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Integrated Simulation Framework for Toxicity, Dose
Intensity, Disease Progression, and Cost Effectiveness
for Castration-Resistant Prostate Cancer Treatment With
Eribulin

JGC van Hasselt1,2,3*, A Gupta4, Z Hussein4, JH Beijnen1,5, JHM Schellens2,5 and ADR Huitema1,2

Quantitative model-based analyses are helpful to support decision-making in drug development. In oncology, disease
progression/clinical outcome (DPCO) models have been used for early predictions of clinical outcome, but most of such
approaches did not include adverse events or dose intensity. In addition, cost-effectiveness evaluations of investigational
compounds are becoming increasingly important. Here, we developed an integrated model-based framework including
relevant treatment effects for patients with castration-resistant prostate cancer treated with the anticancer agent eribulin. The
framework included (i) a DPCO model relating prostate-specific antigen (PSA) dynamics to survival; (ii) models for adverse
events including dose-limiting neutropenia and other graded toxicities; (iii) a model for Eastern Cooperative Oncology Group
(ECOG) performance score; (iv) a model for dropout; (v) the consideration of cost effectiveness. The model allowed simulation
of realistic treatment courses. Subsequently, simulations evaluating alternative treatment protocols or patient characteristics
were performed in order to derive inferences on expected efficacy and cost effectiveness.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 374–385; doi:10.1002/psp4.48; published online on 30 June 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Cost-effectiveness analyses are becoming increasingly
important in the field of oncology, but are currently only conducted during late-stage development. Models for disease
progression in oncology can be used to predict clinical outcome, but these have not yet been applied for making predic-
tions of cost effectiveness, or for predicting clinical outcome while considering key aspects such as toxicities, dose
adjustments, and clinical treatment protocols. • WHAT QUESTION DID THIS STUDY ADDRESS? � How can early pre-
dictions of clinical outcome and cost effectiveness at early stages of oncology drug development be generated? • WHAT
THIS STUDY ADDS TO OUR KNOWLEDGE � This model-based approach represents a tool for integration of knowl-
edge related to disease progression, clinical outcome, dose-limiting toxicities, quality of life, and cost effectiveness, in
order to evaluate different potential treatment strategies at early stages of drug development. • HOW THIS MIGHT
CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � The described approach can be considered for gener-
ating informative inferences on clinical outcome and cost effectiveness at early stages of drug development and associ-
ated decision-making processes.

Integration of toxicity and efficacy models in oncology
Quantitative model-based analyses are helpful to inform and
support drug development.1–4 In oncology, such approaches
have initially focused on the development of models describ-
ing (dose-limiting) toxicities.5–10 Quantitative understanding of
toxicity profiles is of key importance for most cytotoxic drugs,
as often the maximum tolerated dose is assumed to be
related to treatment efficacy.11 Increasingly, models with
system-, drug-, or disease-specific properties are being devel-
oped, which are more informative for predictive purposes. For
instance, the semiphysiological model for hematological toxic-
ity proposed by Friberg et al.12 has been demonstrated to
have consistent system-specific parameters. More recently, a
paradigm has been proposed to link quantitative models

describing cancer disease progression, or tumor growth inhibi-
tion, to models describing clinical outcome (e.g., overall sur-
vival).1 Such disease progression/clinical outcome (DPCO)
models may provide reasonable predictions of clinical out-
come based on the observed dynamics of disease progres-
sion biomarkers, as was initially demonstrated for colorectal
cancer13 and non-small cell lung cancer.14 DPCO models are
potentially disease-specific, and as such, a DPCO model
developed for a specific indication can be used to extrapolate
expected clinical outcome for new drugs in early clinical devel-
opment based on their early biomarker response in patients

Thus, overall, quantitative models for toxicity and efficacy
can be considered highly relevant and informative in trial
design optimization and associated decision-making prior to
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the conduct of phase III studies. However, ideally these
approaches should be applied in an integrated fashion to
allow for their interaction, as toxicity-induced dose reduc-
tions may potentially impact efficacy.

Integration of pharmacology and pharmacoeconomics
With rapidly rising healthcare costs, cost-effectiveness anal-
yses (CEA) are becoming more important. CEAs are usu-
ally conducted after approval based only on pivotal
registration trials supplemented with additional sources of
evidence. Growing interest exists to further integrate CEAs
with the process of regulatory evaluation15 to include cost-
effectiveness assessments at early stages of development.
As these CEAs are mostly conducted at a late stage of clin-
ical development, few opportunities exist to evaluate and
potentially impact clinical development strategies. However,
during early phases of drug development informative data-
sets on all aspects of drug effects are being collected. By
integrating pharmacological and pharmacoeconomical mod-
els, earlier assessment of expected clinical utility and cost
effectiveness can be obtained, which can be useful to esti-
mate cost effectiveness and clinical utility a priori, rather
than to only assess these important aspects post hoc.16,17

However, only one such example has been reported to
date.18 Finally, as many novel anticancer agents may only
show a marginal difference in efficacy, additional metrics
allowing differentiation between other comparator agents
may be of value.

