we developed the first evidence-based gene resource for CRC by 
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extensive literature curation and data integration at http://gbCRC.bioinfo-minzhao.org/. By extensive literature 
curation and data integration, it is expected that our gbCRC will be valuable for researchers to efficiently obtain 
functional and mutational data on CRC genes.

Results
Gene collection pipeline. To address the genetic complexity of CRC, we conducted extensive data integration  
and literature curation. The final non-redundant 2309 relevant genes were stored in a publicly available database of 
human CRC-implicated genes. The CRC gene collection was mainly based on five data sources (Fig. 1A), including  
OMIM (Online Mendelian Inheritance in Man)8, GAD (The Genetic Association database)9, genes manually  
curated from GeneRif10, genome-wide association studies from GWASCatalog11 and meta-analyses results of 
genetic association studies from the CRCGene database (http://www.cphs.mvm.ed.ac.uk/projects/CRCgene/
index.php). As the most authoritative compendium of human disease-related genes, OMIM did not include many 
genes. We obtained 25 genes associated with CRC from OMIM. The GAD database is an archive of published 
human genetic association studies, which contains curated information on each candidate gene. In total, we 
collected 279 unique human genes from GAD from 637 published studies. Additionally, 11 candidate genes were 
downloaded from three genome-wide association studies in the GWASCatalog database. From the CRCGene 
database, 95 unique human genes were collected. After combining data from these four publically-available  
genetic resources, we created a non-redundant gene list with 691 human genes.

To provide a detailed and precise regeneration gene resource with supporting literature evidence, we per-
formed an extensive literature query of the GeneRif database on January 10, 2015 using the Perl regular expres-
sion to match those sentences with both “colorectal” and “cancer” keywords: [(colorectal OR colon OR rectal 
OR bowel) AND (cancer OR tumor OR carcinoma OR adenocarcinoma)]. In total, we retrieved 7581 relevant 
short descriptions related to CRC from 5378 PubMed abstracts. GeneRif (Gene Reference Into Function) is a 
collection of short descriptions on the function of different genes in the Entrez Gene database10. However, these 
short descriptions from GeneRif did not contain full abstracts for accurate data curation. Therefore, we extracted 
the 5378 abstracts with full text for manual checking. In general, literature curation had three steps: (i) grouping 
the 5378 extracted abstracts based on their computed similarity scores using the ELink function in Entrez; (ii) 
collecting contents related to CRC from grouped abstracts; and (iii) manually collecting gene names from the 
CRC-related sentences and mapping the gene names to Entrez gene IDs. These three curation steps provided 

Figure 1. Web interface of the gbCRC. (A) The shared CRC-implicated genes across multiple data sources.  
(B) The web interface of the gbCRC, including the basic information, curated literature, gene expression and 
pre-computed lncRNA co-expression results using TCGA CRC tumor samples. (C) The overlapping of 21  
CRC-implicated genes with tumor suppressor genes and oncogenes from TSGene 2.0.

http://gbCRC.bioinfo-minzhao.org/
http://www.cphs.mvm.ed.ac.uk/projects/CRCgene/index.php
http://www.cphs.mvm.ed.ac.uk/projects/CRCgene/index.php
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high-quality data by cross-checking if and how the curated abstract was related to CRC. For a unified functional 
annotation, we regarded Entrez gene IDs as the unique key in all the data tables of our gbCRC database to link 
the same genes from different bioinformatics resources. To obtain accurate literature evidence, we collected the 
species information and the gene alias and manually mapped this information to the official HUGO gene sym-
bol. For example, two negative results were described in the following sentences: “study does not support a role 
of COX2 and UGT1A6 genetic variations in the development of colon cancer”12 and “neither genetic variation nor 
allele-specific expression at TGFBR1 is likely to be a major colorectal cancer risk factor”13. In addition, in the first 
sentence, the gene name COX2 was one of the synonyms of PTGS2 in the current Entrez gene database. Thus, we 
deleted the associated relationship from the literature with the PTGS2 gene. As some of the studies were not con-
ducted in the human, we mapped the collected genes to their corresponding human homologous groups using the 
NCBI HomoloGene database as described in previous studies14,15,16. In total, we pinpointed 1618 Entrez human 
homologous genes from 5515 PubMed abstracts. By integrating the 691 genes from other public databases, we 
consolidated 2309 human genes in Table S1.

