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Simple Summary: N-carbamylglutamate (NCG) has been demonstrated to promote the synthesis of
endogenous arginine and improve reproductive performance. In the present study, we found that
dietary NCG supplementation improved meat quality of a Chinese fat-type pig by increasing muscle
tenderness and Phe concentration, and optimizing fatty acid profiles in different tissues. These results
provided scientific evidence for the application of NCG as a feed additive in finishing pigs.

Abstract: The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass
traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of
Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial weight (43.21± 0.57 kg)
were randomly assigned to two treatments (with six pens per treatment and three pigs per pen) and
fed either a basal diet or a basal diet supplemented with 0.08% NCG for 56 days. Results showed that
dietary NCG reduced shear force (p = 0.004) and increased drip loss (p = 0.044) in longissimus dorsi
muscle of Ningxiang pigs. Moreover, increased levels of oleic acid (C18:1n9c) (p = 0.009), paullinic
acid (C20:1) (p = 0.004), and α-linolenic acid (C18:3n3) (p < 0.001), while significant reduction in the
proportions of arachidonic acid (C20:4n6) (p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017)
were observed in the longissimus dorsi muscle of pigs fed NCG when compared with those fed the
control diet. As for adipose tissues, the C20:1 (p = 0.045) proportion in dorsal subcutaneous adipose
(DSA), as well as the stearic acid (C18:0) (p = 0.018) level in perirenal adipose (PA) were decreased
when pigs were fed the NCG diet compared with those of the control diet. In contrast, the margaric
acid (C17:0) (p = 0.043) proportion in PA were increased. Moreover, the NCG diet produced PA
with a greater proportion of total PUFAs (p = 0.001) (particularly linoleic acid (C18:2n6c) (p = 0.001))
compared with those produced by the control diet. These findings suggest that dietary NCG has
beneficial effects by decreasing the shear force and improving the healthfulness of fatty acid profiles,
providing a novel strategy for enhancing meat quality of pigs.
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1. Introduction

For the pork industry, fat and fatty acids (whether in muscle or adipose tissues) contribute
importantly to various aspects of meat quality (e.g., flavor, taste) and are central to nutritional value [1].
However, fat-type pigs exhibiting excessive amounts of subcutaneous adipose tissues have been
recognized as detrimental to carcass quality [2]. Moreover, imbalanced fatty acid composition is even
harmful to the consumer [3]. Therefore, increasing attention is mainly focused on safer, healthier,
and taster of meat. Indeed, the use of nutritional approaches to optimize meat fatty acid composition
has been a popular research topic, for example, supplying specific additives in diets such as linseeds,
plant extracts [4,5]. The application of N-carbamylglutamate (NCG) as a dietary supplement for the
health of humans and animals also has gained increasing interest [6–8].

NCG, as an effective and metabolically stable analog of N-acetylglutamate, promotes the synthesis
of endogenous arginine [9,10]. What’s more, NCG facilitates muscle protein synthesis [11], protects
the small intestinal morphologic [12] and improves reproductive performance [13,14]. Moreover,
new evidence indicated that NCG can enhance the antioxidant capability in the plasma, spleen, liver,
and jejunum of rats [12,15,16]. Our previous study also proved that NCG is a non-toxic substance with
no genotoxicity in rats [17]. However, few studies regard the effect of NCG on meat quality of pigs,
and whether fatty acid metabolism may be involved in the regulation of the process. Advances in
seabass demonstrated that NCG alleviates liver metabolic disease and hepatic inflammation via
inhibiting ERK1/2-mTOR-S6K1 signaling pathway, and the ameliorated function is closely associated
with the improved lipid metabolism indices, for example, lower plasma very low-density lipoprotein
and hepatic triglyceride and non-esterified fatty acid accumulation [10]. Ningxiang pig, as one of
Chinese indigenous fat-type breeds, exhibits early sexual maturity, tender succulent flavor, strong
adaptability and resistance, plays an increasingly significant role in the pork industry [18]. Given the
foregoing, we hypothesized that dietary NCG may affect meat quality traits of Ningxiang pigs through
influencing lipid metabolism. Therefore, the purpose of the present study was to evaluate the effects of
dietary NCG on carcass traits, meat quality, and fatty acid profiles in different tissues of Ningxiang pigs.

