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Abstract

The TRPV3 channel plays a critical role in skin physiology, and mutations in TRPV3 result in the 

development of a congenital skin disorder, Olmsted syndrome. Here we describe multiple cryo-

electron microscopy structures of human TRPV3 reconstituted into lipid nanodiscs, representing 

distinct functional states during the gating cycle. The ligand-free, closed conformation reveals 

well-ordered lipids interacting with the channel and two physical constrictions along the ion 

conduction pore involving both the extracellular selectivity filter and intracellular helix bundle 

crossing. Both the selectivity filter and bundle crossing expand upon activation, accompanied by 

substantial structural rearrangements at the cytoplasmic inter-subunit interface. Transition to the 

inactivated state involves a secondary structure change of the pore-lining helix, which contains a 
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π-helical segment in the closed and open conformations but becomes entirely α-helical upon 

inactivation. Together with electrophysiological characterization, structures of TRPV3 in a lipid 

membrane environment provide unique insights into channel activation and inactivation 

mechanisms.
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Introduction

Transient receptor potential (TRP) channels are polymodal sensors that convert a multitude 

of environmental cues into cellular signaling events essential for physiology1. The vanilloid 

subfamily (TRPV) comprises six members (TRPV1-6), which exhibit varying channel 

properties, tissue expression and physiological functions2,3. Primarily expressed in 

epidermal and hair follicle keratinocytes, the thermo-sensitive, Ca2+-permeable, and 

nonselective TRPV3 channel plays a crucial role in skin physiology including skin barrier 

formation, hair growth, wound healing, and cutaneous pain and itch sensation4–9. Genetic 

mutations with elevated basal channel activity are associated with abnormal hair 

morphogenesis, impaired skin barrier, and the human skin disease, Olmsted syndrome10,11. 

Therefore, antagonizing TRPV3 presents a potential therapeutic opportunity for the 

treatment of skin disease and management of pain and itch.

TRPV3 is activated by warm temperatures as well as numerous chemicals, including plant 

extracts, lipid metabolites, and synthetic small molecules such as 2-aminoethoxydiphenyl 

borate (2-APB)8,12–14. Unlike many other TRP channels, TRPV3 experiences sensitization, 

instead of desensitization, upon repeated stimulation by heat or agonists15–17. To better 

understand the unique properties of TRPV3 and to establish a foundation for rational 

therapies, detailed structural information and mechanistic insight into channel activation 

through different modalities are required. Toward this end, recent cryo-electron microscopy 

(cryo-EM) studies have provided a structural description of TRPV318–21, exhibiting a 

similar overall architecture as other thermo-sensitive TRPV channels22–25. Each channel 

subunit, from the amino- to the carboxy- terminus, consists of a cytoplasmic ankyrin repeat 

domain (ARD), a linker domain, an S1-S4 domain, an S5-S6 pore domain, a TRP domain, 

and a C-terminal domain. Intriguingly, a collection of distinctive TRPV3 conformations has 

been observed from different biochemical preparations, in which certain conformations have 

been assigned as the closed, sensitized and open structures18–20. Surprisingly, structures of 

the mouse and human TRPV3 in the assumed closed state are discernibly different18,19, and 

concomitantly different structural mechanisms of gating have been proposed18,20. In mouse 

TRPV3, three putative 2-APB binding sites have been identified, and 2-APB binding to the 

extracellular portion of the S1-S4 domain has been suggested to play a major role in channel 

activation by displacing an inhibitory resident lipid, leading to allosteric opening of the ion 

conduction pore18. Notably, application of 2-APB to the wild-type mouse TRPV3 gives rise 

to a conformation identical to that of the apo state, and the open structure was obtained by 

applying 2-APB to a mouse TRPV3 variant Y564A18. Interestingly, application of 2-APB to 
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a presumably silent human TRPV3 mutant T96A renders non-conductive conformations 

distinct from the apo state, including structures with reduced symmetry that deviate from the 

canonical four-fold symmetric assembly arising from four identical subunits19. The putative 

open structure of human TRPV3 was subsequently achieved by applying 2-APB to a 

‘sensitized’ mutant K169A on the T96A background20. In contrast to the mouse TRPV3 

study, a single 2-APB binding site, rather than three, was found in human TRPV320.

These recent structures illustrate the complex conformational landscape of TRPV3, but with 

considerable discrepancies as noted above18–20. Meanwhile, structures of TRPV1, a close 

homolog of TRPV3, in distinct functional states elegantly reveal a dual gating mechanism 

involving pronounced structural rearrangements at both the extracellular selectivity filter 

(SF) and intracellular S6 helix bundle-crossing (HBC) regions23, which are in accordance 

with earlier observations that the selectivity filter region actively contributes to gating 

elicited by multiple physiological stimuli, including spider toxins, protons, and heat26–31. 

Interestingly, thiol-reactive ions permeate the selectivity filters of TRPV1-3 channels in the 

presumably closed states in the absence of activating stimuli, suggesting that the structurally 

dynamic selectivity filters may not serve as activation gates but enable external stimuli to 

allosterically trigger the opening of the S6 HBC gates32. Analogous to TRPV1, in TRPV3, 

multiple mutations (N643S, I644S, N647Y, L657I and Y661C) specifically diminishing heat 

activation have been identified at the outer pore region immediately surrounding the 

selectivity filter33, and nearby residues I652 and L655 undergo temperature-dependent 

conformational changes as assessed by cysteine accessibility experiments34. These results 

indicate that the selectivity filter region contributes to channel gating. However, in all 

reported TRPV3 structures to date, the selectivity filter is adequately wide for ion 

conduction and appears not to be involved in gating18–20.

Notably, these previous studies examined TRPV3 in detergents or amphipols18–20, which are 

essentially devoid of lipids. The surrounding environments of embedded channels in these 

reconstitution systems are dramatically different from those of cell membranes composed of 

phospholipids. Importantly, lipids have been increasingly recognized as indispensable 

structural and functional components for many integral membrane proteins including TRP 

channels35,36. Consequently structures of integral membrane proteins obtained in detergents 

or amphipols could very well differ from their more native conformations in a lipid 

membrane37–39. The plasma membrane lipid phosphatidylinositol 4,5-bisphosphate and an 

endogenous lipid metabolite resolvin D1 have been reported to inhibit TRPV340,41. Farnesyl 

pyrophosphate, an intermediate in the biosynthesis of steroid hormones, specifically 

activates TRPV3, but not other related thermo-sensitive TRPV channels8. Polyunsaturated 

fatty acids also potentiate TRPV342. These results underscore the intimate relationship 

between TRPV3 and lipids, and thus warrant structural analysis of TRPV3 in a lipid 

membrane environment for better understanding of channel gating in a physiologically 

relevant setting. Here we present multiple cryo-EM structures of human TRPV3 embedded 

in lipid nanodiscs, presumably representing conformations in the closed, open and 

inactivated states at near-atomic resolution. These structures identify critical channel-lipid 

interactions and reveal a dual gating mechanism, providing unique mechanistic insight into 

TRPV3 activation and inactivation in a membrane-like environment. Our results 
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dramatically differ from recent studies using detergents and amphipols18–20, highlighting the 

indispensable role of lipids in channel structure and function.