All curated genes and relevant bioinformatics annotations were stored in a MySQL-based database on a Linux 
server. In the gbCRC, we provided two approaches to access our data: text-based query (Fig. 1B) and sequence 
similarity-based BLAST search. Users can retrieve a list of genes with their interesting annotations by using 
the text-based query. Users can also annotate unknown sequences via BLAST against all the DNA and protein 
sequences in the gbCRC. Lastly, users can search the data in a variety of ways, including the number of supporting 
references, the highlighted KEGG pathway, and genomic positions.

The annotations of a representative gbCRC gene were classified into eight categories by clicking the labels 
“expression”, “general information”, “homolog”, “literature”, “interaction”, “lncRNA”, “mutation”, and “regu-
lation” (Fig. 1C). The keyword-marked references were provided on the “literature” page. The pre-computed 
co-expression correlation coefficients and the corrected statistical P-values between CRC-implicated genes and 
lncRNAs in matched cancer samples were presented on the “lncRNA” page. The “homolog” page provided the 
homologous genes from another 11 model species such as the mouse. On the “regulation” page layout, which 
listed the interactions with transcription factors, there was information on post-translational modifications and 
potential methylation sites.

Potential role of retinoic acid in colorectal cancer. To provide an overview of the data quality, we 
counted the number of supporting references for the collected 2,309 CRC-implicated genes. This preliminary sta-
tistical analysis not only highlighted the high tumor susceptibility of these well-studied genes, but also confirmed 
the heterogeneous genetic events of CRC. In total, there were 21 genes with more than 30 concordant positive 
supporting references. The majority of the genes (2172 genes, 94.06% of the total number of genes) had less than 
ten supporting references. These 21 genes were further classified according to their roles in cancer. We found six 
tumor suppressors and seven oncogenes (Fig. 2A). The remaining eight genes may also have contributed to can-
cer progression, but their roles in its suppression or progression were not immediately clear. Further functional 
enrichment analysis revealed that 17 of the 21 genes increased with tumor incidence and 15 of them regulated 
cell apoptosis. More importantly, these tumor suppressors and oncogenes were highly connected to each other 
in CRC (Fig. 2B).

A fundamental goal of biomedical research is to discover effective drugs to cure human diseases. To demon-
strate the use of our gbCRC, we constructed a compound-gene interaction network using the STITCH database 

Figure 2. The role of retinoic acid in colorectal cancer. (A) The tumor suppressors and oncogenes in the 
gbCRC. (B) The interaction of 21 well-studied CRC-related genes using STRING. (C) The interaction of the 21 
genes in (B) with retinoic acid using STITCH.
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(http://stitch.embl.de/). Intriguingly, the compound-gene interaction enrichment module revealed that 16 of the 
21 well-studied CRC-implicated genes were predicted to interact with retinoic acid (C20H28O2) (Fig. 2C). As the 
most active metabolite of vitamin A, retinoic acid can trigger programmed cell death in certain types of tumor 
cells17. Additionally, aberrant retinoic acid metabolism is implicated in tumorigenic events in cancer cell lines17. 
Furthermore, three metabolic enzymes for retinoic acid, CYP26A1, CYP26B1 and LRAT, are significantly over-
expressed in CRC18. These enzymes were also significantly associated with poor prognosis in colorectal cohorts18. 
Our rudimentary analysis of a potential gene-compound interaction network allowed us to relate retinoic acid 
to CRC. Retinoic acid mediates the functions of vitamin A for individual growth and development, and reti-
noids can interact with estrogen signaling in breast cancer19. Although retinoid signaling is often compromised 
early in cancer progression19, its broader effect on CRC has been recognized recently20. Since a reduction in reti-
noid signaling may be required for cancer progression, retinoids can be used to induce differentiation and arrest 
proliferation in a clinical setting. Although it is ideal to treat cancer with retinoids, the delivery of retinoids to 
patients is hindered by their rapid metabolism. Regardless, our constructed gene-compound network may benefit 
cancer prevention strategies related to retinoids for CRC patients. Taken together, these results offer insight into 
the functional importance of several well-studied CRC-related genes with ample supporting evidence for their 
relevance to retinoid signaling. More extensive metabolic network analysis may provide more insight into these 
important compound in cancer progression21,22,23.