2. Materials and Methods

2.1. Ethics Statement

Animal experiments were approved and performed following regulations and guidelines
established by the Animal Welfare Committee of Hunan Agricultural University (Changsha, China)
(No. 2013-06).

2.2. Animals and Experimental Design

Thirty-six castrated female Chinese Ningxiang pigs with a similar initial weight (43.21 (SEM 0.57) kg)
were selected from the same herd. Pigs were randomly allocated to two treatment groups with six
pens per treatment and three pigs per pen. Pigs were fed a basal diet, unsupplemented (Control group)
or supplemented with 0.08% NCG (NCG group) for a 56 day period. NCG, 98.30% purity, supplied
by Changsha Green Top Biotech Co., Ltd. (Changsha, China), and the dose of which was based on
the previous study with pigs [19]. The ingredient composition and nutrient content of the basal diet
(meets recommendations of Chinese National Feeding Standard for Swine (2004)) are shown in Table 1.
Feed and water were provided ad libitum throughout the experiment period. The feeding experiment
was carried out in Hunan Liushahe Spotted Pig Eco-Farm Co., Ltd. (Changsha, China).

At the end of the experiment (pigs with final body weight of 74.13 (SEM 1.34) kg), one pig with
medium weight per pen was chosen and slaughtered by exsanguination after electrical stunning.
Samples of the longissimus dorsi muscle and adipose tissues were immediately resected from the right
side of the carcass, and flash-frozen using liquid N2, then stored at −20 ◦C for determination of the
chemical composition.
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Table 1. Composition and nutrient levels of the basal diet (air-dry basis).

Ingredient % Nutrient Content 1 %

Corn 65.50 DE (MJ/kg) 12.49
Soybean meal 6.50 Crude protein 11.91
Wheat bran 24.00 Crude ash 4.94

Limestone powder 1.20 Ether extract 3.35
Zeolite powder 0.64 Calcium 0.66

Rice bran 0.40 Total phosphorus 0.50
Calcium hydrogen phosphate 0.60 Available phosphorus 0.25

l-lysine-HCl (70%) 0.50 SID lysine 0.64
l-threonine (98.5%) 0.05 SID threonine 0.38

Salt 0.36 SID methionine 0.18
Vitamin and mineral premixs 2 0.25 SID methionine + cysteine 0.37

1 DE (digestible energy) is a calculated value and the others are measured values. 2 The vitamin and mineral premixs
provide the following per kg of the diet: retinol 3000 IU, cholecalciferol 400 IU, vitamin E 28.0 IU, vitamin K3 2.0 mg,
thiamine 3.6 mg, riboflavin 7.0 mg, pyridoxine 2.1 mg, cyanocobalamin 16.0 µg, folic acid 0.4 mg, pantothenic acid
12.0 mg, copper (as copper sulfate) 4.0 mg, selenium (as sodium selenite) 0.2 mg, zinc (as zinc sulfate) 62.0 mg, iron
(as iron sulfate) 76.8 mg, manganese (as manganese sulfate) 8.44 mg.

2.3. Carcass Trait and Meat Quality Measurements

At slaughter, carcass weight was recorded after evisceration so that carcass yields could be
calculated. The other carcass traits (obtained from the left side of the carcass) including carcass length,
loin muscle area, average backfat thickness of first- and last-rib and last-lumbar vertebra were measured
by the previous methods [20].

The pH values of the longissimus dorsi muscle were measured at 45 min (pH45min) and 24 h (pH24h)
postmortem, using a portable pH meter (pH-STAR, SFK-Technology, Denmark). The longissimus dorsi
muscle colors were assessed objectively in triplicate, from a freshly cut surface with the parameters L*
(brightness), a* (redness), and b* (yellowness) at 45 min postmortem, using a hand-held color meter
(CR 300, Minolta Co. Ltd., Osaka, Japan). Shear force and drip loss of the longissimus dorsi muscle
were measured according to previously reported methods [21].

