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Cell biology relies largely on reproducible visual observations. Unlike cell culture, tissues are
heterogeneous, making difficult the collection of biological replicates that would spotlight a
precise location. In consequence, there is no standard approach for estimating the statistical
significance of an observed pattern in a tissue sample. Here, we introduce SET (for Synthesis
of Epithelial Tissue), a method that can accurately reconstruct the cell tessellation formed by
an epithelium in a microscopy image as well as thousands of alternative synthetic tessella-
tions made of the exact same cells. SET can build an accurate null distribution to statistically
test if any local pattern is necessarily the result of a process, or if it could be explained by
chance in the given context. We provide examples in various tissues where visible, and
invisible, cell and subcellular patterns are unraveled in a statistically significant manner using
a single image and without any parameter settings.
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ince the advent of high throughput dispensing and auto-

mated microscopy, methods and software tools for large-

scale single-cell image analysis have blossomed and enabled
profiling and comparison of large ranges of perturbations on cell
cultures!~4. Variance estimation and statistical testing in these
approaches are achieved by simply producing several replicates
per condition. This is made possible by the fact that cell culture
permits robust standardized and sometimes fully automated
replication of a sample condition. In contrast, while it is still
possible to detect and quantify a single-cell event in large slide of
cell tissues, their comparison and statistical analysis have
remained hampered, apart from stereotypic exceptions, by the
imprecision of microdissection, spatial inhomogeneity of samples,
and notorious replicate variability®. In fact, spatial inhomogeneity
is what makes tissues interesting to study in comparison to cell
culture that often spreads a single or a few cell types uniformly
but barely matches the spatial organization of these cells in an
organism. In tissue samples, the state of a cell within its local
context is observed once, and this exact context can in general
barely be reproduced with precision. Therefore, as heterogeneity
across a sample is the rule, obtaining robust standardized repli-
cates is difficult for a single-cell event and impossible for a small
cell patch or cell organization pattern observed locally. The
unavailability of reliable replicates of such an event makes com-
parison of between-versus-within group variance irrelevant and
statistical evidence unworkable.

However, what is sought in studies that relies on tissue sample
observation are factors underlying cell organization, develop-
mental process, or disease progression, independent of the
variability between observations. From this point, how to deal
with the impossibility of obtaining robust standardized replicates
of an event? Is it possible to statistically test for the existence of a
local cell to cell relationship from a single replicate? How to assess
the existence and detect the heterogeneity of a local phenotype
across one tissue sample? All these questions can be summarized
in one: is the cell organization, observed at a specific location,
driven by molecular or mechanical factors, or is it likely to be
expected by chance given the distribution of cell shape and size?
Being able to systematically answer this question is of growing
importance as bridging the gap between profiles of single-cell
gene expression and spatial cell relationships and morphology in
tissue samples is at reach®’. Studying further cell communication
and organization will require the ability to decipher non-random
spatial relationships between cells, in order to complement and
possibly explain single-cell gene expression.

While modeling of tissues is a rich area, statistical methods to
study the spatial organization of actual cell images, especially of
tissues, were not extensively discussed in the literature®. Marked
point process statistics offer compelling tools to study spatial
autocorrelations but, as their name suggests, they become inap-
propriate for compartments, especially with irregular shapes such
as cells®. In recent years, deep learning approaches were mostly
successful for classification problems where they provided state of
the art results, especially with cell culture, as data acquisition can
be properly standardized!%!1. These approaches were also applied
to tissue mainly for diagnostic purposes, but the quality of the
results remained highly dependent on the possibility and the
quality of standardization'?. More importantly, deep learning
approaches do not provide solutions to infer if a local piece of
tissue is structured or not from a single image, which is needed to
decipher processes from heterogeneous tissue samples in basic
research in cell biology. Altogether, there is no method providing
a systematic way to assess, in a statistically relevant manner, if a
local cell to cell relationship or local spatial pattern can be
observed by chance given the cells or if it is likely due to a
molecular underlying process.

A reason that could explain this current lack of a reference
method could be that cells in a tissue are heterogeneous and their
shape and size can vary extensively across tissue samples. The last
makes the null distribution of any cell relationship-based feature
difficult to construct either empirically using randomization
approaches or analytically because the spatial arrangement of
various cell sizes and shapes is difficult to model. Indeed, as we
shall see further, size and shape of the cells do influence their local
spatial arrangement and thus need to be preserved in the con-
struction of the null distribution.

In this work, we present an approach that brings a robust and
broadly applicable computational solution to this issue. We first
introduce SET (for Synthesis of Epithelial Tissue), an accurate
modeling of the cell tessellation observed in an image of tissue.
This model is first used to reconstruct a close approximation of
the original image’s cell tessellation (called “reconstruction by
SET” in the following) and further used to generate synthetic
alternative tessellations made of the same cells located randomly
(called “random SET”). Generating thousands of synthetic images
using random SET enabled us to build a null distribution for any
quantitative features extracted from a local group of cells. We
demonstrate that computing the same quantitative feature from
the reconstruction by SET provides an accurate p value to accept
or reject the null hypothesis corresponding to a random appari-
tion of the pattern. Our method does not require any input
parameters, making it a stable and easy to use tool for analysis
with no need for ad hoc parameter setting or fine tuning. Fur-
thermore, it requires only one image to draw statistically relevant
conclusions. A compelling advantage given an observed position
in a tissue, in general, can hardly be defined exactly such that to
be observed repeatedly in several replicates or in mutants.
Interestingly, it allows us to independently investigate various
locations in a single piece of tissue to study its heterogeneity. We
illustrate the broad relevance of this approach with various
examples of epithelia in several organisms.