Abundant mutations within well-studied protein-coding tumor suppressors and oncogenes.  
A fundamental problem in cancer biology is discovering potential tumor suppressors and oncogenes, which 
may help us to understand the key genetic drivers for cancer progression. As shown in Figure S1, 13 well-studied 
tumor suppressors and oncogenes were highly mutated in CRC. Among 212 TCGA tumor samples, 206 of the 
individuals had at least one mutational event (mutational rate, 97%). However, the most abundantly mutated six 
genes covered 205 samples: APC (mutational rate, 76%), TP53 (52%), KRAS (42%), PIK3CA (20%), BRAF (10%) 
and CTNNB1 (5%). Notably, the majority of the mutations were enriched in a few important oncogenic pathways 
(Fig. 3A,B). A previous study showed that APC is truncated in the “mutation cluster region” close to codon 1,300. 
The mutations often result in the loss of C-terminal APC functions. The APC gene, located at 5q21-q22, encodes a 
critical Wnt signaling regulator (Fig. 3A)24. In the absence of the Wnt signal, APC can form a complex with AXIN1 
and GSK3B to mediate degradation of β -catenin (CTNNB1) via phosphorylation. In this way, the abundance of 

Figure 3. Mutational frequency of two key biological pathways in colorectal cancer. (A) The somatic 
mutations of different genes from the Wnt signaling pathway in CRC. (B) The somatic mutations of different 
genes from the KRAS-BRAF pathway in CRC. (C) The mutational frequency of APC across multiple cancers. 
(D) The mutational frequency of different genes from the KRAS-BRAF pathway in CRC.

http://stitch.embl.de/
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β -catenin in cells is strictly controlled. Upon activation of Wnt signaling, however, the multi-protein complex 
(APC, AXIN1 and GSK3B) is disassembled, resulting in a high concentration of β -catenin. Upon translocation to 
the nucleus, β -catenin triggers HNF4A (hepatocyte nuclear factor 4) activity by displacing the suppressive effect 
of TLE (transduction enhancer-like protein). This triggers the expression of important genes associated with cell 
proliferation (MYC and CD1)24. Therefore, the truncated APC can induce higher levels of β -catenin (CTNNB1) 
and its downstream cell proliferation genes. In total, these two genes accounted for 165 samples (combined muta-
tional rate, 77.83%). Additional analysis of other genes in the Wnt signaling pathway found that HNF4A had a 
mutational rate of 14% (Figure S2). Both GSK3B and AXIN1 had a mutational rate of 2%. For the 17 genes from 
the Wnt family, 14 were sporadically mutated with a rate less than 1%. The remaining three (WNT3, WNT5A, 
WNT10B) had a mutational rate of 2%. For the ten genes from the Wnt signaling receptor family (FZD genes), 
FZD3 had the highest mutational rate of 6%. Combining all the genes, 186 samples had at least one mutational 
event, accounting for 88% of the TCGA cohort. Mutations within TP53 are expected in CRC. By comparing the 
pan-cancer mutational pattern of APC and TP53, we found that the high mutational rate of APC is specific for 
CRC, placing it at the top of mutated cancer cohorts (Fig. 3C). On the contrary, TP53 is highly mutated across 
multiple cancers, not just in CRC (Figure S3). This specificity of the APC mutation may indicate that it is a top 
driver in CRC initiation. TP53 is more important at the late stage of cancer development.

The other most mutated oncogenes KRAS and BRAF belong to the RAS signaling pathway (Fig. 3B). Their 
downstream molecules include ZHX2, MAPK2K7 and MAPK1. In total, these five genes had a combinational 
mutation rate of 55% (Fig. 3D). Despite MAPK2K7 and MAPK1 having a mutational rate of only 1%, the direct 
downstream gene of KRAS (ZHXS) was mutated in 15 individuals.