Results

Structure of human TRPV3 in lipid nanodiscs

We expressed the wild-type full-length human TRPV3 channel containing residues 1-790 in 

yeast Pichia pastoris and purified the protein to homogeneity. However, the isolated protein 

in several detergent micelles was prone to aggregation, preventing high-resolution single-

particle cryo-EM analysis. In line with this observation, a functionally silent mutation T96A 

with enhanced biochemical stability, was necessarily introduced to obtain human TRPV3 

structures in amphipols19. Prompted by the intimate interplay of TRPV3 and lipids and 

successful application of lipid nanodiscs in cryo-EM studies of membrane proteins including 

TRP channels36, we decided to conduct our structural analysis using lipid nanodiscs. We 

purified the wild-type full-length TRPV3 channel in detergents and then reconstituted the 

protein into nanodiscs composed of soybean polar lipids and the membrane scaffold protein 

2N2 (MSP2N2). Indeed, TRPV3 in nanodiscs migrated as a monodisperse peak in size-

exclusion chromatography (Extended Data Fig. 1a, b) and negative-stain electron 

microscopy further confirmed homogeneous channel-nanodisc particles (Extended Data Fig. 

1c).

We determined the cryo-EM structure of human TRPV3 in the absence of ligand in 

nanodiscs to an overall resolution of 3.1 Å with C4 symmetry imposed (Extended Data Fig. 

2 and Table 1). The cryo-EM density map allowed us to build an atomic model including 

most residues from 117 to 755 (Fig. 1a–e, Extended Data Fig. 2). The N-terminal 116 and 

C-terminal 35 residues are not resolved in the cryo-EM density and therefore are not 

modeled. Although the overall structure of the ligand-free human TRPV3 channel in a lipid 

bilayer is similar to ligand-free structures in detergents and amphipols18,19, the ion 

conduction pore structures are markedly different, which will be elaborated later. Like other 

TRPV channels22–25,43–45, TRPV3 forms a four-fold symmetric tetramer, with each 

protomer consisting of an N-terminal ARD, a linker domain, a transmembrane domain 

(TMD) with six transmembrane helices (S1-S6), a characteristic TRP helix, and a C-

terminal domain (CTD) (Fig. 1d,e). In the membrane, the voltage sensor-like S1-S4 domains 

and the pore domains, comprising S5, the pore helix and S6, are arranged in a domain-

swapped fashion, in which the S1-S4 domain from one subunit packs against an adjacent 

pore domain, mediated by the S4-S5 helical linker (Fig. 1d,e). As in reported TRPV3 

structures18,19, the CTD forms a more extended structure than those observed in other TRPV 

channels to date, generating an extensive cytoplasmic assembly interface in combination 

with the ARD from an adjacent subunit (Fig. 1f). This inter-subunit interface defines a 

common structural motif in TRPV channels that is essential for gating19,20,22,24.

Well-ordered lipid-like densities with a head-and-two-tails shape, presumably corresponding 

to tightly associated phospholipids, are located at crevices surrounding the channel (Fig. 1a–

e, Extended Data Fig. 3). Similar to TRPV1, TRPV5, and TRPV6 structures in nanodiscs 

and a voltage-dependent K+ channel crystallized in complex with lipids36,45–47, multiple 

annular lipids reside at the inter-subunit interface in the outer leaflet surrounding the pore 
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domains, potentially reinforcing the domain-swapped configuration in the membrane. The 

lipid at site 1 simultaneously interacts with the extracellular portion of S4 from one subunit 

and S5-S6 from a neighboring subunit. The lipid at site 2 is tightly sandwiched between the 

S5 and pore helices from one subunit and S6 from an adjacent subunit. Site 3 is located in 

the vicinity of the extracellular portion of S1 facing the pore helix from a neighboring 

subunit. The head groups of these lipids would be positioned at the boundary of lipid 

bilayers, most likely interacting with polar residues from the channel, such as Y460, Y461, 

S626, and Q645 (Extended Data Fig. 3a).

In addition to the annular lipids near the outer pore region, strong lipid-like densities are also 

present in the inner leaflet. Consistent with recent studies18,19, non-proteinaceous density is 

found at site 4 in the pocket created by the intracellular portion of the S1-S4 domain facing 

the TRP helix (Fig. 1d,e; Extended Data Fig. 3b), a common lipid-binding site for TRPV 

channels including TRPV1, TRPV2, TRPV5, and TRPV624,36,43,45. Interestingly, the lipid 

at site 5 is located between the beginning of the helical S4-S5 linker (S571) and the end of a 

neighboring S4-S5 linker (H585) (Extended Data Fig. 3c). As the S4-S5 linker has been 

recognized as a critical structural element coupling pore opening and ligand activation in 

TRP channels as well as voltage activation in voltage-gated ion channels (VGIC)36,46, this 

particular lipid is thus conveniently positioned to modulate allosteric coupling.

Ion conduction pore in lipid bilayer

In the ligand-free structure of TRPV3 in nanodiscs, calculation of the pore radius along the 

ion permeation pathway indicates two prominent constriction sites, one at the extracellular 

SF and the other one at the intracellular HBC (Fig. 2a–c). The narrowest point is located at 

G638 in the selectivity filter, with an interatomic distance of 4.5 Å between diagonally 

opposed carbonyl oxygen atoms. Interestingly, the bulky hydrophobic side chains of L639 in 

the selectivity filter ‘638GLGD641’ point sideways, thus not restricting the dimension of the 

central ion conduction pore. In contrast, the side chains of the equivalent hydrophobic 

residue M644 in TRPV1 protrude into the central axis, contributing to the formation of the 

SF constriction22,23. An acidic residue D641 (D646 in TRPV1), important for inhibition by 

extracellular Mg2+ and ruthenium red48,49, lines the outer pore entrance. The hydrophobic 

seal at the intracellular HBC gate is constructed by side chains of I674 from S6 helices, with 

an interatomic diameter of 5.3 Å (diagonal Cα-Cα distance 10.2 Å), which is sufficiently 

narrow to prevent ion passage.