Results

SET: a model to reconstruct epithelial cell tessellation. We first
wondered how the tessellation drawn by the cell boundaries of an
epithelium could be modeled and then accurately reproduced
artificially from a minimum set of parameters per cell. We then
developed an approach that takes as input a segmented cell image
of tissue, as many software packages now offer rather precise cell
segmentation!3-19 (Fig. 1a). We then defined a specific flexible
parametric distance function that could be fit such that the level
one of the distance map matches the contour of the cell (Fig. 1b,
Supplementary movies 1-5 and “Methods”). After fitting, this
parametric distance function combines eight parameters per cell.
It included three positional parameters for each cell: the location
of the cell x, y, and the angle alpha formed by the principal axis of
the cell and the x-axis. It also included five parameters describing
the shape of each cell: the lengths of its two principal axes sj, s5,
two parameters a; and a, accounting for the asymmetry of the
cell and a last parameter p that allows for a cell to possibly include
corners. Once fitted, our approach uses these single-cell-
dependent metrics to compute a tessellation by iteration with a
modified Lloyd algorithm (Fig. 1c and “Methods”). The Lloyd
algorithm enables to adjust cells to its neighbors and feel gaps
between them as it associates all pixels of an image to the closest
cell in a locally optimal way. At initialization, the five shape
parameters for each cell remained fixed along the process to
preserve cell shapes. However, the positional parameters of each
cell were let free to evolve and all the pixels in the plane were
subject to an iterating assignment process until convergence.
Applying the algorithm to an image by initializing the positional
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Fig. 1 Reconstruction by SET: parametric modeling and accurate reconstruction of an epithelial cell tessellation. a-d Flowchart of the SET method. a Top
left, an image of P1 mouse ependyma in which cell junctions were labeled with ZO1 antibody (Supplementary Fig. 1) and, bottom right, the segmentation of
all cells in this image. b Fitting of the level one of AMAT distance function on each cell such that each pixel on the cell border is approximately at a distance
1 from the cell center. ¢ Starting from the initial cell positions and using all AMAT distance functions previously defined, an iterative process (Lloyd-like
algorithm) is used to affect all pixels to the closest cell until convergence. d Visualization of the reconstruction by SET in green over the original
segmentation in white. @ Raw images of various epithelia with marked cell borders (membranes or cell walls, see “Acknowledgements”, “Methods", and
further results for images ressources), scale bar: 10 um. f For each panel, top left in gray is the segmentation of the image in e and, bottom right in green is
the corresponding reconstruction by SET. g-i Comparison of quantitative features computed on each single cell from segmented tissue and on the
corresponding cell in the reconstruction by SET. Pearson coefficient correlation calculated on all cells except the border cells (as they are incomplete).
g Cell size. h Ratio of the minor axis to the major axis of the cell. i Number of cell neighbors. For all plots N=1 image.
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parameters, with the original values obtained after detection,
enabled us to precisely reconstruct the cell tessellation by SET
(Fig. 1d and “Methods”). To ensure our model could accurately
and genuinely reproduce various cell tissues, we applied it to adult
mice ependyma, Drosophila thorax epithelium, Xenopus epithe-
lium, Chick Basilar Papilla, root and shoot apical meristem of
Arabidopsis thaliana (Fig. 1e). Features computed at the single-
cell level, such as the cell area or shape ratio, could be closely
reproduced in the reconstruction by SET (Fig. 1g, h). Moreover,
the cell neighbor count, a feature at the cell organization level,
also showed a high correlation between the reconstructions by
SET and the original segmentations in all provided examples,
assessing that cell neighborhood was also maintained (Fig. 1i).

Relocating cells by SET preserves single-cell properties. The
model previously described can be considered to be a parametric
function characterizing a given image of tissue by a set of para-
meters describing cells position and shape. Modifying those
parameters could then produce alternative artificial tissues. In the
following, we altered only the initial positional parameters of the
cells to make possible the construction of a tessellation made of
the exact same cells with the same shape as in the original image
but reorganized differently (Fig. 2a and “Methods”). Following
the cell displacement, it was furthermore possible to morph the
content of each original cell to its new location using barycentric
coordinates. Briefly, barycentric coordinates enable it to represent
any point of the plane as a weighted sum of a set of anchor points
rather than by Cartesian coordinates. Modifying these anchor
points enables it to smoothly displace all points thus defined
(“Methods” and Supplementary Fig. 2). The initialization of
positional parameters can be deterministic (alternative SET) as
the last two panels of Fig. 2a demonstrate or random (random
SET) as in all the following examples in Fig. 2b generated from
the examples provided in Fig. le. In both cases, this new tessel-
lation preserved single-cell features as cell area or shape ratio
(Fig. 2¢, d and Supplementary Fig. 3) and as expected broke
neighborhood organization (Fig. 2e versus Fig. 1i and Supple-
mentary Fig. 3). Generating random SET of the observed tissue
showed cell patterns that could have been obtained with these
exact cells if their location were to be distributed randomly. The
result is an algorithm that can generate thousands of synthetic
images, all containing the exact same cells as a single real image,
that will subsequently be used to compute the null distribution of
any quantitative feature. Importantly, the algorithm is robust and
does not require any input parameter to be set or fine-tuned. All
cell parameters are automatically estimated from the cell seg-
mentation. Interestingly, because the synthesized cell shape is by
construction very close to the original one, the cell content could
also be transported smoothly without significant distortion, pre-
serving organelles location (Fig. 2a). Therefore, this approach
enabled us to also study the cell to cell relationships of intracel-
lular organelles, as demonstrated further.

SET spatial shuffling unveils patterns in the adult ependyma.
We first used our approach to study cell organization in the
neurogenic niche of the adult mouse brain. This niche is retained
in the walls of the adult lateral ventricles (LV) and is composed of
neural stem cells clustered in the center of multiciliated epen-
dymal cells, described as pinwheel-like structure (Fig. 3a)20. The
apical surface of the two cell types are 10-fold size-asymmetric.
Cells with a large apical surface are multiciliated ependymal cells
while cells with a small apical surface are stem cells. However,
with such a size asymmetry between cell types and the subtlety of
this phenotype, observing such a structure could possibly be due
to chance. To test this hypothesis, we built a null distribution

from one single image by counting the number of stem cells in
direct contact with another stem cell in the reconstruction by SET
than in a thousand random SET. The number of stem cells
touching another stem cell in the distribution of random SET was
systematically smaller than in the reconstruction by SET (Fig. 3¢).
It indicated that the null hypothesis stating a random positioning
of stem cells could safely be rejected with a p value that was at
least 1073, Accordingly, multiciliated-multicilated cell contacts
were found higher in the random SET than in the reconstructed
SET (Supplementary Fig. 4B). To check the consistency of our
approach, we also performed the same test on another image
obtained from approximately the same location in a replicate
individual of the same age and results were confirmed (Supple-
mentary Fig. 5). Thus, while nonobvious by eye, our method
concludes without the need of a control and with a single image
that the stem cells cluster in the adult ependym through an active
mechanism.