Role of microRNAs in colorectal cancer. In recent years, an increasing number of miRNAs has been 
associated with CRC6. We collected 119 miRNAs with important roles in CRC. To assess their potential functions, 
we first used the TCGA mutational data to isolate those miRNAs with mutations in tumor samples. Because 
miRNAs are relatively short in terms of nucleotide sequence, single nucleotide variants (SNVs) may not be easily 
detected. Therefore, we investigated the meditate scale copy number variations (CNVs) for the miRNAs. In total, 
we found 34 miRNAs with CNVs in the 53 CRC patients from a cohort of 212 TCGA tumor samples (Fig. 4). For 
the top eight miRNAs with a mutational frequency of approximately 2%, only four miRNAs gained more copy 
number instead of losing copy number. To further explore the functional distribution of these four miRNAs 
with more copy number, we performed a target-based functional enrichment analysis using DIANA-miRPath 
(Table 1). Not surprisingly, the majority of the enriched pathways were related to key cancer pathways such as 
the cell cycle and p53 signaling pathways. For the cell cycle pathway, 42 genes were the targets of the five miRNAs 
(Figure S4, corrected P-value =  4.48E-20). The top two mutated miRNAs MIR1-1 and MIR133A2 had a copy 
number gain in approximately 7% of patients. Interestingly, these two miRNAs had a tendency to co-mutate in 
the same patients, which may be explained by their relative proximity to each other within the genome. MIR1-1 
associates with MET-dependent proliferation in CRC25. However, these two miRNAs are down-regulated in 
CRC26,27, which conflicts with the consistent gene copy number gain. With more copy number, gene expression 
is often relatively high in agreement with the gene dosage effects. Further experimental validation is needed to 
test whether the down-regulation of these two miRNAs was caused by other epigenetic mechanisms such as 
DNA hypermethylation28. We also observed a similar scenario with two other miRNAs (MIR15A and MIR16). 
These two miRNAs cluster at the genomic region of 13q14.3, which is frequently deleted in chronic lymphocytic 
leukemia. MIR16 has also been reported to be down-regulated in CRC29. Furthermore, two additional miRNAs, 
MIR31 and MIR21, had more gene copies in the TCGA CRC cohort. Both MIR3130 and MIR2131 are up-regulated 
in CRC and are potential clinical biomarkers. In summary, the clinical significance of the MIR1-1/MIR133A2 and 
MIR15A/16 cluster in CRC has not been fully elucidated. Further tests should focus on their dysregulation with 
respect to their epigenetic effects.

Copy number mutations of highly connected genes. To improve the systems level understanding of 
CRC, we constructed a pathway-based protein-protein interaction map for CRC. To avoid the high level of noise, 
we only used the 114 genes with ten or more supporting references to build the network. In addition, we only 
utilized reliable human PPIs summarized in a few popular biological pathways such as the KEGG and Reactome 
pathway database32 to avoid a potentially highly skewed degree distribution of physical interaction-based PPI  
networks. Based on our previous module searching method33, a sub-network from the entire human 
pathway-based interactome was reconstructed containing 99 genes and 204 PPIs (Fig. 5A). Of the 99 nodes, 87 
were from our curated 114 CRC-related genes with ten or more supporting references. The remaining 12 were 
the linker genes, which formed a completely connected cellular map. Further network topological analysis also 
indicated that most nodes in the reconstructed map were closely connected. There were only 31 nodes with 
one connection, which indicated that the remaining 68 nodes had two or more connections. The degrees of all 
nodes followed a power law distribution P(k) ~ k−b, where P(k) was the probability that a node had connections 
with other k nodes and b was an exponent with an estimated value of 1.149. Previous topological analysis on the 
human PPI network revealed that most of nodes are sparsely connected with exponent b as 2.934. Compared to 
the entire human PPI network, our network was more closely connected. This finding was also confirmed in the 
shortest path distribution, where approximately 55.98% of the communication between nodes was reached by 
only three steps (Fig. 5C).