2.4. Hydrolytic Amino Acid Analysis

Muscle amino acid contents were determined by an ion-exchange amino acid analyzer (Hitachi
L-8900, Tokyo, Japan). Briefly, about 0.1 g of ground freeze-dried sample of the longissimus dorsi
muscle was hydrolyzed in 10 mL of 6 mol/L HCl for 24 h at 110 ◦C. The solution was then adjusted to a
volume of 100 mL and 1 mL of the settled solution was filtered through a 0.45 µm membrane and then
the filtered solution after 10-fold dilution was used for amino acid analysis [22].

2.5. Fatty Acid Composition Analysis

To determine the fatty acid composition, lipid extraction and transesterification were performed
according to previously reported procedures [23]. Briefly, the thawed longissimus dorsi muscle
or adipose tissue section was blended with chloroform-methanol (1:1, v/v) containing butylated
hydroxytoluene and was homogenized. Fatty acid methyl esters were analyzed using gas
chromatography (Agilent 6890N equipped with a flame ionization detector and a CP-Sil 88 fused silica
open tubular capillary column). The initial oven temperature was set at 45 ◦C for 4 min, and then
raised to 175 ◦C at 13 ◦C/min, held at 175 ◦C for 27 min and then increased to 215 ◦C at 4 ◦C/min and
then held at 215 ◦C for 35 min. The injector and detector temperatures were set at 250 ◦C. The carrier
gas was hydrogen at a flow rate of 30 mL/min. Fatty acids were identified through comparisons to
the retention time of standard esters, and the concentration of individual fatty acid was quantified
according to the peak area and expressed as a percentage of the total area [24].
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2.6. Statistical Analysis

Data were analyzed using unpaired, two-tailed Student’s t-test of SPSS 17.0 (2012, SPSS Inc.,
Chicago, IL, USA). Values were expressed as mean ± standard error of mean (SEM), and p-values < 0.05
were considered statistically significant.

3. Results

Table 2 presents that NCG has no significant differences in carcass traits including slaughter
yield, straight/oblique length and loin muscle area. In addition, pH values and muscle colors (i.e.,
L*, a*, and b*) were not affected by any of the dietary treatments (p > 0.05). However, drip loss was
significantly increased by 30.32% (p = 0.044), while shear force was significantly decreased by 29.51%
(p = 0.004) after NCG supplementation.

Table 2. Effects of N-carbamylglutamate on carcass and meat quality traits in Ningxiang pigs.

Item Control NCG p-Value

Carcass weight kg 56.52 ± 0.31 56.10 ± 1.11 0.730
Slaughter yield % 73.60 ± 0.73 73.68 ± 0.47 0.926
Straight length cm 80.67 ± 1.61 80.33 ± 0.84 0.858
Oblique length cm 71.83 ± 1.17 71.17 ± 0.70 0.635

Average backfat thickness mm 45.75 ± 1.58 45.08 ± 1.50 0.766
Loin muscle area cm2 17.89 ± 0.56 18.65 ± 1.00 0.521

pH45min 6.63 ± 0.09 6.67 ± 0.07 0.770
pH24h 5.80 ± 0.09 5.92 ± 0.07 0.285

Drip loss % 1.55 ± 0.18 2.02 ± 0.09 0.044
Shear force kg 7.93 ± 0.44 5.59 ± 0.45 0.004

Color
Lightness (L*) 43.20 ± 0.61 43.19 ± 0.67 0.989
Redness (a*) 7.26 ± 0.53 7.13 ± 0.18 0.814

Yellowness (b*) 3.11 ± 0.16 2.98 ± 0.06 0.474

Values are presented as means ± SEM, n = 6.