In order to evaluate the relevance of the method we propose,
we compared it to two other approaches: a shuffle of the same
ratio of stem cells on an hexagonal grid and a shuffle of the same
ratio of stem cells on the original image segmentation (see
“Methods” for details and Supplementary Fig. 6). Intriguingly,
both of these approaches produced null distributions that
contradicted our results, concluding that stem cells were
unclustered (Fig. 3c and Supplementary Fig. 5). To clear this
up, we generated three alternative SET with known artificial
patterns representing different clustering configurations: an
image engineered such that stem cells obviously cluster (Fig. 3d),
an image with random positioned stem cells (Fig. 3f), and an
image engineered such that stem cells are isolated from one
another on purpose (Fig. 3h). Those SET were all obtained from
the same original image (Fig. 3a) where the stem cells only were
artificially moved. Accordingly, ependymal cells were initialized
at their original location while stem cells were initialized to
manually set locations, then the model was let free to autoadjust
all cells together. This way, both cell shape and cell type ratio
distributions were preserved in the three engineered artificial
examples. The results show that the two other methods did not
succeed in detecting an obvious clustering of cells (Fig. 3e).
Furthermore, they also show that a random sampling of stem cell
locations was interpreted by the two other approaches as a
repelling of cells (Fig. 3g). The three methods agreed only to
detect a true repelling configuration of the cells (Fig. 3i).
Altogether, these results indicate that our approach is the only
one among these three that could correctly detect all known
configurations. It also shows that the two other approaches are
strongly biased, leading to possibly false interpretation. Whether
the local spatial arrangement of cells is random or not, we figured
out using additional SET simulations and real images that the cell
neighbors count is related to the distribution of their size and
shape in a hardly predictable fashion (Supplementary Fig. 7).
Therefore, these single-cell properties must be considered in the
construction of a correct null distribution to test the significance
of an observed cell neighborhood pattern. In opposition to SET,
shuffling in a hexagonal grid considers fix and round cells and
shuffling in the actual segmentation disregards the relationship
between cell type, and cell size and shape, which produces the
same neighbor count null distribution for both subpopulations as
demonstrated by further simulations (Supplementary Fig. 8).
While biased in the presented case, these other approaches could
be valid in the case where cells are all similar in size and shape, a
hypothesis that is rarely met.

SET partial shuffling uncovers subpopulations patterns. We
then extended the approach to tissues that contain more than two
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Fig. 2 Generation of alternative SET preserves single-cell size and shape ratio while expectedly breaks local cell organization. a Left: an image of P3
mice lateral ventricular surface where borders (ZO1 antibody, blue), centrioles (Centrin2-GFP mice, green), and procentrioles (Sas6 antibody, red) are
labeled. Middle and right: two alternative SET with the exact same 2822 cells taken from a and artificially moved to specified locations for illustrating the
capability of SET. Only the positional parameters are modified so that cell shapes remain approximately the same. All cells were moved except those
touching the borders of the image (as they are incomplete). Zoom on the same cell in the three images shows that intracellular content of each cell could
also be transported to its new location using barycentric coordinates relative to the cell contour (see “Methods"” for details). Interestingly, single-cell
properties such as size and cell minor axis to major axis ratio is preserved while neighborhood is expectedly broken (Supplementary Fig. 3). b The same
process is applied on all images presented in Fig. Te but this time, location and orientation are randomly initialized. c-e 2D histograms showing the
comparison of quantitative features computed for each cell both on the segmentation and on the random SET. Pearson correlation coefficient computed on
all the cells except the border cells: ¢ Cell size correlation. d Cell minor axis to the major axis ratio correlation. e Cell neighbors count correlation. The
correlation of this last feature is expectedly broken as it depends on the surrounding of each cell which is randomly shuffled by the process. For all plots
N =1 image.
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times (in blue), a model where stem cells are shuffled over a hexagonal grid (in red), and a model where stem cells are shuffled over the actual
segmentation (in black) (“Methods” and Supplementary Fig. 6). The p value of the reconstruction by SET relative to the null distribution obtained with a
1000 random SET is 0.001. d, f, h Evaluation of the three models against known synthesized patterns all produced from image a. d, e Synthesized clustered
stem cells. Our approach by random SET assesses that pattern d is clustered as it safely rejects the null hypothesis with a p value < 0.001 (green line
outside our null distribution), the two other models consider pattern d as random while it is obviously clustered. f, g Synthesized randomly introduced stem
cells. Our approach by random SET cannot reject the null hypothesis (green line inside our null distribution), the two other models consider pattern f as
unclustered (stem cells would repulse each other). h, i Synthesized repulsed stem cells (anti-clustering). Unclustered/repulsed stem cells are detected as

unclustered by the three models. N =1 image.

cell types. Xenopus’ mucociliary epidermis is made of four dif-
ferent cell types at larva stage: multiciliated cell (MCC), goblet cell
(GC), small secretory cell (SSC), and ion-secreting cell (ISC)21-23
(Fig. 4a, c). Differentiation of MCC, SSC, and ISC are driven
by the delta-notch pathway under the epithelial layer and are then
intercalated in the epithelium from the tissue beneath. These
mechanisms end in a spatial MCC organization that was shown
to exhibit a stereotypical spacing pattern®* (Fig. 4a). Spreading
between cells of the same type, such that they are rarely in contact
with one another, has been visually observed for a long time?>.
The number of contacts with other intercalating cell types
was quantitatively measured for ciliated cells and intercalating
non-ciliated (INC) cells by Stubbs et al.2¢ in 2006 on a thousand
cells. Stubbs et al. found that multiciliated cells were generally

not in contact with one another in the apical part of the
epidermis at a late embryonic stage. However, other types of INC
cells could be in contact both with one another and with ciliated
cells.