The ion-conduction pore profile and the dimensions and constituents of both the upper and 

lower constrictions are strikingly similar to those of TRPV1 in the ligand-free, closed 

state22,23,36 (Fig. 2a,c). This remarkable resemblance is in line with the observation that 

TRPV1 and TRPV3 can form functional heteromeric channels possessing a hybrid pore50. 

Both constrictions undergo substantial widening upon activation in TRPV123. By 

comparison, it strengthens the conclusion that TRPV3 in a lipid bilayer consists of two 

physical constrictions along the ion permeation pathway and that the ligand-free structure 

represents a closed state. Notably, as in TRPV1 and TRPV522,23,47, the pore-lining helix S6 

in TRPV3, in the closed conformation, contains a π-helical segment beginning at F666 (Fig. 

2a), which has been proposed to be involved in TRP channel gating through a local α-to-π 
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helical transition18,19,24,45,51 (Fig. 2a,c). In sharp contrast, in TRPV3 structures in the 

ligand-free, non-conducting state in detergents and amphipols, S6 is entirely α-helical and 

the selectivity filter is unrestricted for ion conduction (Fig. 2d,e)18–20.

Opening in a lipid bilayer

The cryo-EM structure indicates that the ligand-free wild-type TRPV3 channel in a lipid 

bilayer favors a closed conformation. Of the known chemical ligands, 2-APB is the most 

potent and commonly used TRPV3 agonist12, but promiscuously activates or inhibits other 

TRP channels, including TRPV1, TRPV2, TRPV6, TRPA1, TRPM2, TRPM6, TRPM7, 

TRPC3, TRPC6, and TRPC712,52–56. Repeated application of 2-APB sensitizes TRPV3 

(Fig. 3a)15,57, but at high concentrations 2-APB and its analogues reportedly inhibit the 

channel48. These observations indicate an intricate mode of action by 2-APB, which 

potentially presents a challenge to achieve an open conformation of TRPV3 bound with 2-

APB. Consistently, recent studies reported that application of 2-APB to wild-type channels 

did not yield an open conformation18,19. Repetitive application of 2-APB to human TRPV3 

resulted in a ‘sensitized’ conformation in amphipols19, which is similar to our apo, closed 

wild-type structure in nanodiscs, except for a wider selectivity filter.

Neutralization of a basic residue K169 from the ARD, which forms important salt-bridge 

interactions with acidic residues E751 and D752 from the distal CTD of an adjacent subunit 

at the cytoplasmic inter-subunit interface (Fig. 1f), sensitizes the channel and facilitates 

opening17,20. In excised inside-out membrane patches, the wild-type TRPV3 channels show 

pronounced use-dependent increase in current response elicited by repeated application of 

30 μM 2-APB and reach the maximal current following ~30 cycles of stimulation (Fig. 3a–

c). The first application typically only induces ~17% of the maximal current response. In 

contrast, the charge-neutralization mutant K169A readily approaches the maximal response 

in the first two or three rounds of stimulation and the initial response reaches 90% of the 

maximum. Additionally, a much larger fraction of current response remains following 

removal of 2-APB in membrane patches containing K169A channels, compared with 

patches with wild-type channels. These results indicate that K169A not only sensitizes the 

channel but also stabilizes the open conformation. In excised membrane patches without 

application of 2-APB, K169A shows robust spontaneous opening leading to increased 

current amplitude in minutes, indicating a higher basal open probability than the wild type 

(Fig. 3d,e). The relative basal open probability of K169A, indicated by the current ratio in 

the absence to presence of 2-APB, is 0.57 ± 0.08 (Fig. 3e).

Motivated by these results, we determined the cryo-EM structure of the human TRPV3 

K169A variant embedded in nanodiscs to gain insights into channel gating in a lipid bilayer 

(Fig. 3f and Extended Data Fig. 4). 3D classification identified two major conformations, 

which presumably represent the open (~69%) and inactivated states (~31%) that we will 

discuss in detail (Extended Data Fig. 4). Consistent with its increased basal activity, K169A 

in the absence of ligand indeed produced an open conformation, as assessed by interatomic 

distances and pore radius calculation (Fig. 3g,h). Both the SF and HBC constrictions are 

considerably expanded. The pore-lining helix S6 maintains its secondary structure, 

containing a π-helical turn in the middle, as in the closed conformation and the same set of 
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amino acids define the narrowest points along the ion pore. The interatomic distances 

between the diagonal backbone carbonyl oxygen atoms of G638 and between the diagonal 

carbon atoms of the side chains of I674 increase from 4.5 to 6.9 Å, and from 5.3 to 9.2 Å 

(diagonal Cα-Cα distance 13.2 Å), respectively. This open pore conformation is similar to 

those determined in detergents and amphipols18,20, and the degree of opening is analogous 

to that of TRPV123. Overall, the open structure of ligand-free K169A in lipid nanodiscs 

resembles the open structures of the mouse TRPV3 Y564A variant in detergents and the 

human TRPV3 K169A mutant in amphipols bound to 2-APB18,20. Surprisingly, in human 

TRPV3, K169A in the absence of 2-APB gives rise to an open conformation in lipid 

nanodiscs but a non-conducting conformation in amphipols20, underscoring the importance 

of lipid modulation of channel activity.

To better understand TRPV3 gating transitions in a lipid bilayer, we aligned the open K169A 

with closed wild-type structures and observed global conformational changes in both the 

transmembrane and cytoplasmic domains upon channel opening (root mean square deviation 

(r.m.s.d) of all Cα ~2.8 Å, Fig. 4a,b). The nature and extent of domain movements are 

comparable to those in TRPV1 activation23 (Extended Data Fig. 5). Disruption of salt bridge 

interactions through the K169A mutation results in a drastic secondary structure change at 

the distal CTD (Fig. 4c,d), which transitions from an extended loop to an α-helix. This 

structural rearrangement is in agreement with previous human TRPV3 studies in amphipols, 

in which the loop-to-helix transition was proposed to function as a conformational switch for 

TRPV3 activation that is likely applicable to other TRPV channels20. In our open TRPV3 

structure, it appears that the distal C-terminal helix pushes the Finger 5 loop of an adjacent 

ARD counterclockwise, viewed from the intracellular side (Fig. 4c,d), and this structural 

rearrangement would propagate to the linker domain, the TRP helix, and the transmembrane 

domain, eventually resulting in central pore opening.