The effects of NCG supplementation on amino acid profiles in the longissimus dorsi muscle of
Ningxiang pigs are listed in Table 3. NCG tended to increase the concentration of phenylalanine
(Phe) (p = 0.066) in the longissimus dorsi muscle. Moreover, increased levels of oleic acid (C18:1n9c)
(p = 0.009), paullinic acid (C20:1) (p = 0.004), α-linolenic acid (C18:3n3) (p < 0.001) and docosahexaenoic
acid (C22:6n3) (p = 0.082), while significant reduction in the proportions of arachidonic acid (C20:4n6)
(p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017) were observed in the longissimus dorsi
muscle of pigs fed NCG when compared with pigs fed the control diet (Table 4).

Table 3. Effect of N-carbamylglutamate on hydrolytic amino acid concentration in the longissimus
dorsi muscle of Ningxiang pigs, g/100 g.

Amino Acid Control NCG p-Value

Asp 7.31 ± 0.10 7.50 ± 0.11 0.228
Thr 4.46 ± 0.07 4.56 ± 0.06 0.325
Ser 3.82 ± 0.05 3.90 ± 0.02 0.136
Glu 13.41 ± 0.15 13.66 ± 0.05 0.168
Gly 3.53 ± 0.05 3.60 ± 0.02 0.206
Ala 5.07 ± 0.07 5.10 ± 0.01 0.616
Cys 0.90 ± 0.03 0.91 ± 0.02 0.663
Val 4.50 ± 0.05 4.57 ± 0.03 0.254
Met 2.23 ± 0.04 2.13 ± 0.07 0.250
Ile 4.14 ± 0.04 4.20 ± 0.02 0.225

Leu 7.30 ± 0.05 7.45 ± 0.01 0.124
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Table 3. Cont.

Amino Acid Control NCG p-Value

Tyr 2.73 ± 0.04 2.76 ± 0.02 0.555
Phe 3.64 ± 0.01 3.73 ± 0.01 0.066
Lys 7.90 ± 0.09 8.08 ± 0.02 0.118
His 4.12 ± 0.08 4.29 ± 0.07 0.114
Arg 5.52 ± 0.06 5.63 ± 0.01 0.130

Values are presented as means ± SEM, n = 6.

Table 4. Effect of dietary N-carbamylglutamate on long-chain fatty acid composition (% of total fatty
acids) in the longissimus dorsi muscle of Ningxiang pigs.

Long-Chain Fatty Acid Control NCG p-Value

Myristic (C14:0) 1.43 ± 0.41 1.48 ± 0.78 0.595
Palmitic acid (C16:0) 28.31 ± 1.89 27.99 ± 0.28 0.374
Margaric acid (C17:0) 0.23 ± 0.01 0.25 ± 0.01 0.352

Stearic acid (C18:0) 13.90 ± 0.22 13.79 ± 0.31 0.777
Arachidic acid (C20:0) 0.21 ± 0.01 0.21 ± 0.01 0.799

Palmitoleic acid (C16:1) 3.97 ± 0.08 4.11 ± 0.26 0.617
Elaidic acid (C18:1n9t) 0.19 ± 0.01 0.20 ± 0.01 0.401
Oleic acid (C18:1n9c) 38.69 ± 0.57 40.96 ± 0.40 0.009
Paullinic acid (C20:1) 0.25 ± 0.01 0.29 ± 0.01 0.004

Linoleic acid (C18:2n6c) 9.93 ± 0.32 10.13 ± 0.53 0.759
α-Linolenic acid (C18:3n3) 0.08 ± 0.00 0.16 ± 0.01 <0.001

Dihomo-γ-linolenic acid (C20:3n6) 0.33 ± 0.03 0.42 ± 0.05 0.159
Arachidonic acid (C20:4n6) 2.29 ± 0.75 0.42 ± 0.05 <0.001

Docosahexaenoic acid (C22:6n3) 0.14 ± 0.01 0.19 ± 0.02 0.082
ΣSFA 44.08 ± 0.39 43.72 ± 0.37 0.515

ΣMUFA 43.10 ± 0.63 44.73 ± 1.16 0.246
ΣPUFA 12.82 ± 0.39 10.64 ± 0.66 0.017

ΣSFA = sum of saturated fatty acids; ΣMUFA = sum of monounsaturated fatty acids; ΣPUFA = sum of
polyunsaturated fatty acids; Values are presented as means ± SEM, n = 6.