These spacing rules observed between cells of the same type are
not clearly explained. Are they the consequence of an inhibition
pathway followed by the intercalation process as suggested by the
literature or are they simply the consequence of mechanical
effects driven by the shape difference between cell types? In any
case, the cell intercalation leads to a difference in shape between
intercalating cell types?®. For instance, from Stubbs et al, the INC
seem to be more columnar than elliptical. Altogether, the cell
shape variation could explain the limited contacts between
small cells.
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Fig. 4 Cellular organization of the Xenopus tailbud embryo epithelium. a Image of a st. 33 Xenopus epithelium, actin in membrane and cilia labeled with
phalloidin-488 and acetylated a-tubulin-488 (C1, green). Lectin PNA 594-stained mucins to define the four cell types#’ (C2, magenta). Scale bar: 10 um.
Segmentation and labeling of four cell types: Multiciliated cells (MCC) are large cells with a high level of actin stain and a lack of lectin PNA. Goblet cells
are large cells containing mucins (lectin PNA) and a lack of apical actin. lonocyte (ISC) are small cells with visible actin and a lack of lectine PNA. Small
secretory cells (SSC) are characterized by the absence of actin and dotted lectin PNA highly stained. b Reconstruction of image a by SET, with cell type
preserved. ¢ Legend of cell types. d MCC-MCC contacts count observed in the reconstruction by SET (green) compared to the counts obtained in a
distribution of SET with random position of the intercalating cells only (blue distribution): p value < 0.006. e An example of SET with random position of
the intercalating cells. f SSC-SSC contacts count observed in the reconstruction by SET (green) compared to the counts obtained in a distribution of SET
with random position of the SSC only (blue distribution): p value = 0.141. g MCC-SSC contacts count observed in the reconstruction by SET (green)
compared to the counts obtained in a distribution of SET with random position of the SSC only (blue distribution): p value < 0.003. h An example of SET
where only the small secretory cells positions are reshuffled. @ An example of SET with random position of the SSC only. N=1 image.

Using our approach, we generated distributions of alter-
native SET patterns of intercalations of the Xenopus epidermis
at stage 33 (Fig. 4a). All intercalating cell types were randomly
positioned (all cells except the goblet cells) (Fig. 4e). We could
then extract the number of connected MCC from each of those
random SET to build the null distribution corresponding to
the hypothesis stating that the process of intercalation is
random. None of hundreds random SET could produce an
image with no MCC connected (Fig. 4d) confirming observa-
tion that was primarily reported (Fig. 4b). The probability of
observing at least this spacing between MCC by chance
was under 0.006. We could then confirm that the MCC
positioning process is not random, suggesting that a process
promotes MCC spacing.

SSC were characterized more recently and their spatial
organization has not been described yet. In (Fig. 4b) only two
SSC-SSC contacts can be observed. As the positioning by
intercalation of SSC arises later than the MCC intercalation?1-22,
we also wondered if the actual sequence of intercalation could
explain the small amount of contacts between SSC by randomly
shuffling only the SSC. To this aim, we generated random SET
such as to fix the positions of all cells except the SSC prior
random intercalation of the SSC in a tissue layer made of goblet
cells, MCC and ISC (Fig. 4h). In this case, in opposition to MCC,
a random spatial organization could not be excluded with a p
value of 0.141 (Fig. 4f and Supplementary Fig. 9a)

Furthermore, SSC was described as influencing MCC beating
with serotonin secretion?!. Very few contacts could be found
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between SSC and MCC in Fig. 4b. With the same random
intercalation of SSC, a distribution of random SET could not
reproduce the small amount of contact between MCC and SSC
with a p value of 0.001 (Fig. 4g and Supplementary Fig. 9B). We
then suggest that the spreading process between MCC and SSC is
also guided by a deterministic process.

SET reveals cell neighborhood subcellular organization. We
wanted to test if the location of an organelle inside a cell could be
directly or indirectly related to the location of the same organelle
in neighboring cells and beyond. At embryonic stages, the ven-
tricular zone of the brain is composed of radial glial cells
extending a primary cilium from the apical contact of the cell
toward the brain ventricle (Fig. 5a). It was shown that these cells
have a translational polarity?”-28. Indeed, measures of local spatial
polarity could be processed but spatial polarity as such is complex
to prove statistically because of the heterogeneity across the tissue
and the biological variability between samples. Concretely, planar
polarity is not homogeneous at the global scale and must be
investigated with regard to the local neighborhood (Supplemen-
tary Fig. 10A). Importantly, in the absence of a relevant mutant or
control, whatever measure is finally considered, it should be
related again to a null distribution describing the extent of what
can be expected in case there is no local spatial polarity. As
mentioned earlier, we included an option that enables to trans-
port the content of each cell from the original image to the
reconstruction by SET or to any random SET (Fig. 5b). It allows
to preserve the centriole positions location in each cell, as its
unknown distribution cannot be considered uniform (Supple-
mentary Fig. 10c, d). We could further show that distribution of
intracellular features such as the distance between the center of
the cell and the centriole inside each cell was preserved by this
process in both the reconstruction and the random SET (Fig. 5c,
top). Furthermore, the vector that goes from the centroid of the
cell to the centriole was retrieved from each cell. The mean
absolute angle formed by this vector on each cell and the same
vector in all neighboring cells was then computed (Fig. 5d). We
could show that this distribution was preserved for the recon-
structed SET while it was expectedly broken in the random SET
(Fig. 5¢ bottom). The same angle could be computed in growing
perimeters of neighborhood sorted by rank (distance in cells to
the considered cell) (Fig. 5d). This value was then averaged per
rank on the whole image to provide one mean absolute angle
value per synthetic image. The null distributions we obtained
from random SET for the first three ranks were centered on a 90°
angle (exactly 89.96, 89.94, and 89.93) with a decreasing standard
deviation (1.093, 0.755, and 0.639) (Fig. 5e). Furthermore, as the
value extracted per image was the mean of roughly independent
angles (most couple of cells are far apart from one another), the
Central Limit Theorem (CLT) applied and, accordingly, the null
distribution obtained with 1000 random SET could be precisely fit
by a Gaussian. The parameters of this Gaussian could be esti-
mated and a p value indicating the probability of observing a
polarity measured as at least equal to the one computed on the
reconstruction by SET could then be precisely processed and was
1.94 x 1016 for the first rank. Note that as the CLT applies, an
estimate of the Gaussian parameters could possibly be obtained
with only one random SET. Supplementary Fig. 10E shows that
the conclusion drawn from a single random SET this way would
be similar and represent a significant gain in computation time.
With only one image and without the need of a mutant, this
result validates that a mechanism tends to orient the centrioles of
close cells in the same direction which is barely discernible on the
original image visually as well as quantitatively (Supplementary
Fig. 10A, B). We could further show that at larger rank of

neighboring cells, the mean angles of the reconstructed SET keeps
on displaying a statistically significant planar polarity with an
intensity that decreases with the rank (Fig. 5e). In short, the closer
the cells are the more similar their centroid-centriole vector
orientation is.

Discussion

In this work, we introduced SET, a method that reconstructs the
cell tessellation of an image as well as random synthetic alter-
native tessellations made of the exact same cells. We demon-
strated that SET reconstructs accurately various tissue types and
preserves cell size and shape after shuffling. We then used SET to
produce a null distribution to test the significance of an observed
pattern and illustrate it on several examples.