Proof-of-concept analysis for castration-resistant
prostate cancer
The overall aim of this study was to develop an integrated
simulation framework for toxicity, dose intensity, disease pro-
gression, and cost effectiveness for castration-resistant pros-
tate cancer treatment with eribulin as a proof-of-concept. This

work builds further upon the previous development of a semi-
physiological model for neutropenia, the major dose-limiting
toxicity of eribulin,8 and second on the previous development
of a DPCO model for patients with castration-resistant pros-
tate cancer (CRPC) treated with eribulin, which related
prostate-specific antigen (PSA) dynamics to overall survival
(companion article). The work consists of two parts. In the
first part, we developed additional models to support the
framework. Here, we developed new models for: (i) graded
nonhematological adverse events; (ii) the change in Eastern
Cooperative Oncology Group (ECOG) performance scores;
and (iii) dropout. In the second part of this analysis, these
models were integrated to allow for trial simulations including
preliminary CEA. Here, the previously developed models for
neutropenia and DPCO were integrated into a single stochas-
tic simulation framework that was used to evaluate a number
of proof-of-concept simulation scenarios.

METHODS
The schematic structure of this simulation framework is pre-
sented in Figure 1. The figure accounts for the causal rela-
tionships between dose, exposure, toxicity, efficacy, and
cost effectiveness. First, the interaction between dose,
pharmacokinetics (PK), and toxicities results in a realized
dose regimen for each patient that includes dose reduc-
tions. Then, the patient-specific PSA response is predicted,
together with its relation with expected overall survival.
Finally, the ECOG performance score was included as a
surrogate metric for quality-of-life, and finally dropout was
considered. Ultimately, this framework was developed to
provide predicted efficacy and cost-effectiveness metrics
including life-years gained (LYG), incremental cost-
effectiveness ratios (ICERs), and quality-adjusted life years
across a population of patients. Where possible, models
included interindividual variability on parameters and asso-
ciated predictors for this variability, to evaluate with flexibil-
ity different potential treatment scenarios.

Part I. Model development
Study data. Phase II data from a clinical trial (n = 108) of
eribulin mesilate in CRPC patients20 was used for the
development of models for (i) the ECOG performance
score; (ii) nonhematological adverse events; and (iii) patient
dropout. Data from this study were also used for the devel-
opment of the DPCO model for PSA dynamics and its rela-
tion with clinical outcome.19 The previously developed
pharmacodynamic model for eribulin-induced neutropenia,
which was also integrated in the simulation framework, was
based on a much larger pooled dataset from multiple phase
I, II, and III studies including a total of 1,579 patients8 who
were predominantly treated for breast cancer.

Drug exposure. The approved dose of eribulin for treat-
ment of breast cancer is 1.4 mg/m2, administered on day 1
and day 8 of a 21-day cycle.20 This dosing regimen was
also used in the current analysis, unless otherwise speci-
fied. Pharmacokinetics (PK) were described using a previ-
ously developed model based on data from several phase I
and II studies, which included a systematically developed
covariate model describing the impact of various patient
characteristics on drug exposure.8 The model was a

Figure 1 Schematic representation of the integrated simulation
framework that was developed. PSA, prostate-specific antigen;
LYG, life years gained; ICER, incremental cost-effectiveness
ratio; QALY, quality-adjusted life years; PK, pharmacokinetics.
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3-compartmental PK model with linear elimination with
albumin, alkaline phosphatase, bilirubin as covariates on
clearance,21 and in addition a dose–effect on intercompart-
mental clearance.

PSA DPCO. The previously developed DPCO model in
patients with CRPC was used to describe the dynamics of
PSA and its association with clinical outcome (overall sur-
vival). The model for PSA dynamics was a compartmental
tumor growth model with parameters for baseline PSA
(PSA0), PSA growth rate (KG), drug-induced PSA inhibition
(KD0), and a term for resistance development. In the
model, the predicted area under the concentration–time
curve (AUC) was used as the exposure metric in this
model. Prior docetaxel treatment was identified as a covari-
ate on baseline PSA and on drug-induced PSA inhibition.
The second component of the DPCO model described
overall survival using a parametric Weibull function, which
included the following covariates: (i) patient-specific ECOG-
performance state; (ii) treatment-induced time to nadir
(TTN) of PSA; and (iii) the disease-specific PSA growth
rate (KG).