With high modularity, the highly connected nodes may have critical roles in the transfer of cellular signals 
using the shortest paths. To test whether these genes are abnormally expressed or functionally relevant to CRC, 
we conducted a systematic examination of the genetic variants. Based on the single nucleotide variants (SNVs), 
copy number variations (CNVs) and abnormal expression in tumor samples, we found that 79 highly connected 
genes were altered in 211 of 212 CRC tumor samples. As shown in Figure S3, APC and TP53, the top two mutated 
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genes, were mostly SNVs. Intriguingly, the other eight highly mutated genes (mutational frequency, > 10%) had 
more copy number changes. To further explore these CNVs with potentially important roles in cancer progres-
sion, we mapped our 79 highly connected genes to the CNV data of the TCGA CRC dataset (Figure S5). The top 
eight CNV-based genes (BCL2L1, MMP9, SNAI1, SRC, MYC, CDX2, PTP4A3, and ERBB2) had a copy number 
gain, and not a copy number loss. Interestingly, these mutated genes have roles in tumorigenesis as reported in 
the literature. Taking BCL2L1 as an example, it can influence tumor cell apoptosis by regulating the opening of the 
outer mitochondrial membrane channel. After further mapping the gene expression data of the matched tumor 
samples in the TCGA CRC cohort, we found that there was a concordant copy number gain and an up-regulation 
of BCL2L1 (Figure S6). Our results may provide clues for the important role of BCL2L1 in the progression of 
CRC by copy number gain, which induces gene expression by increasing the gene dosage effect. In summary, our 

Figure 4. Mutational landscape of the 34 miRNAs with supporting references. 
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reconstructed CRC map not only identifies multiple pathways related to a few known signaling pathways, but it 
also provides a broader mutational landscape for previously overlooked highly connected genes. Hopefully, this 
information will be useful for users wishing to conduct further screening on CRC patients.

Discussion
In conclusion, we developed a literature-based knowledge base of CRC genes with comprehensive annotations. 
The associated comprehensive annotations and pre-computed regulatory information highlighted the impor-
tance of the gbCRC in the unexplored field of CRC development. For advanced systems biology analysis, a com-
plete downloadable gene list with functional features is available in a plain text format. Although we performed 
extensive literature curation and data integration, it is important to acknowledge the difficulty of performing an 
error-free search. Therefore, we provided a high confidence gene list with 162 genes from 2 or more data sources 
and with at least 5 supporting published articles.

Our systematic analysis of CRC-related genes from the literature resulted in numerous testable hypotheses 
regarding critical tumor suppressors, oncogenes, miRNAs, and oncogenic pathways. Most importantly, our inte-
grative analyses of these genes between various annotations helped to uncover several critical biological events, 
as well as to explain their underlying interplay in cancer progression. In addition, the massive precomputed 