Upon channel opening, each of the four pore-lining S6 helices moves outward by ~1.3 Å 

with a marginal rotation of ~3°. Consequently, the subtle yet collective outward movement 

of the pore-lining helices results in an expansion of the HBC gate (Fig. 4e). The selectivity 

filter dilates as the SF loops move away from each other, accompanied by repositioning of 

the pore helix with a downward movement of ~2 Å and a rotation of ~8° (Fig. 4e,f). In the 

closed conformation, one of the acyl chains of an ordered lipid at site 2 snugly fits in the 

hydrophobic crevice between the pore helix and S6 π-helical segment and appears to 

physically support the up configuration of the pore helix (Fig. 4f). The downward movement 

of the pore helix associated with channel gating would require the lipid tail withdrawn from 

this pocket, which is precisely illuminated in the open structure (Fig. 4g). In addition, the 

lipid head group shifts downward together with the pore helix, as indicated by the head-and-

two-tails shape of lipid density (Fig. 4g).

Lipid rearrangement during channel activation also occurs in the ligand or lipid binding 

pocket shared by TRPV channels, which is located in the vicinity of the S4-S5 linker and 

TRP helix facing the interface between the S1-S4 and pore domains24,36,43,45 (Extended 

Data Fig. 6). First described in TRPV1, this binding site accommodates a resident lipid, 

vanilloid ligands, or antagonists to differentially modulate channel activity36. The lipid 

density, albeit weaker, appears in the corresponding locale in TRPV3 embedded in 
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nanodiscs in the closed conformation but becomes more prominent in the open conformation 

(Extended Data Fig. 6). This observation further supports the important role of this 

conserved ligand binding site in shaping channel activity, and mutagenesis of key residues 

involved in this site has rendered TRPV2 and TRPV3 channels sensitive to TRPV1-specific 

vanilloid agonist resiniferatoxin (RTX)58–60. Lipid rearrangement also occurs at site 5 

between inter-subunit S4-S5 linkers, and the lipid bound in the closed conformation 

essentially dissociates from the channel upon activation.

Channel inactivation

In excised membrane patches, both the wild-type and K169A channels gradually inactivate 

with sustained stimulation by 2-APB (Fig. 5a–c). Therefore, we conducted cryo-EM studies 

of the wild type and K169A in the presence of 2-APB throughout the purification and 

reconstitution procedures to attain structural insights into channel inactivation. We obtained 

a 3D reconstruction at low resolution for the wild type but determined the structure of 

K169A with 2-APB bound at a medium resolution of 4.3 Å, which was used in our 

structural analysis (Fig. 5d, Extended Data Fig. 7). The cryo-EM density is of sufficient 

quality at a moderate resolution, and the majority of side chain densities is well resolved 

(Extended Data Fig. 7f), thus facilitating model building at high confidence (Fig. 5d). Likely 

owing to the limited resolution, the cryo-EM density does not show well-ordered lipid 

molecules surrounding the channel, as observed in the closed and open structures. The 

overall structure is similar to the ligand-free, open structure of K169A (r.m.s.d of all Cα 
atoms ~1.7 Å), except for pronounced structural rearrangements centered at the pore-lining 

helix S6 (Fig. 5e–g). The pore structure in the inactivated state closely resembles those in the 

assumed closed states of TRPV3 in detergents and amphipols18,19. In the inactivated 

conformation, while the selectivity filter is comparable to that in the open structure, S6 

becomes entirely α-helical, generating dramatic rearrangements of the intracellular half of 

S6 beginning at F666, where the π-helical segment begins in the closed and open structures. 

The S6 π-to-α transition results in an inward contraction of ~10° toward the central axis for 

the lower half of S6, accompanied by a rotation of ~100° about the axis of the helix (Fig. 

5f). Subsequently a different set of amino acids of the lower half of S6 faces the ion 

conduction path on the intracellular side, and M677, instead of I674, lines the intracellular 

S6 HBC gate in the inactivated conformation. The C-terminal end of S6 partially unwinds, 

creating a more relaxed connector joining S6 and the TRP helix (Fig. 5g). Thus, it appears 

that upon inactivation the pore domain is less tightly coupled to the TRP domain.

Robust non-protein density in the vicinity of H426, which has been independently identified 

as a binding site that is specifically important for 2-APB sensitivity18,20, indicates that 2-

APB is bound in our inactivated structure (Fig. 6a). In contrast, the same binding pocket is 

clearly unoccupied in the ligand-free wild type and K169A structures (Fig. 6b,c). To verify 

that the inactive K169A structure in the presence of 2-APB stems from continued exposure 

of the channel to 2-APB, we also determined the cryo-EM structure of K169A briefly 

introduced to 2-APB for 3 minutes (Extended Data Fig. 8), which is essentially identical to 

the ligand-free, open K169A structure (r.m.s.d of all Cα ~0.7 Å), except for prominent non-

protein density attributable to 2-APB appearing in the ligand-binding pocket (Fig. 6d). This 

result further confirms that 2-APB is readily accommodated by the open conformation. We 
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did not observe additional densities likely representing 2-APB molecules in the 2-APB-

bound open and inactivated structures. Thus, the fact that K169A channels spontaneously 

open in the absence of 2-APB and 2-APB binds to both the open and inactivated structures 

makes it premature to explain the complex mode of action by 2-APB.

In the previous mouse TRPV3 study, two additional 2-APB binding sites have been 

proposed, including site 4 in the intracellular portion of the S1-S4 domain that binds lipid 

(Extended Data Fig. 3b)18. The introduction of a point mutation Y564A at this site in mouse 

TRPV3 gives rise to an increase of apparent 2-APB affinity18, supporting its role in 2-APB 

binding. However, the non-proteinaceous density at site 4 is present in all of our TRPV3 

structures in nanodiscs, in the absence and presence of 2-APB. This result is also consistent 

with the observation of non-protein density at site 4 in human TRPV3 structures in 

amphipols, with and without application of 2-APB19. Additionally, the H426A mutation in 

the consensus 2-APB binding site results in reduced response to high concentrations of 2-

APB but maintains sensitivity to camphor20. In contrast, mutations at site 4 in human 

TRPV3 do not alter relative responses of 2-APB compared to camphor20. These results 

indicate that site 4 is not involved in 2-APB-dependent activation in human TRPV3. On the 

other hand, crystallographic studies using brominated derivative of 2-APB identified that 2-

APB binds to the equivalent location of site 4 in TRPV6 to inhibit the channel56. 