Neutropenia. Neutropenia is the main dose-limiting toxicity
for eribulin. The time course of absolute neutrophil counts
(ANC) was described using a semiphysiological model for neu-
tropenia previously developed by us,8 which included a sys-
tematically developed covariate model explaining part of the
between-subject variability observed in the pharmacodynamic
response. The model included parameters for baseline ANC,
maturation time, feedback, and drug effect (ANCSLOPE).

Other adverse events. For adverse events (AEs) other
than neutropenia, we developed models for AEs with an
incidence of more than 20 events (2.1% incidence), which
were: nausea, fatigue, peripheral neuropathy, paresthesia,
diarrhea, asthenia, and anemia. The occurrence of these
AEs was modeled using separate Markov-transition models.
We considered three toxicity states: no adverse event (state
0), nondose-limiting adverse event with CTCAE grade 1 or
2 (state 1), and dose-limiting adverse event with CTCAE
grade 3 or 4 (state 2). Only transition rates between
bordering states (e.g., between 0 and 1 or 1 and 2) were
considered.

ECOG performance score. A Markov-transition model was
used to describe the probability of experiencing different
ECOG performance scores. Furthermore, we evaluated
whether PSA dynamics could be included as a covariate on
transition rates, in order to consider treatment effects on
ECOG score dynamics. In the simulation framework, the
ECOG model was used to derive a summary metric for
quality of life.

Dropout. A model for random informative dropout was
developed using the time of dropout, defined as the time
after start of treatment until stop of treatment. Different
parametric survival models were fit to the time to event
data, namely, Weibull, exponential, normal, lognormal,
logistic, and log-logistic models. Based on visual model fit
and the 22 log likelihood, we selected the base parametric
model. Thereafter, we evaluated the inclusion of patient-

specific covariates as predictors for dropout (P< 0.05, likeli-
hood ratio test). The following covariates were considered:
PSA0, TTN, relative and absolute change from PSA base-
line, individual predicted PSA growth rate, individual pre-
dicted PSA inhibition rate, and age. All covariates were log
transformed prior to inclusion.

Patient characteristics covariate distribution. Based on
the observed body surface area (BSA) distribution in the
original phase II study for eribulin in CRPC, we assumed a
mean BSA of 1.93 m2 distributed according to a truncated
normal distribution with a standard deviation of 0.23 and
truncated between 1.3–3 m2. The BSA values were used to
derive absolute dose amounts for each simulated patient.
Unless otherwise specified, we assumed that patients were
not pretreated with taxanes, as this was a significant covari-
ate in the DPCO model. The neutropenia model included
biochemical markers for liver function (bilirubin, albumin,
lactate dehydrogenase (LDH)), assuming typical values.8

Dose adaptation and disease progression. A dose adap-
tation model defined when and how doses should be
adjusted after toxicities. Unless otherwise specified, we
assumed single 25% and 50% dose reductions after experi-
encing any grade 3 or 4 toxicity, respectively. For neutrope-
nia, we defined grade 3 and 4 toxicities for absolute
neutrophil counts (ANCs) <1.0�109 and <0.5�109 cells/L,
respectively. In addition, no drug administration was per-
formed when the pre-dose ANC was below 1.5�109 cells/L.

The disease progression criterion (e.g., stop treatment
due to rise in PSA) was defined as an increase in PSA lev-
els of >25% from PSA nadir values, and an absolute PSA
level >5 ng/mL, which remained consistent after 14 days.

An overview of dose adjustment and disease progression
rules is provided in Table 1.

Part II. Simulation framework development
Overall structure. A schematic overview of the developed
framework is depicted in Figure 1. In the framework, indi-
vidual patient characteristics were generated from the cova-
riate distribution model, and associate absolute doses were
derived. Individual time courses for neutrophils, PSA, non-
hematological adverse events and ECOG score were gen-
erated using the developed models. These profiles were
simulated for each patient in iterative fashion, in order to
allow for potential dose reduction after each administration,
according to the specified treatment protocol.

Summary metrics. The individual time courses of the dif-
ferent parameter summary metrics were computed as sum-
marized in Table 2.

Dose intensity. Dose intensity was defined as the fraction
of the dose compared to the maximum unreduced dose.

Neutropenia incidence and duration. The incidence and
duration of grade 3 and 4 neutropenia were computed to
provide insight in the impact of dose regimen alterations on
the most important toxicity of this agent.

Efficacy: survival. A total of 1,000 overall survival times
were simulated based on the individual values for TTN,
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PSA growth rate, and ECOG baseline score of each simu-
lated patient. Subsequently, the median survival time for
each patient was computed.

Life years gained. Life years gained (LYG) was defined as
the median differences in overall survival between two com-
peting treatments for each simulated patient.