The relevance of a statistical test directly relies on the exactness
of its null distribution. We showed in the results that the two
alternative approaches, resampling over a hexagonal grid or over
the actual cell segmentation were biased and thus probably pro-
duced inaccurate null distributions. SET simulations illustrate
that variation of cell size alone (with constant shape ratio) or
shape ratio alone (with almost constant size) lead to variable cell
contact distributions, thus showing a relationship (Supplementary
Fig. 7). It also shows that the simultaneous variation of both
features, or further combined with cell asymmetry, produces
skewed and multimodal null distributions of neighbors counts
that would be hard to predict given an observed dataset. Indeed, it
would require to derive a parametric model of this relationship (if
it exists and if it is at all possible) for which parameters could be
accurately estimated from one image. On the other hand, by
disregarding this existing relationship between cell size and shape,
and cell neighbor count, alternative approaches necessarily lead to
the construction of an incorrect null distribution in general
(Supplementary Fig. 8). These methods would work only in the
case where cells are organized as a honeycomb grid, a hypothesis
rarely met. SET takes into account cell shape, size, and asymmetry
to accurately sample such a null distribution without the need to
actually derive a parametric model.

The SET method presents several advantages. We showed that
it could be used to assess the existence of a local spatial dis-
tribution of cells but also the existence of a relationship in the
relative distribution of organelles within neighboring cells, which
is particularly subtle and thus hardly perceptible by the human
eye. Importantly, only one image is needed to produce a p value,
meaning that any location can be investigated independently
across a large slide of tissue. Notably, there is no need for para-
meter tuning as there are no input parameters to the method. The
method takes as input an image of segmented cells and all single-
cell parameters are automatically estimated when fitting indivi-
dual distance functions to each cell. It is useful to use a computing
cluster to generate several random SET in order to build a null
distribution for any given feature. However, this step can be
avoided by choosing the feature to be the mean over the image of
a local event. In this case the CLT applies and a single random
SET is sufficient to compute an estimation of the mean and
standard deviation of the sample mean normal distribution
parameters and derive a p value as demonstrated in Supple-
mentary Fig. 10E.

A limitation of our method is that it requires the entire image
to be occupied by cells. Therefore, it is suited to work on tissue or
on cell culture where confluence is 100%. Ultimately, when cells
do not occupy all the space, cropped regions can be considered.
Note that while the cell relationships in culture can also be
interesting to quantify, we anticipate that it is anyway more
relevant to tissue samples displaying patterns found in organisms.
Another limitation is that while the eight parameters distance
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Fig. 5 Planar polarity organization of the centrioles in E18 mouse ependyma. a Crop of the maximum intensity projection from a stack of E18 mice
ventricular wall with junction labeled with zo1 and centrioles labeled with centrin and ninein, scale bar: 10 um (full image in Supplementary Fig. 10).

b Reconstruction of image a by SET. Additionally, the content of each cell was morphed from its original location in a to the corresponding reconstructed
cell in b using barycentric coordinates so as to obtain the new location of the centrioles in random SET. ¢ Content morphing validation. Quantitative
features computed on the content of each cell were preserved after morphing both on the reconstruction by SET and on random SET. Furthermore,
quantitative features computed on the content of each cell relative to the neighbor cells were expectedly preserved after morphing on the reconstruction by
SET and expectedly lost on random SET. Correlations are Pearson correlation. d Description of the quantitative feature considered. Crosses denote cell
centroids while dots denote the location of the centriole in each cell (this location can be retrieved in any SET thanks to the morphing step). The vector
from the centroid to the centriole is thus defined for all cells. The angle between this vector in the light gray cell (in blue) and the same vector in all the
other cells of a given rank (in purple) is computed and averaged by rank to obtain a mean angle value per cell per rank. This value is then averaged per
image. e Distributions of the value described in d for random SET (in blue) and for the reconstruction by SET (in green) both from image a for ranks 1to 3.
The distribution of mean absolute angles was approximated by a Gaussian density thanks to the Central Limit Theorem and p values for the reconstructed
images by SET were computed: 1.94 x 10-6 for rank 1, 3.057 x 1010 for rank 2, and 3.021x 1097 for rank 3. N =1 image.
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function we designed can model a large variation of cell shapes as
we demonstrated in the results, some highly non-convex cell
shapes will still be hard to fit this way. This is for instance the case
for puzzle-shaped cells present in plant leaves2?-31,

The SET model we proposed is used here to shuffle the position
of all cells in an image in order to build a statistical test. However,
we anticipate that this model could be extended and used in other
ways. First, SET is directly applicable to three-dimensional (3D)
image stack to analyze in depth tissues32. The limitation con-
cerning 3D applications does not come from the proposed
methodology but from the fact that the point spread function of
fluorescence microscopes are highly anisotrope. Together, with a
lower sampling on the axial axis, this often degrades the quality of
the top and bottom cell membrane marker such that 3D cell
detection, prior to the computation of SET, is in practice rather
imprecise. We also envision that the model could be used for
biophysical modeling. In this study we modified only the posi-
tional parameters in random SET, maintaining all cell shape
parameters constant. However, all the parameters for each cell
can be modified dynamically. In this way, the SET method could
directly be used in an elegant fashion to model cell growth,
migration, mitosis, extrusion, and other events to study tissue
formation3334. The distance function itself could also be
improved to actually model cell pressure on a chosen direction. It
would also permit us to model the dynamic of cellulosic walls
such as those we can find in some plant cells?>.

Altogether, we introduced the SET model that parametrizes a
cell tissue. Furthermore, we illustrate a powerful way to use it to
decipher, from a single image and no input parameters, whether
any observed quantitative cell relationship feature could be con-
sidered as random or not. We anticipate that this approach to
modeling tissue has the potential to cover a broad range of
applications in computational biology, from biophysical interac-
tion to cell morphodynamic.