As for adipose tissues, Tables 5–7 present the effects of NCG supplementation on the fatty acid
profiles in dorsal subcutaneous adipose (DSA), abdominal subcutaneous adipose (ASA), and perirenal
adipose (PA) respectively. The C20:1 (p = 0.045) proportion in DSA and C20:4n6 (p = 0.070) in ASA,
as well as the stearic acid (C18:0) (p = 0.018) and C20:1 (p = 0.063) levels in PA decreased in the pigs
that were fed the NCG diet compared with those of the control diet. In contrast, the margaric acid
(C17:0) (p = 0.043) and C18:3n3 (p = 0.071) proportions in PA were increased. Moreover, the NCG diet
produced these adipose tissues with a greater proportion of total PUFAs (p < 0.1) (particularly linoleic
acid (C18:2n6c) (p < 0.1)) compared with those produced by the control diet.

Table 5. Effect of dietary N-carbamylglutamate on long-chain fatty acid composition (% of total fatty
acids) in the dorsal subcutaneous adipose of Ningxiang pigs.

Long-Chain Fatty Acid Control NCG p-Value

Myristic (C14:0) 1.23 ± 0.03 1.22 ± 0.03 0.806
Palmitic acid (C16:0) 24.02 ± 0.29 23.73 ± 0.27 0.566
Margaric acid (C17:0) 0.19 ± 0.01 0.20 ± 0.01 0.344

Stearic acid (C18:0) 15.38 ± 0.39 15.23 ± 0.50 0.815
Arachidic acid (C20:0) 0.26 ± 0.02 0.24 ± 0.02 0.393

Palmitoleic acid (C16:1) 1.49 ± 0.04 1.54 ± 0.06 0.570
Elaidic acid (C18:1n9t) 0.10 ± 0.01 0.10 ± 0.01 0.834
Oleic acid (C18:1n9c) 47.44 ± 0.63 47.79 ± 0.72 0.718
Paullinic acid (C20:1) 1.22 ± 0.05 1.03 ± 0.06 0.045
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Table 5. Cont.

Long-Chain Fatty Acid Control NCG p-Value

Linoleic acid (C18:2n6c) 7.79 ± 0.21 8.49 ± 0.25 0.061
α-Linolenic acid (C18:3n3) 0.33 ± 0.01 0.35 ± 0.01 0.181

Dihomo-γ-linolenic acid (C20:3n6) 0.09 ± 0.01 0.10 ± 0.01 0.726
Arachidonic acid (C20:4n6) 0.13 ± 0.01 0.12 ± 0.00 0.165

Docosahexaenoic acid (C22:6n3) 0.05 ± 0.00 0.05 ± 0.00 0.922
ΣSFA 41.23 ± 0.65 40.18 ± 0.95 0.381

ΣMUFA 50.34 ± 0.68 50.67 ± 0.81 0.764
ΣPUFA 8.43 ± 0.22 9.15 ± 0.27 0.061

ΣSFA = sum of saturated fatty acids; ΣMUFA = sum of monounsaturated fatty acids; ΣPUFA = sum of
polyunsaturated fatty acids; Values are presented as means ± SEM, n = 6.

Table 6. Effect of dietary N-carbamylglutamate on long-chain fatty acid composition (% of total fatty
acids) in the abdominal subcutaneous adipose of Ningxiang pigs.