Costs. The cost model defines the assignment of costs to
various events that may contribute to the total overall treat-
ment costs (Eq. 1), for which we considered two types:
(i) direct drug costs and (ii) adverse event-related costs.
Direct costs were computed as the dose costs (Cdose) mul-
tiplied by the received absolute cumulative dose (Dosetotal)
for each individual, i. The adverse event-related costs were
computed by multiplying the duration of each adverse event
j for individual i with its associated costs (CAE,j) (Eq. 1).
Hypothetical costs and cost units (CU) were assumed, and
are provided in Table 1.

Ci ¼ Dosetotal;i � CDose1
X

j

DurationAE;i ;j � CAE;j (1)

ICER. We computed the incremental cost-effectiveness
ratio (ICER) as follows for each scenario, compared to the
base treatment scenario, as follows:

ICERn;i ¼
Cn;i 2Cbase;i

En;i 2Ebase;i
(2)

Here, the reference costs (Cbase,i) are substracted from
the total costs C for scenario n in individual i are subtracted
from the reference costs (Cbase,i) for the corresponding indi-
viduals, and divided by the difference in corresponding
effectiveness metrics E, which could either be median sur-
vival or TTN.

QALYs. The ECOG performance score was used to calcu-
late a surrogate marker for mean quality-of-life (QOL)

Table 2 Overview of summary evaluation metrics

Metric Description

Dose intensity Fraction of the dose compared to the maximum unreduced dose.

Neutropenia Incidence and duration of grade 3 and 4 neutropenia.

Efficacy: survival Median individual predicted overall survival based on PSA disease progression model and other covariates.

Life-years gained (LYG) Median individual differences in overall survival between two competing treatments

Total treatment costs Ci ¼ Dosetotal ;i � CDose1
X

j

DurationAE ;i ;j � CAE ;j

Incremental cost-effectiveness ratio (ICER) ICERn;i ¼ Cn;i 2Cbase;i

En;i 2Ebase;i

Quality-of-life (QOL) QOLi ¼ 1
maxðECOGÞ�tEOT ;i

� maxðECOGÞ � tEOT ;i 2

ð tEOT ;i

0

ECOGi ðtÞ dt

� �

Quality-adjusted life years (QALY) QALYi ¼ LYGi �QOLi

i 5 individual i.

Table 1 Simulation characteristics of the base scenario (B)

Description Specification

Dose regimen

Dose 1.4 mg/m2

Dose times (days) 0, 7

Cycle length (days) 21

Dose reduction after AE Single (nonrepeated dose reduction)

Grade 3: 25% of dose; Grade 4: 50% of dose

Progression criterion 25% increase from nadir 1 PSA>5 ng/mL (after 2 weeks)

Patient characteristics

Baseline PSA (mean) [ng/mL] 23.2

Baseline ECOG 0

Body surface area (mean, SD) 1.73 (0.3)

Baseline ANC (mean) [109 cells/L] 4.03

Prior taxane treatment —

Costs

Dose (U/mg) 100* Direct cost of drug and drug administration visit

Neutropenia, grade 4 (U/day) 100 Average costs for hospitalization, growth factors etc.

Peripheral neuropathy, any grade (U/day) 5 Medication, contact physician

Paresthesia, any grade (U/day) 5 Medication, contact physician

Diarrhea, any grade (U/day) 5 Medication, contact physician

Asthenia, any grade (U/day) 1 Contact physician

Anemia, any grade (U/day) 5 Medication, contact physician
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during the observation period. Individual QOL value was
computed using the individual ECOG profile as follows:

QOLi ¼
1

maxðECOGÞ � tEOT ;i

� maxðECOGÞ � tEOT ;i 2

ð tEOT ;i

0
ECOGiðtÞ dt

� �
(3)

where tEOT represents the end-of-treatment time for individ-
ual i, max(ECOG) represents the maximum possible ECOG
score (e.g., ECOG 5 2 for this example), and finally QOLi

represents the quality of life metric for individual i. Thus,
QOL was bounded between 0 and 1, where 1 represents
optimal quality of life. Subsequently, quality-adjusted life
years (QALY) for each individual i were computed as
follows:

QALYi ¼ LYGi � QOLi (4)

where QOL represents the individual QOL metric as com-
puted from the ECOG time course.

Part III. Simulations
Base and “no-treatment” reference simulation scenarios
were first defined. The base scenario assumes typical val-
ues for all of the different models. An overview of character-
istics of the base scenario is provided in Table 1. The
no-treatment scenario represents the case where no drug
has been administered, and was used to compare efficacy
metrics. Subsequently, alternative simulation scenarios
were evaluated, addressing specific aspects of treatment
and patient characteristics, while keeping other characteris-
tics equal to the base scenario. For each scenario, 500
patients were simulated for a duration of seven treatment
cycles (i.e., 147 days), unless patients would dropout
earlier.