Methods

Principle of the method. The core of the SET method relies on approximating the
segmentation of each single cell by the level 1 of a flexible parametric distance map.
These parametric distance functions, thus independently defined for each single
cell, will subsequently be used by a Lloyd-like algorithm to iteratively assign pixels
of the plane to the closest cell until convergence. To this aim, we designed a specific
and flexible parametric distance function such as to fit a large panel of cell shape. In
short, a distance function is designed such that a pixel at distance 1 from the center
of the cell should be located on the cell border, a pixel at a smaller distance than
1 should be located inside the cell, and a pixel at a greater distance than 1 should be
located outside the cell. The parametric function we designed sums up to eight
parameters per cell. These parameters are all estimated once for each cell at the
beginning of the process and five of them, describing the shape of the cell, are then
fixed to force boundaries of each cell, in order to maintain the same shape in a
smooth way. The three remaining parameters describing the location and the
orientation of each cell are re-estimated at each iteration of the Lloyd-like algo-
rithm, leaving the cells free to move or rotate until convergence. We show that the
overall cell tessellation obtained with various tissues can be accurately recon-
structed by SET with only eight parameters per cell using this approach (Fig. 1).
We further show that modifying the initial set of location and orientation para-
meters while still keeping constant the shape parameters enables the synthesis of
thousands of alternative tessellations from the same cells (Fig. 2). Further details on
the design of the parametric distance, the identification of the parameters by fitting
to a cell contour and the reconstruction of the tessellation, are provided in the
sections below. We also describe how the content of each cell can be preserved in
the synthetic images and how statistical significance of any observed cell pattern
can be obtained using SET.

Design of a flexible parametric distance. Let y be a bivariate random vector
following a centered standard joint uncorrelated (not necessarily normal) dis-
tribution such that E(y) =0 and cov(y) =1, S a diagonal scaling matrix, R a
rotation matrix, and p a translating vector. Scaling, rotating, and translating y yield
x = RSy + . Similarly, y can be retrieved from x by inverting the transformation y
= (RS)~! (x—p). It is then straightforward to show that E(x) =y, cov(x) = RSSR’
and to retrieve that the Euclidean distance between the origin and y is the
Mahalanobis distance (parameterized by p, R, and S) between the origin and x

which is the scaled, rotated, and translated vector y:

d; (0,y) = ¥y = / (x— W) (RSSR) ™ (x — ) = dyyums) (%)-

Independently, the Euclidean distance dr, can be rewritten in the following

uncommon Way:
dp, (0,y) = \/y1 +3 = (I'y?),

where the symbol o means that the exponent 2 is applied to the vector y
elementwise. By simply replacing y, the Mahalanobis distance dy; can then also be
rewritten this way:

1
Ay (%) = d (0,y) = (V](RS) " (x = )] ).

Unlike the usual quadratic form of the Mahalanobis distance showed earlier,
this form presents the compelling advantage of making possible the generalization
of Mahalanobis and Minkowski distances (such as Euclidean, Manhattan and
Chebychev) under a single parametric function that we name Minkovski Affine
Transform (MAT) distance by introducing a parameter p that denotes the
Minkovski order:

dMAT(p.R.S.p) (x) = dI,P(07Y) = (1,|(RS)71<X - F)‘Dp)%~

Note that if p>1, dMAT is a metric, especially if p =2 the dyar is the
Mabhalanobis distance and if p <1, triangle inequality is lost and dyat is a semi-
metric. This formulation offers the possibility to design flexible distance functions
based on the affine transformation of any Minkovski metric. This relationship
between original Minkovski metrics and their transformation to a parameterized
MAT distance function are illustrated by Supplementary Fig. 11.

The level sets of MAT are super ellipses that are more flexible than the standard
ellipses provided by the Mahalanobis distance. They offer the possibility of
modeling roundish rectangular shapes such as some plant cells or diamond like
cells. However, they are all symmetric about their center and about the two
principal axes. In order to obtain a distance function with level sets possibly
matching asymmetric cell shapes, we generalized the MAT distance further by
introducing two asymmetric terms a; and a,. These terms weight how much the
value of an axis influences the value of the other axis and reversely, considering the
yet unrotated and unscaled vector y. The Asymmetric Minkovski Affine Transform
(AMAT) distance dapat We propose reads:

dAMAT(p‘R,S,A,p) (x) = (lleiA]diag(m ‘Y|Op>;

PO TCA I I R B
*[0 az] 17[1 0] o I’ag(y”*[

for the sake of clarity we recall here that
u=[’“]s:[s‘ O}R{C".S(“) ]Y=(RS)’1(X—H)~
Uy 0 s, —sin(a)

Altogether, the AMAT distance comprises eight parameters: 4y, y, the
coordinates of the cell, 5, the length of the longest axis containing , s, the length of
the shortest orthogonal axis containing p, « the angle of the longest axis containing
u with the x-axis, a, the degree of asymmetry about the longest axis, a, the degree
of asymmetry about the shortest orthogonal axis, and p the Minkovski order. This
function offers a distance map with short range level sets modeling for a large panel
of closed shapes such as cells can display (Supplementary Fig. 12). Note that, unlike
the MAT distance, some combinations of parameters a,;, a,, and p may in theory
lead to an AMAT map that can contain critical points at other places than the
origin, possibly leading to non-closed or disconnected level sets at long range. In
short, AMAT is not guaranteed to be a distance for all combinations of parameters.
However, we will see that such a situation can easily be handled, as for our
modeling purposes we are only interested in short distances defined locally about
the cell membrane, that is about distance 1 from the origin, for which AMAT
behaves well as expected.

with
ay, 0 ]
0 ay,

sin(a)

cos(a)

Fitting damar =1 to a cell contour. The segmented contour of each cell is sub-
sampled to an arbitrary resolution of N points x; regularly spread (typically N=
100). The following sum of squared error is then minimized for each cell:

N 2
P}(nsillpz(dAMAT(p.R.S,A.p) (x;) — 1) .
A T

Note that if a; =0, a, =0, and p = 2 are fixed, then no minimization process is
needed, as the AMAT distance is the Mahalanobis distance and the location is the
centroid of the cell, and the scale and rotation parameters can be obtained by
diagonalization of the covariance matrix of the pixels of the cell. If any of a;, a,, or
p are let free to evolve then the minimization process is needed for all parameters
and these values are instead used for initialization. The eight parameters of the
AMAT distance are then initialized to the centroid of the cell for y; and u,, the
lengths of the principal axes of the cell for s; and s, the angle of the principal axis
with the x-axis for &, a; =0, a, =0, and p = 2. The parameter p enables modeling
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of squarish cells, the parameters a, and a, enable triangular modeling or egg like
cells, and most importantly, combinations of all of the eight parameters enable a
large set of complex cell shapes to be modeled. Whether it is arbitrarily decided to
fix some known parameters or not, after this fitting, each cell is represented by a
vector of eight parameters that describe a specific parametrization of the AMAT
distance function. The level 1 of this two-dimensional (2D) function then matches
closely the contour of the cell (Supplementary Movies 1-5). For numerical
optimization, the L-BFGS-B algorithm available in scipy.optimize was used, as it
enabled us to make the process more robust, by introducing some constraints on
the range of values the parameters can take.