Long-Chain Fatty Acid Control NCG p-Value

Myristic (C14:0) 1.52 ± 0.05 1.51 ± 0.05 0.878
Palmitic acid (C16:0) 23.88 ± 0.16 23.51 ± 0.18 0.155
Margaric acid (C17:0) 0.21 ± 0.02 0.22 ± 0.00 0.819

Stearic acid (C18:0) 12.15 ± 0.41 11.77 ± 0.47 0.558
Arachidic acid (C20:0) 0.18 ± 0.01 0.16 ± 0.01 0.148

Palmitoleic acid (C16:1) 2.31 ± 0.05 2.32 ± 0.15 0.985
Elaidic acid (C18:1n9t) 0.10 ± 0.01 0.10 ± 0.01 0.511
Oleic acid (C18:1n9c) 50.01 ± 0.55 50.21 ± 0.67 0.827
Paullinic acid (C20:1) 1.00 ± 0.08 0.87 ± 0.08 0.275

Linoleic acid (C18:2n6c) 7.90 ± 0.23 8.63 ± 0.29 0.076
α-Linolenic acid (C18:3n3) 0.36 ± 0.01 0.36 ± 0.01 0.889

Dihomo-γ-linolenic acid (C20:3n6) 0.10 ± 0.01 0.12 ± 0.02 0.337
Arachidonic acid (C20:4n6) 0.17 ± 0.01 0.14 ± 0.00 0.070

Docosahexaenoic acid (C22:6n3) 0.06 ± 0.00 0.06 ± 0.00 0.996
ΣSFA 37.95 ± 0.47 37.17 ± 0.65 0.354

ΣMUFA 53.43 ± 0.68 53.49 ± 0.72 0.958
ΣPUFA 8.62 ± 0.24 9.35 ± 0.31 0.093

ΣSFA = sum of saturated fatty acids; ΣMUFA = sum of monounsaturated fatty acids; ΣPUFA = sum of
polyunsaturated fatty acids; Values are presented as means ± SEM, n = 6.

Table 7. Effect of dietary N-carbamylglutamate on long-chain fatty acid composition (% of total fatty
acids) in the perirenal adipose of Ningxiang pigs.

Long-Chain Fatty Acid Control NCG p-Value

Myristic (C14:0) 1.36 ± 0.04 1.44 ± 0.06 0.331
Palmitic acid (C16:0) 24.20 ± 0.47 24.21 ± 0.51 0.992
Margaric acid (C17:0) 0.21 ± 0.01 0.25 ± 0.01 0.043

Stearic acid (C18:0) 18.26 ± 0.44 16.74 ± 0.29 0.018
Arachidic acid (C20:0) 0.24 ± 0.03 0.20 ± 0.01 0.244

Palmitoleic acid (C16:1) 1.23 ± 0.10 1.45 ± 0.10 0.159
Elaidic acid (C18:1n9t) 0.11 ± 0.01 0.11 ± 0.00 0.499
Oleic acid (C18:1n9c) 44.94 ± 0.89 45.03 ± 0.76 0.940
Paullinic acid (C20:1) 0.98 ± 0.10 0.73 ± 0.06 0.063

Linoleic acid (C18:2n6c) 7.77 ± 0.29 9.14 ± 0.07 0.001
α-Linolenic acid (C18:3n3) 0.33 ± 0.01 0.36 ± 0.00 0.071

Dihomo-γ-linolenic acid (C20:3n6) 0.09 ± 0.01 0.09 ± 0.02 0.923
Arachidonic acid (C20:4n6) 0.15 ± 0.01 0.15 ± 0.01 0.642

Docosahexaenoic acid (C22:6n3) 0.06 ± 0.00 0.07 ± 0.00 0.618
ΣSFA 44.27 ± 0.79 42.84 ± 0.66 0.193

ΣMUFA 47.27 ± 0.95 47.32 ± 0.70 0.968
ΣPUFA 8.46 ± 0.31 9.84 ± 0.07 0.001

ΣSFA = sum of saturated fatty acids; ΣMUFA = sum of monounsaturated fatty acids; ΣPUFA = sum of
polyunsaturated fatty acids; Values are presented as means ± SEM, n = 6.
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4. Discussion

New research shows that NCG may improve lipid metabolism with decreased plasma
very low-density lipoprotein, hepatic triglyceride and non-esterified fatty acid accumulation,
down-regulated fatty acid and cholesterol synthesis, and simultaneously increased lipolysis gene
mRNA levels of fish [10]. However, few studies regard the effect of NCG on meat quality of pigs.
The present study for the first time reported the use of NCG as a feed additive for Chinese local pigs, to
determine whether it could impact or even improve fatty acid profiles in different tissues. Fatty acids
are essential components of membrane phospholipids, and many of them have been associated with
cardiovascular, metabolic and neuropsychiatric disorders [3].