Dosing regimen. Two alternative dosing regimens were
defined. The first scenario evaluated a lowered dose of
1.0 mg/m2, at the default dose administration timepoints of
day 1 and 8. The second scenario considered the default
dose of 1.4 mg/m2; however, only administered at day 1 of
each cycle.

Alternative disease progression criterion. An alternative
PSA-based disease progression criterion of 50% instead
25% increase from PSA nadir was considered.

Dose-reduction rules. Here we either assumed a scenario
with no dose reductions at all, in order to assess how this
would influence toxicity profiles, or, for the second scenario,
we considered more strict dose reductions of 250% and
265% for grade 3 and 4 toxicities, respectively.

Patient population. In the first scenario, patients with a
low disease burden were considered, assuming a typical
baseline PSA of 5 ng/mL. In the second scenario we
assumed the alternative case where patients were signifi-
cantly pretreated with taxanes.

Comparator agents and uncertainty assessment. Here
we modified the parameters of the underlying model for tox-

icity and efficacy (PSA dynamics) models for two purposes.
First, it may be desirable to profile comparator agents to a
drug under investigation in terms of expected toxicity, effi-
cacy, and/or cost-effectiveness metrics. In such cases,
knowledge related to toxicity and/or efficacy may be avail-
able for these comparator agents. We considered three
scenarios: (i) a comparator agent with an expected 3-fold
increased PSA inhibition drug effect parameter; (ii) a com-
parator agent with an increased drug effect (3*KD0), but
also a higher toxicity parameter (1.5*ANCSLOPE, the drug-
effect parameter in the neutropenia model); and (iii) a com-
parator agent with a decreased drug effect (0.5*KD0), and
lower toxicity parameter (0.5*ANCSLOPE).

Second, during early clinical development, uncertainty
related to toxicity or efficacy profiles may still be relatively
high, and in such cases sensitivity analysis could be con-
sidered to quantify the impact of uncertainty in toxicity
parameters on any inference derived from an integrated
simulation framework. For this application, we considered
(i) an increased drug effect parameter for neutropenia by a
factor of 1.5, and (ii) a transition rate to higher toxicity
scores for peripheral neuropathy increased by a factor of 3.

Software
The Markov-transition models for AEs and ECOG score
were developed using NONMEM (v. 7.2), with the first-
order conditional estimation method. The parametric sur-
vival model was estimated using the survreg function in R
(v. 3.0).22 The overarching simulation framework, as well as
simulations for different submodels, were conducted using
R together with the R packages deSolve23 and MASS. For
implementation of integrated cost-effectiveness analyses in
R, we refer to our previous work on this as described by
Frederix et al .24,25

RESULTS
Model development
ECOG score. The Markov-transition model adequately
described the ECOG transitions between neighboring
ECOG states (Figure 2). Transition rates could be esti-
mated with a relative standard error (RSE) of <27%. The
baseline ECOG score distribution was 51, 48, and 1% for
ECOG scores of 0, 1, and 2, respectively. Most transitions
were occurring within the same state (0 to 0, 1 to 1). The
number of events of an ECOG score of 3 or 4 was low.
Therefore, we pooled ECOG scores of 2, 3, and 4 into one
state. We also estimated an effect of PSA disease progres-
sion on transition rates towards higher ECOG states. When
>50% inhibition of the PSA was observed, the transition
rates to higher ECOG scores decreased by a factor of
0.704 (RSE 36%). The parameter estimates of the Markov-
transition model are provided in Table S1. When >50%
inhibition of the PSA was observed, the transition rates to
higher ECOG scores decreased by a factor of 0.704 (RSE
36%). When comparing these groups with >50% inhibition
vs. <50%, the overall proportions of ECOG 0 and 1 were
75% and 23% vs. 44% and 48%, and was also consistent
with observed transition frequencies. Nonetheless, the
amount of ECOG data available was relatively limited, so
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the certainty and magnitude of the identified effect should
be interpreted with caution.

AE model. AEs other than neutropenia were described
using a series of Markov-transition models. The overall dis-
tribution of different toxicity grades for each toxicity are pro-
vided in Table S2. Of all nonhematological toxicities,
anemia showed the largest incidence of dose-limiting

(grade >3) toxicities. Because no individual PK data were
available for this specific study, we were not able to estab-
lish a direct exposure–response relationship. The parame-
ter estimates of the Markov-transition models for the
different AEs are provided in Table S1. For nausea and
diarrhea, not enough observations for grade 3 and 4 toxic-
ities were present to estimate their respective transition
probabilities. Predicted and observed transition frequencies

Figure 2 (A) Model predictions (95% prediction intervals) and observed incidence of transitions for the Markov-transition models for
the other adverse events model and (B) ECOG performance score model. (C) Dropout model simulated median (thick solid lines) and
95% confidence intervals (areas) and observed (thin solid lines), stratified by patients above (blue) and below (gray) the median esti-
mate for the PSA growth rate (KG).
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are depicted in Figure 2, and indicated an overall adequate
description, with a limited discrepancy observed for transi-
tion rates of peripheral neuropathy.