Generation of a tessellation from individual cell metrics. While, for instance,
five parameters enable us to model an elliptical shape and eight parameters enables
us to model triangular or rectangular shapes, it does not mean that the cell shape
will end up being reconstructed exactly as an ellipse, a triangle, or a rectangle. In
fact, the competition for space between cells, each equipped with their own dis-
tance, will permit reconstruction of the cell pavement accurately, without any holes.
To reconstruct the original image tessellation of K cells, we aim at performing the
following minimization:

K
C,mmC ¢ Z Z dAMAT(“v'RJ'SJ'AJ 'Pl) (Xi)7

K =1 e

where C; denotes the set of pixels x; that belong to the cell j with w; and R; (the
location and orientation parameters) left free to evolve while S;, A;, and p; (the
shape parameters) are fixed. It can be solved using a modified Lloyd algorithm.
Lloyd is usually employed to obtain a Voronoi tessellation of a 2D or a 3D space
with the standard Euclidean distance$3%37. In that case all computed distances
along the process are similar and do not depend on parameters. Here, we also aim
at performing a tessellation but each compartment uses its own parameterized
distance function, as described in the previous section, so as to impose the shape of
an actual cell. To our knowledge, Lloyd, with a different metric per cell, was not
used for modeling cells. Furthermore, the idea of having each of these metrics
matching the properties of a real cell is to our knowledge novel. To reconstruct the
original image, the first step is similar to Lloyd and consists of computing the
distance of all pixels to all cells (using dedicated AMAT distances) and labeling
each of those pixels with the label of its closest cell. In the second step, Lloyd was
modified such that the location parameters yy, p», and « of each cell are updated by
minimizing the sum of square error previously described. Those three parameters
only are left free to evolve (except for the incomplete cells at the border of the
image for which all parameters are fixed). The five other parameters sy, s,, a;, d,
and p, describing the cell shape, are estimated once from the original cell seg-
mentations and remain constant along the rest of the iteration process for all cells
to maintain their shape. These two steps are repeated until no more pixels change
label. At the end of this process, a tessellation that is an accurate approximation of
the original cell tessellation is obtained with only eight parameters per cell provided
at initialization by fitting (Fig. 1b-d). To synthesize a random tessellation based on
all the cells of a given image, the exact same process is used over the same image
dimension but the location and orientation parameters are initialized randomly,
still keeping the shape parameters for all cells constant. This process applied on the
image Supplementary Fig. 1 to produce its reconstruction by SET and three ran-
dom SET can be visualized in Supplementary Movie 6. Figure 2 shows that random
SET preserves single-cell properties of various tissues while expectedly breaking cell
relationships.

Null distribution and associated p value. It is important to notice that the
reconstruction by SET of the original image could possibly be one sample of the
random SET, as the construction process is exactly the same. Only the initialization
of the positional parameters (location and orientation) willingly differ: for the
reconstruction, these parameters are the original one while in synthetic images they
are randomly sampled. This is the foundation of the statistical approach we pre-
sent: a thousand pictures representing alternative random tessellations of the real
image are generated and compared to a reconstruction of that real image using the
same process. The statistical significance of any quantitative feature computed from
a local group of cells can then be obtained the following way. The considered
feature is computed on each random tessellation. Altogether, the sample dis-
tribution of these values approximates the null distribution of that feature. Then,
the computation of that same feature is also performed on the reconstruction of the
original image. If the value computed from the reconstruction falls within the null
distribution, then by definition the null hypothesis cannot be rejected. If the value
obtained is aside from the null distribution, then a p value can directly be obtained
as the ratio of random tessellations that display the same or a more extreme value
than value computed from the reconstruction of the original image. Note that if the
computed feature is a sum or the mean of independent and identically distributed
events over the image, as for Fig. 5e, the null distribution can be approximated by a
Gaussian under the CLT. The last combines the advantages of obtaining a more
precise p value while necessitating in principle the generation of only one
random SET.

Cell texture mapping. Independent of the reconstruction of the cell tessellation,
we additionally transport the texture content of each cell so as to enable the
possible statistical analysis of organelle positioning within the context of its cell
neighborhood. To this aim we used a particular weighting of barycentric coordi-
nates called the mean value coordinates, developed by Michael S. Floater38. The
mean value coordinate method offers a way to smoothly morph the content of an
arbitrary polygon to the content of another arbitrary polygon with the same
number of vertices. As the synthetic cell contour is about the same shape and size
as the original cell contour, we do not expect significant distortion of the content if
the orientation of the reference coordinates is similar. Therefore, the segmented
contour of each cell and its synthetic counterpart were respectively subsampled to
an arbitrary resolution of n ordered points p; and ,/ (typically 100). The first points
Po and py’ of both contours correspond respectively to the orientation of their
major axis so as to align the two shapes. For each pixel of the synthetic shape we
then computed the n mean value coordinates relative to the » points of the contour
»i and applied the same n weights to the # points of the contour ,; to compute a
floating point location in the original cell image. A bilinear interpolation of the four
closest pixels from that location enabled recovery of a color value that was then
used in the synthetic cell (Supplementary Fig. 2). Using this approach, all pixel
values of all synthetic cells could be recovered (Figs. 2a, 5b and Supplementary
Movie 6).

Alternative approaches. Cell compartments constraint the cell centers to be
spread from one another, such that they do not behave as freely as points process
approach could essentially model. Therefore, regular point process statistics would
hardly be relevant for this type of spatial analyses. We then chose to compare our
method to two other approaches that could be considered for such analysis (Fig. 3).
These two other approaches, like ours, seek to compare the image observation to a
null distribution that should capture the variation about the null hypothesis stating
that cells are organized randomly. The difference between the three methods
essentially lies in how that null distribution is built by computational means and
how relevant it is.

Alternative approach—Shuffle on a hexagonal grid. The first approach (red
distribution Fig. 3) uses a honeycomb grid containing as many hexagonal cells as in
the original image3>40. For each run, cell identities were assigned randomly with
respect to the observed cell type ratio (83 stem cells from a total cell count of 190
cells for Fig. 3) and the number of contacts between two stem cells was retrieved
(Supplementary Fig. 6A).