No significant differences were observed in carcass traits of Ningxiang pigs between groups under
the conditions of our study, which contradicted previous findings that NCG is effective to increase
longissimus dorsi muscle area and decrease back fat accretion [25]. The possible reasons for this
discrepancy could be attributed to the diet factors (regular vs. reduced protein level) or the type of pigs
(fat genotype vs. lean phenotype) used in studies. As mentioned previously, there is increasing interest
in meat quality for consumers, particularly in tenderness and juiciness [3]. Among them, tenderness
is critically important from a sensory viewpoint. In the present study, pork from the NCG diet had
a lower shear force value than from the control diet, indicating a more tender texture. Thus, NCG
supplementation in the swine diet may be a good nutritional strategy for tender pork production. Drip
loss, another quality measure of pork, is a natural phenomenon encountered during refrigerated storage
of fresh meat. Generally, meat with a high drip loss percentage would lead to unattractive appearance
and low consumer acceptance, which eventually reduce economic benefits [26]. Another major finding
from the present study was that dietary NCG had a significant adverse influence on drip loss compared
to the control group. The moisture retention potential of fresh pork muscle is ostensibly related to
some specific fatty acidss [27]. It appears that total saturated fatty acids (SFAs) may be negatively
associated with drip loss, suggesting that decreased SFA in the longissimus dorsi muscle may be
an influencing factor for drip loss. The precise mechanism underlying this effect currently requires
further investigations.

Muscle is the largest reservoir of amino acids in the body, and essential amino acids in meat can
offer high nutritional values [24,28]. In addition, amino acid composition determines the flavor of
meat, which is also an important source of essential amino acids in human diets [29]. Recent research
demonstrated NCG promotes intestinal absorption and transport of amino acids or peptides in suckling
lambs via regulating the mTOR signaling pathway [30]. Indeed, NCG could increase protein synthesis
in skeletal muscle [11]. In the present study, NCG increased the concentration of Phe in the longissimus
dorsi muscle slightly, which was consistent with the previous result obtained by Liu et al. (2016) that
the Phe content is increased by NCG intake in rat plasma [31]. Phe is an essential amino acid for
humans, and of great relevance to assessing the nutritional value of meat. One study reports that NCG
could significantly decrease homogentisate, an intermediate of the metabolic breakdown of Phe [32].
Besides, the coordinated activity of certain amino acid transporters in the cellular membranes may
partially response to the intracellular presence of available amino acids [33]. These transporters can
sense the availability of amino acids, relay nutrient signals to the cell interior, move amino acid in or out
of the cells, and launch a series of cascade responses, thus exhibiting a dual transporter and receptor
function [34]. A study by Yang et al. (2013) found that NCG ameliorates the absorptive capacity of
weaned piglets by increasing mRNA expression of Slc6a19, Slc7a9 and protein abundance of ASCT2,
B0AT1 and b0,+AT in the jejunum. These altered transporters involved in mediating the transfer of Phe
may contribute to Phe increment in the longissimus dorsi muscle of Ningxiang pigs [35].