Dropout. A log-logistic model best described dropout. A lim-
ited part of the observed dropout patterns falls outside the
predicted curve. Alternative functions (other than log-logistic)
only resulted in further deviations of the observed dropout
pattern. Possibly, the observed deviation can also be related
to the limited size, especially at later times with only a limited
number of events occurring. For the purpose of simulations,
this was found to be not very relevant. The individual pre-
dicted PSA growth rate (KG) was found as the most signifi-
cant predictor (dOFV -11.4). PSA inhibition rate (KD0) and
age were also significant (DOFV 5 24.3 and 24.05). How-
ever, in the multivariate model only KG remained significant.
For the final dropout model, the intercept was estimated at

2.212 (RSE 24.6%), scale was estimated at 0.3178 (RSE
7.0%), and a coefficient of 20.6102 (RSE 19.4%) was esti-
mated for log(KG). A visual predictive check is depicted in
Figure 2, indicating adequate description of the data.

Simulations
Typical time courses for neutrophil count, incidences of other
AEs, PSA time courses, and the fractions of the full doses
received at each dose event are depicted in Figure 3.

Results of the simulated scenarios are summarized in
Table 3. Throughout these scenarios, changes in summary
metrics (Tables 2, 3) were compared to either the no-
treatment scenario for values related to efficacy (i.e., LYG),
or to the base scenario for values of ICER and QALYs.

Finally, the individual differences in costs and effects for
the different simulation scenarios vs. placebo treatment are
represented in Figure 4. This figure depicts for each

Figure 3 Typical simulated time courses for dose reductions (red symbols and lines), neutrophils (dashed line), PSA (dotted orange
line) and other adverse events (colored lines in bottom gray area) in four simulated patients. Neutropenia dose reductions thresholds
are at 1.5*109 (predose threshold), 1.0*109 (grade 3), and 0.5*109 (grade 4) cells/L.
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simulated individual the expected costs and expected effi-
cacy, taking into consideration simulated values derived
from toxicity and efficacy models and associated dose
reductions, in comparison with the base scenario. These
types of differential cost-effectiveness plots are commonly
used in the field of CEA to evaluate different CEA scenar-
ios, and, the effect of parameter uncertainty. In this case,
however, the interindividual variability is thus depicted.

Dose regimen. In Scenarios S2 and S3, alternative dosing
regimens were evaluated in which a lower dose (1.0 mg/m2

instead of 1.4 mg/m2) was administered (S2), or, where
only a dose at day 1 of the 21-day cycle was administered
(S3). Because in these dosing regimens lower doses were
used, they were associated with less toxicity and thus with
higher dose intensities. Consequently, costs for both dose
(as a lower total dose was administered) and toxicity were
lower.

Alternative disease progression criterion. Design of
CRPC trials is still strongly debated26 and therefore the
implications of altering the disease progression criterion
were evaluated. If the disease progression criterion was
increased by >50% after reaching PSA nadir (S4), instead
of the more commonly used 25%, the costs due to toxicities
increased, as did the dose costs due to the longer treat-
ment duration.

Dose reduction rules. In Scenario S5, no dose reductions
were allowed. As expected, this led to increased neutrope-
nia accompanied by increased costs. Scenario S6 eval-
uated permanent, instead of single-event dose reductions.
This led to further decreased dose intensities, a decrease
in the median duration of neutropenia, and overall
decreased drug and toxicity-associated costs. In Scenario S7,
in which larger dose reductions of 50% and 35% for grade 3
and 4 toxicities were used, no substantial differences in out-
come metrics or costs were observed.

Patient population. Patients with low typical PSA base-
lines (5 ng/mL) (S8), i.e., with less progressed disease,
clearly benefited when looking at efficacy metrics, with a
median increase in survival of 124 days. However, drug-
associated costs were increased since patients could be
treated longer until disease progression occurred.

When patients were pretreated with taxane (a significant
covariate in the PSA model (S9)), median survival benefit
again changed considerably, compared to the base sce-
nario with a median decrease of survival of 80 days. Clear
decreases in QALYs were also predicted for these patients,
based on a higher probability of reaching higher ECOG
scores.