Collectively, these results suggest that the location at site 4 could be a lipid or ligand binding 

site common to TRPV channels that can differentially modulate channel activity.

Discussion

In this work, multiple cryo-EM structures of human TRPV3 embedded in lipid nanodiscs, 

representing distinct functional states, have illuminated gating transitions in a lipid bilayer 

environment, which are remarkably different from those observed in detergents and 

amphipols18–21. The ligand-free, closed conformation of TRPV3 in nanodiscs reveals a 

unique non-conducting conformation with two physical constrictions along the ion 

permeation pathway, which has evaded previous studies in detergents and amphipols18–21. 

Both the upper SF and lower S6 HBC regions are narrow in the closed state and expand 

considerably upon channel activation, accompanied by pronounced lipid rearrangements 

surrounding the channel. The pore-lining helix S6 maintains a π-helical turn transitioning 

from the closed to open conformation, but becomes entirely α-helical in the inactivated state 

(Extended Data Fig. 9). Our structures, in combination with functional characterization, 

provide visualization of human TRPV3 activation and inactivation in a lipid bilayer that 

closely resembles biological membranes. In line with recent structural studies of 

TRPV318–21, it has proven to be a challenge to obtain open structures of the wild-type 

channel. Here in this work, we leveraged the K169A sensitization mutant to obtain the open 

and inactivated structures at near atomic resolution to gain insight into channel gating in a 

lipid bilayer, which might differ from gating of the native TRPV3 channels by physiological 

stimuli.

Multiple lipid molecules position in the vicinity of critical structural elements of human 

TRPV3 in nanodiscs and rearrange during gating. In the previous study of mouse TRPV3 in 

detergents, lipid density was reported at a location between the extracellular half of S4 and 
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the pore domain in the ligand-free state, and it was proposed that 2-APB binding to a nearby 

site created by the extracellular portion of the S1-S4 domain allosterically displaces this 

inhibitory lipid, resulting in tighter association of the S1-S4 and pore domains, promoting 

channel opening18. In contrast, in our human TRPV3 structure in nanodiscs as well as in 

human TRPV3 structure in amphipols19, S4 packs tightly against the pore domain and the 

corresponding lipid is not present. It remains unclear what gives rise to this discernible 

structural difference and hence potential gating transitions, which may reflect amino acid 

sequence divergence between the human and mouse orthologs.

The narrow SF in the closed conformation of TRPV3 in a lipid bilayer is also in drastic 

contrast to the wide selectivity filters observed in all structures determined in detergents and 

amphipols, which led to the suggestion that the selectivity filter is not involved in TRPV3 

gating18–21. This notion directly contradicts our structures in lipid nanodiscs as well as 

previous functional data supporting the involvement of the SF in channel activation. 

Multiple residues (N643S, I644S, N647Y, L657I and Y661C) surrounding the selectivity 

filter and pore helix have been identified as critical for heat activation33, and immediately 

nearby residues (I652 and L655) exhibit temperature-dependent cysteine accessibility34. In a 

more recent study, sensitivity of the TRPV1-specific ligand RTX was introduced to TRPV3 

by point mutations creating a vanilloid-binding pocket (the TRPV3-6M construct)60. 

However, activation of the engineered TRPV3-6M by RTX requires additional point 

mutations in the outer pore, elevated temperature, or sensitization by 2-APB60, suggesting 

physically separated activation pathways. In TRPV1, agonist binding specifically stabilizes 

opening of the S6 HBC gate, leaving the SF constriction virtually unaltered. In analogy, 

RTX binding in the engineered TRPV3 channel may facilitate opening of the HBC gate but 

stimulation by heat or 2-APB would be additionally required to support the expanded SF 

configuration to stabilize the open pore. The five individual pore mutants, V587L, A606V, 

F625L, F656I, and F666Y, enabling channel activation by RTX cluster at the surrounding of 

site 1 lipid (Extended Data Fig. 10), which facilitates the maintenance of a narrow selectivity 

filter. This observation further supports the critical role of lipid 1 in channel gating. 

Additionally similar to TRPV1, the TRPV3-6M channel exhibits allosteric coupling between 

heat and vanilloid activation60.

These results also raise an interesting possibility regarding the mechanism of temperature 

sensation in TRPV3. Comparison of the narrow SF in nanodiscs and the wide SF in 

detergents or amphipols in the absence of ligand suggests that resident lipids may facilitate 

closure of the SF and elevated temperature would rearrange these lipids to expand the SF. 

This concept was introduced earlier in TRPV1 on the basis of structures determined in 

nanodiscs36. An endogenous lipid, putatively assigned as phosphatidylinositol, was found at 

the agonist-binding pocket in the ligand-free, closed TRPV1 channel, and it appears that 

agonist binding or elevated temperature would expel this resident lipid to activate the 

channel. TRPV1 and TRPV3 may share basic principles in ligand and temperature 

activation, given the remarkable similarity of the closed and open conformations, as well as 

allosteric coupling between distinct activation pathways in TRPV1 and TRPV3 channels.
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Methods

Protein expression and purification

The full-length human TRPV3 DNA (GenBank: EAW90503.1) was cloned into a modified 

pPICZ-B vector with a PreScission protease cleavage site and a C-terminal GFP-His10 tag 

for protein expression. The human TRPV3 K169A mutant was generated by site directed 

mutagenesis. For electrophysiological recordings, DNA fragments corresponding to the wild 

type or mutant TRPV3 channels were ligated into a modified pCEU vector with a C-terminal 

GFP-His8 tag.

The wild-type and mutant human TRPV3 channels were expressed in Pichia pastoris. For 

wild-type protein purification, yeast cells (20 g) were disrupted by milling (Retsch MM400) 

and resuspended in lysis buffer containing 50 mM Tris-HCl pH 8.0 and 150 mM NaCl 

supplemented with protease inhibitors (2.5 μg ml−1 Leupeptin, 1 μg ml−1 Pepstatin A, 100 

μg ml−1 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride, 3 μg ml−1 Aprotinin, 1 

mM Benzamidine and 200 μM phenylmethane sulphonylfluoride) and DNase I. Cell 

membranes were solubilized for 2 h in buffer containing 2% (wt/vol) n-dodecyl-β-D-

maltopyranoside (DDM, Anatrace) with stirring at 4°C and then centrifuged for 0.5 h at 

30,000g. Supernatant was added to 3 ml cobalt-charged resin (G-Biosciences), and rotated 

for 3 h at 4°C. Resin was then washed with 30 ml buffer containing 20 mM Tris-HCl pH 8.0, 

150 mM NaCl, 10 mM imidazole, and 4 mM DDM. Protein was eluted with buffer 

containing 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 200 mM imidazole, and 1 mM DDM. 