KEGG Pathway # of genes # of miRNAs Adjusted P-values* 

Cell cycle 42 5 4.48E-20

p53 signaling pathway 27 5 3.04E-16

Prion diseases 7 2 3.50E-14

Protein export 12 4 1.17E-13

Pathways in cancer 74 5 1.17E-13

Small cell lung cancer 26 5 1.32E-11

RNA transport 41 5 2.05E-11

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 20 3 4.19E-11

Hepatitis B 38 5 1.89E-10

Ribosome biogenesis in eukaryotes 23 3 4.01E-09

Bladder cancer 15 5 4.01E-09

Chronic myeloid leukemia 21 5 4.65E-08

Hypertrophic cardiomyopathy (HCM) 22 3 2.24E-07

PI3K-Akt signaling pathway 65 5 2.24E-07

Spliceosome 33 3 5.28E-07

Transcriptional misregulation in cancer 40 5 7.71E-07

Ribosome 23 2 1.10E-06

Prostate cancer 23 5 1.58E-06

Legionellosis 16 5 4.20E-06

Fatty acid elongation 9 3 1.49E-05

Colorectal cancer 16 4 1.49E-05

Pancreatic cancer 20 5 1.49E-05

Protein processing in endoplasmic reticulum 35 5 0.000182503

Glioma 18 5 0.000200629

Oocyte meiosis 25 5 0.000333129

Focal adhesion 38 5 0.000352036

DNA replication 10 3 0.000580251

Lysine degradation 14 3 0.000597329

Dilated cardiomyopathy 19 3 0.00077407

Salmonella infection 18 4 0.00077407

Insulin signaling pathway 27 5 0.000819063

Pathogenic Escherichia coli infection 13 3 0.001527875

mRNA surveillance pathway 20 5 0.001527875

Shigellosis 14 4 0.001665937

Melanoma 15 5 0.002187145

Mineral absorption 11 3 0.003792775

Epstein-Barr virus infection 36 5 0.007386609

Gap junction 15 3 0.009089295

ErbB signaling pathway 16 5 0.009089295

Table 1.  Significantly enriched KEGG pathways in the targeted genes of the top five microRNAs with 
copy number gain. * Adjusted P-values: the P-values of the hypergeometric test were corrected by Benjamini-
Hochberg multiple testing correction.
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co-expressed lncRNAs will be helpful for the CRC-specific lncRNA identification and subsequent analyses. 
Moreover, the curated genes are useful for the design of target-sequencing experiments on CRC. Lastly, it will be 
also useful for the genetic mutation prioritization and filtering for whole genome sequencing and whole exome 
sequencing data analysis.

To collect additional references in the future, we implemented an automatic literature search by using NCBI 
Entrez programming utilities, which will retrieve PubMed references based on the matching keyword(s). The 
Entrez reference similarity will be used to cluster the newly available references with those curated references in 
our gbCRC. With regard to the bioinformatics annotation, we also implemented an automatic system to integrate 
functional information from public data sources. The web page will be updated accordingly on an annual basis.

Methods
Bioinformatics annotation. To present a comprehensive functional view for each gene in the gbCRC, we 
provided the basic gene information, sequences and crosslinks to the NCBI Entrez gene and Homologene data-
bases (downloaded on April 8, 2015)35. We also imported the BioGPS mRNA expression profiling data from both 
normal and tumorigenic tissues36. In the BioGPS database, the relative expression scores were generated from 
Affymetrix chips based on fluorescent intensity of different genes. For each gene, there were multiple probes 
on the microarray. The final intensity value for each gene was computed using the data processing algorithm 
GCRMA37. To provide a genetic mutational overview, we annotated all the genes using the mutational data from 
COSMIC (V72)38. To present a comprehensive biological pathway, we annotated the CRC-implicated genes using 
BioCyc39 and the KEGG pathway40. Additional regulatory information on post-translational modifications41, 
methylation sites42, and protein-protein interactions from Pathway Commons (V5)32 was also included. For 
advanced bioinformatics or systems biology-based analyses, we provided the downloadable gene list in a plain 
text format.

Co-expressed long non-coding RNAs from TCGA matched cancer samples. To explore the 
co-expressed long non-coding RNAs (lncRNAs) related to the CRC-implicated genes, we downloaded the human 
lncRNA expression profile from Mitranscriptome43. The Mitranscriptome is comprised of lncRNA expression 
data generated from the assembly of the RNAseq data from The Cancer Genome Atlas (TCGA) tumor sam-
ples. We computed the correlation coefficients between CRC-implicated genes and the 17,250 lncRNAs in the 
Mitranscriptome using Spearman’s correlation based on the matched TCGA CRC samples44. The statistical 
P-values were calculated using R (version 2.14.0), and the false discovery rate (FDR) was adjusted for multiple 
testing. For each CRC-implicated gene and lncRNA pair, we set the expression correlation score to greater than 
0.3 and the FDR-adjusted P-value to less than 0.01.

Network construction. To present a network view for the CRC-implicated genes, we used the online tools 
STRING (http://string-db.org/) and STITCH (http://stitch.embl.de/) to run the network analysis on a small 
number of genes of interest. For the larger gene list such as the 114 curated genes with ten or more support-
ing references, we adopted sub-network extraction as described in a previous study33. To reveal the potential 
function of each node, topological analyses were conducted using the NetworkAnalyzer plugin in Cytoscape 
2.8 (Fig. 5B,C)45. The degree indicated the number of connections for each node in a network46. The short path 

Figure 5. Reconstructed CRC map based on 114 genes with ten or more supporting references. (A) The 87 
genes in orange are genes in our gbCRC. The remaining 12 genes in red are linker genes that bridge the 87 genes. 
(B) The degree distribution. (C) The short path length frequency.

http://string-db.org/
http://stitch.embl.de/
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was used to characterize the shortest route for each node to reach another46. The final network visualization was 
performed using Cytoscape 2.845. Throughout the study, the CRC-related mutational analyses were conducted 
using cBio portal47.
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