Comparators and uncertainty assessment. We demon-
strated how expected changes in toxicity or efficacy profiles
for a hypothetical comparator could be evaluated in terms
of efficacy and cost metrics. In Scenario S10, drug effects
were higher while toxicity was equal, which led to
substantially increased drug costs, but with the expected
survival benefit, the ICER was only marginally reduced. In
Scenario S11, increased toxicity and drug effect led to
increased median survival, although this benefit was asso-

ciated with increased drug and toxicity-related costs. For
Scenario S12, for a comparator with an expected lower effi-
cacy and toxicity, decreased toxicities and associated costs
were observed, but in terms of cost effectiveness, the
expected ICER was substantially increased, indicating that
this inferior treatment was not cost-effective. Finally, Sce-
narios S13 and S14 considered a sensitivity analysis for
toxicity parameter values on outcome metrics.

DISCUSSION

We have developed and integrated several models into an

overarching simulation framework that allowed early

assessment of toxicity, efficacy, and cost effectiveness in

CRPC patients treated with eribulin. This work serves as a

proof-of-concept example on how trial design and decision

making in oncology can be further informed using a model-

based approach in early clinical drug development. The

major novelty of the current study was a full integration of

the realized dosing regimen, toxicity, efficacy, and quality of

life in CRPC. While we acknowledge the ideas that we

present are not new, the full integration of all different com-

ponents has not been presented for CRPC before.

Currently conducted CEAs mainly use empirical models

to predict the incidence of toxicity and clinical outcome,

which are based on late-stage clinical trials only. As such,

they are mainly of relevance during late-stage evaluation of

treatments for which pivotal registration trials have been

conducted, and which may have already obtained regula-

tory approval. These approaches do not allow for drawing

inferences related to expected cost effectiveness during

early clinical development. In contrast, integrated simulation

approaches that take into account relevant properties such

as drug exposure, dose reductions, toxicities, biomarker

response, dropout, and efficacy do allow for the develop-

ment of much more comprehensive approaches that can

be used to address “what if” scenarios during clinical devel-

opment, as we have attempted to demonstrate in the cur-

rent work. We evaluated various factors related to drug

treatment regimens and patient characteristics (e.g., dose

regimens, dose reductions rules, progression criteria),

patient characteristics, comparator agents, and model

uncertainty, which may be present during early develop-

ment, and related these to a range of clinical utility and

cost-effectiveness metrics (Table 3, Figure 4).

Pharmacokinetic-pharmacodynamic models typically eval-
uate patient characteristics that are predictors for observed
interindividual variability. Such patient characteristics can
be leveraged into an integrated simulation framework to
assess the specific impact of, for example, increased prob-
ability to experience toxicities, or decreased probability for
treatment response. For instance, in Scenario S9 we spe-
cifically evaluated the previously identified covariate effect
of prior taxane treatment on PSA dynamics, and its subse-
quent impact on cost effectiveness. These simulations are
of relevance, as an increasing interest exists for the evalua-
tion of cost effectiveness in subgroups of patient
populations.27
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Typically, CEAs use plots of the difference in cost vs. effec-
tiveness to assess the impact of parameter uncertainty. Here,
we extended this type of visualization specifically for interindi-
vidual variation (Figure 4), and such a figure can be consid-

ered to visually identify subgroups of patients who are
treated cost-effectively (or the opposite).

In oncology, pharmacological quantitative toxicity or effi-
cacy models are becoming increasingly mechanistic.

Figure 4 Distribution of difference in cost (CU) vs. effect (overall survival, days) for the different simulation scenarios vs. the base sce-
nario. The color intensity represents the relative density of cost-effectiveness pairs across individuals. The gray lines represent 2D den-
sity smoothers.
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Potentially, these developments allow for further sharing
and integration of knowledge with clinical development pro-
grams of different drugs. Such integration was also demon-
strated in the current analysis, as we used a neutropenia
model that was based on patient data for the same drug
but in different indications (mainly breast cancer). Likewise,
disease-specific DPCO models may become available that
potentially allow informing an efficacy model across differ-
ent drugs, as was demonstrated for colorectal cancer.13

Previously, Claret et al.28 developed a DPCO model for
thyroid cancer that included an empirical model for the first
time considering the probability of dose reduction in the
context of DPCO frameworks. However, to our knowledge,
the current analysis is the first example of a simulation
framework for efficacy evaluation that integrated dose
reductions in a somewhat more explicit and mechanistic
fashion, potentially allowing more flexible use when evaluat-
ing alternative scenarios.