For purification of K169A, cell lysate was extracted with 1% Lauryl Maltose Neopentyl 

Glycol (LMNG, Anatrace), and the detergent was exchanged to 85 μM glyco-diosgenin 

(GDN, Anatrace) in the wash and elution buffer.

Nanodisc reconstitution

Soybean polar lipid extract (Avanti Polar Lipids) in chloroform was dried under argon and 

then by vacuum desiccation for more than 2 h. Lipids were rehydrated at 10 mM in buffer 

containing 20 mM Tris-HCl pH 8.0, 150 mM NaCl, and 14 mM DDM, and sonicated right 

before use. Channel protein eluted from cobalt-charged resin was concentrated to ~ 20 μM 

and then mixed with the scaffold protein MSP2N2 and lipids and at molar ratio of 1:0.5:50. 

The mixture was incubated on ice for 10-30 min before the addition of Bio-beads SM-2 

resin (Bio-Rad) at a final volume of ~12.5% (vol/vol). PreScission protease was then added 

to the mixture to remove the C-terminal GFP-His10 tag. The mixture was incubated at 4°C 

overnight with constant rotation. Bio-beads were then removed by centrifugation and the 

clear reconstitution solution was concentrated and further purified on a Superose 6 column 

(GE Healthcare Life Sciences) in buffer containing 20 mM Tris-HCl pH 8.0 and 150 mM 

NaCl.

Cryo-EM sample preparation and imaging

3.5 μl of purified channel concentrated to ~1 mg ml−1 was pipetted onto glow-discharged 

Quantifoil R1.2/1.3 or R2/2 copper grids (Quantifoil). For sample preparation of K169A 

briefly exposed to 2-APB, the protein was incubated with 1 mM 2-APB for 3 min before 

applied to grids. Grids were blotted for 2 s at ~100% humidity and flash frozen in liquid 
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ethane using FEI Vitrobot Mark IV (Thermo Fisher Scientific). Grids were then transferred 

to a FEI Titan Krios (Thermo Fisher Scientific) electron microscope operating at 300 kV. 

Cryo-EM datasets were collected in an automated fashion on a Gatan K2 Summit (Gatan) 

detector in super-resolution counting mode with a super-resolution pixel size of 0.55 Å 

(physical pixel size of 1.1 Å) using EPU (https://www.fei.com/software/epu-automated-

single-particles-software-for-life-sciences/). GIF Quantum energy filter with a slit width of 

20 eV was operated in zero-energy-loss mode before detector. Dose-fractionated images 

were recorded with a nominal defocus value ranging from −1.0 μm to −2.5 μm. Each movie 

was recorded for 8 s using a per-frame exposure time of 200 ms and a dose of ~7.8 electrons 

per Å2 per second, resulting in an accumulated dose of ~62 electrons per Å2.

Image processing and map calculation

Recorded movies were subjected to motion correction and dose-weighting with 

MotionCor261. Motion corrected images with dose weighting were used for contrast transfer 

function (CTF) determination using GCTF62. After motion correction and CTF estimation, 

low-quality images were manually removed from the datasets. For the apo wild-type dataset, 

~6,000 particles were manually selected to generate two-dimensional class templates for 

automated particle picking in RELION263. Particles were extracted using a particle box size 

of 256 pixels and subjected to 2D classification with a mask diameter of 190 Å. Particles in 

good 2D classes were selected and imported into cryoSPARC to generate an ab initio low 

resolution map64. 3D refinement and 3D classification were performed in RELION2 to 

select good particles for final 3D refinement and post-processing63. For reconstructions of 

other datasets, the apo wild-type map was low-pass filtered to 60 Å and served as a reference 

map for 3D classification in RELION365. CTF refinement and Bayesian polishing were 

performed to improve the map quality, and local resolution estimates were calculated in 

RELION365.

All four datasets were collected from the same Titan Krios microscope using the same 

imaging conditions. 3D reconstruction for the 2-APB-bound inactivated state has the lowest 

resolution and local resolution at the 2-APB binding site was estimated to be 4.0 Å. 

Therefore, to allow direct comparison of the 2-APB binding site, we adjusted the power 

spectrum of the other three maps to match that of the map of the 2-APB-bound inactivated 

state using --adjust_power within relion_image_handler, and then low pass filtered all four 

maps to 4.0 Å using --lowpass within relion_image_handler. These normalized maps were 

used to identify the 2-APB binding site and to facilitate assignment of the functional states 

of these distinct conformations. 3D classification of the apo K169A dataset identified two 

major conformations, which presumably represent the open (~69%) and inactivated states 

(~31%). The inactivated structure is essentially identical to the K169A-2-APB inactivated 

structure, except for the absence of 2-APB.

Model building and refinement

To build the apo wild-type human TRPV3 model, the crystal structure of the isolated mouse 

TRPV3 ankyrin repeat domain (PDB: 4N5Q) was docked into the cryo-EM density map 

using UCSF CHIMERA66, and then manually adjusted in COOT67. The remaining structure 

was de novo built into the density map guided by TRPV1 structure and bulky side chains to 
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register the amino acid sequence. Real space refinement was performed using 

real_space_refine in PHENIX68. The other structures were built by docking the apo wild-

type model into cryo-EM density maps in CHIMERA, adjusted in COOT, and further 

refined in PHENIX. Model validation was performed with MolProbity69. Well-resolved 

lipid-like densities with a head-and-two-tails shape were putatively modeled as 

phospholipids. For simplicity, all lipids in the structures were modeled as 

phosphatidylethanolamines (PE), which were generated using eLBOW in PHENIX.

Electrophysiological recordings

CosM6 cells were transfected with 1-2 μg of plasmids encoding human TRPV3 or K169A 

with C-terminal GFP using FuGENE 6 (Promega). The cells were used for patching 24-48 h 

after transfection. Protein expression was assessed by GFP fluorescence. Inside-out 

membrane patches were excised from the cellular plasma membranes using glass pipettes 

(Kimble Chase 2502) with BN (bubble number) ~570, fabricated with a Sutter P-96 puller 

(Sutter Instruments). Symmetric potassium internal buffer (140 mM KCl, 4 mM K2HPO4, 1 

mM EGTA, 1 mM K2EDTA, pH 7.38) was used in all experiments. Membrane potential was 

maintained at −20 mV or as specified in the text. The agonist (2-APB) at indicated 

concentrations was applied to the membrane patches from the cytoplasmic side via 

continuous bath perfusion. The data were acquired with Axopatch-1D patch-clamp amplifier 

and Digidata 1320 digitizer (Axon Instruments) at 500 Hz and low-pass filtered at 200 Hz. 