A certain amount of fat in pork meat is favorably related to the palatability of the juiciness, odor,
and flavor of pork meat when it is cooked as a roast or chop. Accordingly, the fatty acid composition
of muscle seals the nutritional quality of pork, for example, PUFA content is positively correlated
with meat off-flavor [36,37]. Various studies have demonstrated that NCG supplementation could
affect lipid and energy metabolism (such as acetoacetate, acetone, lactate, creatine) in rats [31,32].
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These results indicate that NCG may have beneficial effects on the taste and tenderness of pork
since these meat characteristics are closely related to fatty acid composition [1]. In the present study,
the percentage of each fatty acid respect to all fatty acids within the fraction was calculated, and the
NCG diet produced the longissimus dorsi muscle with a greater concentrations of C18:1n9c, C20:1,
C18:3n3, and C22:6n3, and with a lower level of total PUFAs (particularly pro-inflammatory factor
C20:4n6) compared with those produced by the control diet, indicated the reassignment of these fatty
acids. These findings are partly consistent with the previous result obtained by Ye et al. (2017) that
the muscular C20:4n6 content is decreased by NCG intake in finishing pigs fed the reduced protein
diet [25]. The possible reasons could be attributed that NCG could increase endogenous NO production,
which accelerates the synthesis of eicosanoids, and results in the C20:4n6 proportion decrease [19].
C18:1n9c is the most abundant showing levels of 90% total monounsaturated fatty acids (MUFAs) and
positively correlated with flavor, and also described as a regulator of immune function and cholesterol
levels [38,39]; whereas C20:4n6 is capable of being converted into numerous inflammatory mediators
and stimulating the pathogenesis through the prostacyclin pathway [40,41]. Notably, the percentage of
C18:3n3 and C22:6n3 were increased in the present study. C18:3n3 and C22:6n3 are both types of n-3
series fatty acids and have been well studied for their roles in reducing the risk factors of disordered
lipid metabolism, suggesting that these changes may be beneficial in inhibiting fat accumulation [42].

The effect of NCG on fatty acid composition was only evaluated in the longissimus muscle [25],
limited information is available on the fatty acid composition of adipose tissues. Indeed, lipid synthesis
mainly occurs in adipose tissues of pigs. Subcutaneous and visceral adipose tissues with different
anatomical locations show specific development and deposition, especially in de novo synthesized
fatty acids due to desaturation and elongation [43,44]. NCG is involved in regulating the metabolism
of energy substrates through nitric oxide production [19,45]. Nitric oxide, as a signaling molecule,
stimulates glucose and fatty acid oxidation, enhances lipolysis, and inhibits lipogenesis in subcutaneous
adipose tissues [46,47]. It seems that tissue-specific manner of dietary NCG on fatty acid composition
in adipose tissues of Ningxiang pigs exists. Our results showed NCG supplementation resulted in
an increased amount of C18:2n6c in these adipose tissues, which mainly explained the higher PUFA
percentage. This shift towards greater unsaturation in adipose tissues and an increase in C18:2n6c
could lead to stimulating lipid oxidation of the pork fat, and have a hypocholesterolemic effect and
thereby slow the development of atherosclerosis for the consumer [48]. However, such depot fats
exhibiting a high content in C18:2n6c are often soft with a decrease in their storage capacity and their
technological quality, C18:2n6c also elongates and desaturates to form C20:4n6 in the body, a precursor
to pro-inflammatory compound that can have detrimental effects on health [49]. Given the complexity
of the nutritional role of linoleic acid, an appropriate level of intake should be considered [50]. It is
interesting to note that the decrease in C18:0 proportion was of greater magnitude in PA than in
subcutaneous fat, and the opposite occurred for C16:0, thus indicating different regulatory effects of
NCG. Besides, the percentage of C20:1 in DSA and PA was decreased, but further investigations into
the potential mechanism of NCG on fatty acid metabolism are, therefore, warranted. Consequently,
feeding NCG may be useful in modifying pork fatty acid composition to meet market demands (i.e.,
for either lower SFA and specific MUFA, or increased PUFA).

5. Conclusions

Dietary NCG did exert beneficial effects on pork quality by decreasing shear force in the
longissimus dorsi muscle, as well as improving fatty acid profiles (C18:1n9c, C18:3n3, C20:4n6 in
muscle, and C18:2n6c in adipose tissues were accentuated respectively) in a tissue-specific manner, but
with adverse impact on drip loss of Ningxiang pigs. In short, results from this study indicate that NCG
is feasible as a feed additive for fat-type pigs to improve meat quality and fatty acid composition, but
whether the similar effects of NCG in lean phenotype pigs or not still requires more investigations.
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