In 2001, Poland et al.16 and Hughes et al.17 suggested
the potential value of integrated model-based approaches
that also include pharmacoeconomical features. However,
to date only one example has been published in which
pharmacological models have been leveraged into an other-
wise conventional health economical model.18 This particu-
lar example included a previously developed model linking
rituximab pharmacokinetics to progression-free survival in
patients with follicular lymphoma, which was subsequently
integrated in a conventional cost-effectiveness framework.
However, this implementation may still be viewed as an
empirical approach, as for any new drug the relation
between drug exposure and clinical outcome has yet to be
determined empirically. As such, the approach described by
Pink et al.18 cannot be implemented in the context of early
drug development of a novel investigational agent. In
addition, this approach did not include features such as
model-based descriptions key to dose-limiting toxicities and
associated dose reductions, and biomarkers for disease
progression. Thus, this analysis demonstrates the rele-
vance of utilizing more mechanism-based modeling
approaches with system, disease, and drug-specific proper-
ties that more easily allow transfer of knowledge across
drugs (e.g., using DPCO models) or indications (e.g., toxic-
ity profiles such as neutropenia). It should be noted that not
all of the models included in our simulation framework are
of a mechanistic nature themselves (e.g., the categorical
AE models). Nonetheless, in our view the overall framework
may be referred to as a mechanistic framework, meaning it
includes clinical and pharmacological causality to various
factors that ultimately relate to efficacy or costs.

Although from a pharmacoeconomical modeling perspec-
tive various interactions and causalities were considered,
this approach was not carried forward for the characteriza-
tion of correlations between different types of toxicities and
efficacy, by performing joint modeling. This could be of rele-
vance, since the occurrence of one type of toxicity may be
informative for the risk for other toxicities and potentially
also efficacy. This was, however, not performed since part
of the datasets originated from a different population, and
also because of the technical challenges for implementing
such joint models. Nonetheless, the development of joint

models for toxicity and efficacy would be of substantial rele-
vance for further advances such as integrated simulation
frameworks.

As our research was a proof-of-concept analysis, some
limitations and assumptions should be acknowledged.
Although PSA is the primary biomarker for disease progres-
sion, patients may in some cases develop progression of
disease due to development of (bone) metastases while
PSA levels do not indicate such disease progression. This
is a well-known limitation of PSA as a biomarker for dis-
ease progression of prostate cancer in general.29 In the
current framework, we did not specifically model other rea-
sons for disease progression, although implicitly other rea-
sons for disease progression were at least partially
captured by the dropout model.

We were not able to identify an exposure–response rela-
tionship for AEs other than neutropenia, as no PK data were
available from the phase II study in patients with prostate can-
cer. For this specific example, these AEs did not play a signifi-
cant role, as dose reductions were mostly related to eribulin-
induced neutropenia, for which the exposure–response rela-
tionship was accurately characterized.

The ECOG score, which was included as a metric for
quality-of-life, is not a widely used metric to describe QoL
and most likely does not fully capture QoL in patients. Met-
rics such as the EQ5D score may have been more suitable,
but these were not available for this example. Nonetheless,
it is clear that any other metric describing QoL dynamics
may replace the currently used ECOG score without
issues.

The cost-effectiveness model was hypothetical and was
kept relatively simple, as only drug and direct AE-related
costs were considered. Moreover, the implementation of
both drug- and AE-related costs was fully hypothetical,
since we only aimed to demonstrate a proof of concept.
Typically, CEAs include additional cost considerations, for
instance, costs for follow-up hospital visits or background
mortality rates. Of course, such cost considerations can
easily be included in the current framework, but as all costs
where hypothetical we did not consider this of additional
value, since these costs are typically not directly related to
pharmacological action.

Although our framework can provide inferences that may
be relevant to inform decision making in drug development
in CRPC, it remains crucial to be aware of the impact of
the various assumptions made. For instance, the DPCO
model was based on a selected CRPC patient population;
other CRPC patient populations may have further or less
advanced disease, with potential implications on expected
PSA dynamics and associated clinical outcome predictions.
Such considerations may be important to consider when
performing simulations using this framework or similar
frameworks. Another example is the neutropenia model,
which was developed in a population of female breast can-
cer patients. While on the one hand the sharing of knowl-
edge between therapeutic indications for toxicities can be
considered a highly relevant exercise, also here it remains
important to explicitly assess if potential differences in, for
instance, baseline risk, or sensitivity, to certain toxicities
may be expected. In our case this was considered justified
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because of the availability of various covariates related to
sensitivity for neutropenia, and the fact that clear gender
differences have not been reported for neutropenia. None-
theless, when applying such frameworks in drug develop-
ment, a careful consideration and quantitative evaluation of
all possible assumptions is of critical importance.

Although this framework applies to CRPC and for the
treatment with eribulin, components of this model can also
be used for simulation purposes of other anticancer agents
in patients with CRPC. This work is a first proof-of-concept
example of an integrated model-based approach for evalua-
tion of toxicity, efficacy, and cost effectiveness during early
clinical development. Specifically, this approach can be con-
sidered for the evaluation, and associated decision making,
of different possible treatment protocols for anticipated clini-
cal trials, and to assess the impact of potentially relevant
patient characteristics.
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