Data analysis was performed in pClamp 10.6 software suite (Molecular Devices).

For sensitization experiments, protocols consisting of repeated 15 s application of 30 μM 2-

APB followed by 45 s washout in the agonist-free buffer were used. The measurements 

continued for about 30 cycles or until current saturation. The ratio of the 2-APB-induced 

current in the first cycle and the maximum achievable current was used to estimate 

sensitization efficiency for the wild type and K169A. In the inactivation experiments, the 

agonist (1 mM 2-APB) was continuously applied to the patch during the entire course of 

experiments.

Cell lines

Pichia pastoris SMD1163H (Invitrogen) and CosM6 (monkey kidney fibroblasts) cells were 

used. Cell lines were not authenticated or tested for mycoplasma contamination.

Reporting summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The cryo-EM maps of the wild-type human TRPV3 and K169A have been deposited to 

Electron Microscopy Data Bank with accession codes EMD-20917 (apo TRPV3), 

EMD-20918 (apo K169A), EMD-20919 (K169A with 3 min exposure to 2-APB), and 

EMD-20920 (K169A in the presence of 2-APB). Atomic coordinates have been deposited to 

the Protein Data Bank (PDB) with accession codes 6UW4 (apo TRPV3), 6UW6 (apo 
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K169A), 6UW8 (K169A with 3 min exposure to 2-APB), and 6UW9 (K169A in the 

presence of 2-APB).

Extended Data
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Extended Data Fig. 1: Reconstitution of human TRPV3 into lipid nanodiscs.
a, Size-exclusion chromatography of TRPV3 reconstituted into lipid nanodiscs made of 

soybean polar lipids and the scaffold protein MSP2N2 (left panel). Peaks indicating the void, 

the TRPV3-embedded nanodiscs, the empty nanodiscs, and GFP were labeled. The peak 

fraction corresponding to TRPV3 channels in nanodiscs was shown on SDS-PAGE (right 

panel). b, The collected TRPV3-nanodisc fraction ran as a monodisperse peak on size-

exclusion chromatography. c, Representative micrograph for negative stain and reference-

free 2D class averages indicating a tetrameric channel inserted into nanodiscs (right).
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Extended Data Fig. 2: Cryo-EM reconstruction of the wild-type full-length human TRPV3 in 
lipid nanodiscs.
a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-

processing in RELION2. c, Fourier shell correlation between the refined model and the full 

map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM 

density map colored by local resolution. f, Representative cryo-EM density shown as blue 

mesh contoured at 5.0 σ.

Deng et al. Page 16

Nat Struct Mol Biol. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3: Channel-lipid interactions in human TRPV3.
a, Lipid densities at sites 1, 2, and 3 located in the proximity of the outer pore region. Lipids 

are putatively modeled as phosphatidylethanolamine to illustrate interactions with the 

channel. Channel subunits are uniquely colored. Polar and charged residues potentially 

interacting with lipid head groups are highlighted in stick representation. b, Lipid density at 

site 4 in the intracellular cavity of the S1-S4 domain. c, Lipid density between the S4-S5 

linkers of two neighboring subunits. The putative lipid densities are shown as orange mesh 

contoured at 3.5 σ.
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Extended Data Fig. 4: Cryo-EM reconstruction of the human TRPV3 K169A variant in lipid 
nanodiscs.
a, Flowchart of cryo-EM data processing. Two major conformations, presumably 

representing the open (~69%) and inactivated states (31%), were refined to resolutions of 

3.66 Å and 4.4 Å, respectively. b, Fourier shell correlation before and after post-processing 

in RELION3 for the open state. c, Fourier shell correlation between the refined model and 

the full map for the open state. d, Angular distribution plot of particles used for final 
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reconstruction for the open state. e, Cryo-EM density map colored by local resolution for the 

open state. f, Representative cryo-EM density shown as blue mesh contoured at 5.0 σ.
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Extended Data Fig. 5: Opening of TRPV1.
a,b, Orthogonal views of the closed (PDB: 3J5P) and open (PDB: 3J5Q) structures of 

TRPV1.
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Extended Data Fig. 6: Lipid in the analogous vanilloid binding pocket in TRPV3.
a,b, Putative lipid density shown as orange mesh contoured at 4.5 σ in the analogous 

vanilloid binding pocket in the closed (a) and open (b) conformations.
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Extended Data Fig. 7: Cryo-EM reconstruction of K169A accompanied by 2-APB in an 
inactivated state.
a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-

processing in RELION3. c, Fourier shell correlation between the refined model and the full 

map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM 

density map colored by local resolution. f, Representative cryo-EM density shown as blue 

mesh contoured at 5.0 σ.
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Extended Data Fig. 8: Cryo-EM reconstruction of K169A briefly exposed to 2-APB for 3 minutes 
in an open conformation.
a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-

processing in RELION3. c, Fourier shell correlation between the refined model and the full 

map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM 

density map colored by local resolution. f, Representative cryo-EM density shown as blue 

mesh contoured at 5.0 σ.
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Extended Data Fig. 9: TRPV3 pore structures in distinct functional states.
a-d, The pore structures in the apo closed wild-type TRPV3 channel (a), the apo open K169 

mutant (b), the 2-APB-bound open K169A (c), and 2-APB-bound inactivated states (d). 

Also shown are cryo-EM densities of the normalized cryo-EM maps contoured at 6.0 σ.
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Extended Data Fig. 10: Mapping the pore mutations enabling TRPV3-6M activation by RTX.
Two views of the closed TRPV3 pore, highlighting the pore mutations that render 

TRPV3-6M sensitive to RTX activation. These mutations, including V587L, A606V, F625L, 

F656I, and F666Y, are shown as stick representation and colored in green.
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Fig. 1 |. Cryo-EM structure of human TRPV3 in lipid nanodiscs.
a, Cryo-EM reconstruction of the full-length wild-type human TRPV3 ion channel. The 

cryo-EM density is contoured at 6.0 σ. Each subunit is shown in a unique color and lipid 

densities are colored in brown. b,c, Orthogonal views of the TRPV3 structure. d,e, Two 

views of the structure of a single subunit with putatively bound lipids at sites 1-5. The lipid 

densities, shown as brown mesh contoured at 3.5 σ, can be well fitted with phospholipids 

such as phosphatidylethanolamine to illustrate the positions of the head groups and acyl 

chains. f, Cytoplasmic inter-subunit interface mediated by the linker domain, CTD, and 

ARD from an adjacent subunit. Residues at the interface are highlighted in stick 

representation.
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Fig. 2 |. Two physical constrictions along the ion pore of TRPV3 in a lipid bilayer.
a, The ion conduction pore of TRPV3 in a lipid bilayer, shown as light blue surface 

calculated with the program HOLE. The front and back subunits are removed for clarity. 