Alternative approach—Shuffle on the segmentation. The second approach
(gray distribution Fig. 3) uses the segmentation of the original cell pattern
and cell identities are shuffled in order to preserve the distribution of the cell
shapes while producing a realistic graph of cell adjacency (Supplementary
Fig. 6B). In practice, this model produces a null distribution that is close to
the one obtained with the honeycomb method (Fig. 3¢) and led to close
conclusions.

Raw image information—Mice. Ependymal images were acquired from E18, P1,
and P30 mice. The experiments were performed in conformity with French and
European Union regulations and the recommendations of the local ethics com-
mittee (Comité d’éthique en experimentation animale no. 005). The date of the
vaginal plug was recorded as embryonic day (E) 0.5 and the date of birth as
postnatal day (P) 0. Healthy, immunocompetent animals were kept in a 12 h light/
12 h dark cycle at 22 °C and fed ad libitum. The mice used in this study include
OF1 (Charles River Laboratories) and Centrin2-GFP (CB6-Tg(CAG-EGFP/
CETN2)3-4]gg/J; The Jackson Laboratory).

Raw image information—Immunostainings. Wholemounts of the lateral walls
of the lateral LV were dissected?” from animals sacrificed by cervical dislocation
and fixed for 15 min in pure methanol at —20 °C. The samples were incubated
for 1h in blocking solution (1x PBS with 0.1% Triton X-100 and 10% fetal
bovine serum) at room temperature followed by overnight incubation at 4 °C in
the primary antibodies diluted in blocking solution. The primary antibodies used
targeted ZO1 (1:100, cell junction marker; Thermo Fischer Scientific), FOP
(1:600, centriole marker, Abnova Corporation), Sas6 (1:500, pro-centriole
marker, Santa Cruz), -Catenin (1:500, cell junction marker, Millipore). The
following day, the samples were stained with species-specific AlexaFluor
fluorophore-conjugated secondary antibodies (1:400, Thermo Fischer Scientific
or Jackson ImmunoResearch Labs). Nuclei were counterstained with a 1:1500
Hoechst solution (from a 20 mg/ml stock, Sigma-Aldrich), containing the sec-
ondary antibodies for 2 h at room temperature.

Finally, the wholemounts were redissected to keep only the thin lateral walls of
the LV20 which were mounted with Fluoromount-G mounting medium (Southern
Biotech, 0100-01).

Raw image information—Others. The root image is a Col-0 Arabidopsis thaliana
sample and has been treated by propidium iodide to label cell walls*! and imaged
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with a Zeiss 710 confocal. The root image is a slice from a 3D stack. The shoot
apical meristem image is a FM4-64 staining of a Col-0 Arabidopsis thaliana and
was acquired with a Leica SP2 confocal as described in ref. 42. The 3D stack was
flattened with merryproj*3. The Drosophila image is originally from ref. 44. The
membranes are visualized with antibodies against E-Cadherin. Image of chick
basilar papilla is originally from ref. 4> and was recently used in ref. 4°. The samples
were treated with anti-cingulin and anti-hair cell antigen to visualize membrane
junction and cell identity. The Xenopus epidermis image was acquired from a stage
33 larva. The visualization of membranes and cell identities was made possible by
phalloidin labeling of the actin, acetylated alpha tubuli-488 for cillia, andlectin-pna-
594 to label mucins in goblet cells and SSCs*”. The image was extracted from a 3D
stack using the SME algorithm?S.

Cell segmentation. The minimal input to the SET model is an image of segmented
cells where each pixel takes as value the integer label that represents all the pixels of
the same cell. All 2D cell segmentations presented in this manuscript were per-
formed using a modified version of the “Morphological Segmentation” plugin of
the MorphoLib] package of ImageJ/Fiji*. However, this preprocessing step can be
performed by numerous other software packages that do exist to segment images of
cells. In practice, as only one image is needed, the full automation of the detection
process is not required and segmentation can possibly be manually corrected. Prior
segmentation, 2D images of Xenopus larva epidermis and mice ependyma were
extracted from 3D stack using the SME algorithm?$,

Computational resources. Lloyld relaxation with hundreds to thousands of cells
each equipped with their own metric to iteratively redistribute labels over millions
of pixels can be a demanding process. Our approach is faster when using only Five
parameters per cell (xy position, rotation angle, and main axes length) as only the
covariance matrix of the pixels of each cell need to be computed and the Maha-
lanobis distance to each cell equipped with its own matrix can be used. The com-
putation of the last is made very efficient by the cdist function from the scipy
Python package (see the code for implementation details). Therefore, when the cells
could reproduce correctly the observed image using five parameters (e.g. E18 and
adult ependymal cells) we choose this option. In this case the approximate com-
putation time was between 1h 30 min and 10h for 1000 SET simulations on 200
cpus Intel Xeon Processor 2400 MHz, depending on the image size. When cell were
highly asymetrics such that five parameters did not reproduce properly the obser-
vation (e.g. Xenopus), then we used eight parameters and it took between 9 and
16 days to compute about 300 simulations on the same computer configuration. All
calculations were submitted in parallel thanks to the IBENS computing cluster. Note
that the code made available offers the possibility to parallelize computation on all
CPUs of a single computer. Furthermore, we anticipate that this type of compu-
tation would significantly gain to be ported to GPU computing as it can be highly
parallelized per cell; however, we have not investigated this possibility.

Ethical aspect. The experiments using mice were performed in conformity with
French and European Union regulations and the recommendations of the local
ethics committee (Comité d’éthique en experimentation animale no. 005). Mice
were bred and maintained in the animal facility of IBENS (Agreement 5502 from
the French Ministry of Research and Agreement OGM2014 from the Préfecture de
Paris-French ministry of interior). The minimal number of animals was used for
the project and the procedures implemented ensured their welfare during

their lives.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The chick image from ref. 46 was provided by David Sprinzak, Guy Richardson, and
Richard Goodyear, and was initially from ref. 45, Copyright 1997 Society for
Neuroscience. The Drosophila image from ref. #4 was provided by Yohanns Bellaiche
with the permissions of AAAS. The Arabidopsis thaliana root image was provided by
Jean-Christophe Palauqui. The Arabidopsis thaliana shoot apical meristem image was
provided by Katia Belcram. The Xenopus image was provided by Peter Walentek. Mice
ependyma images were produced by Nathalie Spassky. A copy of these image data is
made available on the Github page along the code to run the method https://github.com/
biocompibens/cellmodelling.

Code availability

The SET method and all necessary images and code to reproduce the results are available
as Python scripts from github (https://github.com/biocompibens/cellmodelling). Version
v1.0.0 can be found here0.
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