Two narrow constrictions at the selectivity filter and the intracellular S6 bundle-crossing 

regions are illustrated. The cryo-EM density in the pore region, contoured at 6.0 σ, is shown 

on the right. b, Dimension of the ion conduction pore. c, The pore structure of TRPV1 in the 

closed state (PDB: 5IRZ). d,e, The pore structures of human TRPV3 in amphipols (d, PDB: 

6MHO) and mouse TRPV3 in detergents (e, PDB: 6DVW) in the apo states.
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Fig. 3 |. TRPV3 opening in a lipid bilayer.
a,b, The wild-type TRPV3 (a) and K169A (b) currents in an inside-out membrane patch 

elicited by repetitive application of 30 μM 2-APB at −30 mV. c, Ratios of the first round of 

current response to the maximal response for the wild type (0.17 ± 0.04, n = 6) and K169A 

(0.90 ± 0.08, n = 6) (MEAN ± STDDEV, n independent biological experiments). d, e, Basal 

currents of the wild-type TRPV3 (d) and K169A (e) at −20 mV. Asterisk indicates patch 

excision. 2-APB (300μM) was added 10 minutes following patch excision. The K169A 

channels spontaneously open upon patch excision while the wild-type channels remain silent 

without application of 2-APB. The relative basal open probability of K169A, indicated by 

the current ratio in the absence to presence of 2-APB, is 0.57 ± 0.08 (6 independent 

Deng et al. Page 31

Nat Struct Mol Biol. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biological experiments). f, Open structure of the TRPV3 K169A mutant. Lipid densities are 

shown as orange mesh contoured at 3.5 σ. g, Ion conduction pore in the open conformation. 

Cryo-EM density contoured at 6.0 σ is shown on the right panel. h, Comparison of the 

dimensions of the open and closed pores.
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Fig. 4 |. Conformational changes upon channel opening.
a,b, Orthogonal views of superposition of the wild-type TRPV3 (closed) and K169A (open) 

structures. Structures are aligned using all four subunits. c,d, The distal CTD and finger 5 of 

the ARD in the closed (c) and open (d) conformations. Cryo-EM density contoured at 6.0 σ 
is also shown for the distal CTD. e, Superposition of the closed and open pores. f,g, Lipid at 

site 2 in the closed (f, blue) and open (g, red) conformations. Lipid densities are shown as 

brown mesh at 3.0 σ. Also shown in (f, red) is the aligned open pore to illustrate steric 

hindrance between the lipid and pore helix upon channel opening.
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Fig. 5 |. Structure of an inactivated conformation.
a,b, The wild-type TRPV3 (a) and K169A (b) currents in an inside-out membrane patch 

induced by 1 mM 2-APB (indicated by asterisks) at −30 mV. The agonist was present in bath 

solutions during the entire course of recordings. c, Time for current decay to half maximum 

for the wild type (10.0 ± 5.5 min, n = 6) and K169A (51.6 ± 15.8 min, n = 5) (MEAN ± 

STDDEV, n independent biological experiments). d, Structure of K169A in the presence of 

2-APB in an inactivated state. e, The ion conduction pore. The pore-lining helix S6 is α-

helical and M677 lines the HBC gate. f, Superposition of the open and inactivated pores. g, 
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Comparison of the S6 and TRP helices in the open (red) and inactivated (green) structures. 

Also shown are cryo-EM densities for S6 and TRP helices in the open (red) and inactivated 

(green) states.
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Fig. 6 |. 2-APB binding site.
a-d, Cryo-EM density in the 2-APB binding site in the 2-APB-bound inactivated (a), ligand-

free open (b), ligand-free closed (c), and 2-APB-bound open states (d). Densities of 

normalized cryo-EM maps are shown as blue mesh contoured at 5.0 σ. The red arrow 

indicates the cryo-EM density attributable to 2-APB.
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Table 1 |

Cryo-EM data collection, refinement and validation statistics

TRPV3 (EMD-20917, 
PDB 6UW4)

K169A (EMD-20918, 
PDB 6UW6)

K169A (2-APB, 3 min) 
(EMD-20919, PDB 
6UW8)

K169+2-APB 
(EMD-20920, PDB 
6UW9)

Data collection and processing

Magnification 105,000 105,000 105,000 105,000

Voltage (kV) 300 300 300 300

Electron exposure (e−/Å2) 62 62 62 62

Defocus range (μm) −1.0 to −2.5 −1.0 to −2.5 −1.0 to −2.5 −1.0 to −2.5

Pixel size (Å) 1.1 1.1 1.1 1.1

Symmetry imposed C4 C4 C4 C4

Initial particle images (no.) 371,795 357,362 565,964 769,323

Final particle images (no.) 70,711 85,510 36,394 66,293

Map resolution (Å) 3.13 3.66 4.02 4.33

 FSC threshold 0.143 0.143 0.143 0.143

Map resolution range (Å) 3.0-6.0 3.0-6.0 3.5-6.0 3.5-6.0

Refinement

Initial model used PDB 4N5Q This study This study This study

Model resolution (Å) 3.20 3.70 4.00 4.30

 FSC threshold 0.5 0.5 0.5 0.5

Model resolution range (Å) 3.10 3.60 3.80 4.10

Map sharpening B factor (Å2) −104 −116 −109 −176

Model composition

 Non-hydrogen atoms 20,281 20,072 19,640 18,924

 Protein residues 2,412 2,408 2,408 2,328

 Ligands 21 20 0 0

B factors (Å2)

 Protein 67.0 35.2 84.4 72.3

 Ligand 63.0 28.7 0 0

R.m.s. deviations

 Bond lengths (Å) 0.006 0.009 0.005 0.005

 Bond angles (°) 0.881 1.034 0.899 1.138

Validation

MolProbity score 1.57 1.81 1.65 1.91

Clashscore 3.97 5.68 4.55 8.17

Poor rotamers (%) 0 0 0 0.2

Ramachandran plot

 Favored (%) 94.22 91.58 93.64 92.66

 Allowed (%) 5.78 8.42 6.36 7.34

 Disallowed (%) 0 0 0 0
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