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Understanding neuronal mechanisms of learned behaviors requires efficient behavioral
assays. We designed a high-throughput automatic training system (HATS) for olfactory
behaviors in head-fixed mice. The hardware and software were constructed to
enable automatic training with minimal human intervention. The integrated system
was composed of customized 3D-printing supporting components, an odor-delivery
unit with fast response, Arduino based hardware-controlling and data-acquisition unit.
Furthermore, the customized software was designed to enable automatic training
in all training phases, including lick-teaching, shaping and learning. Using HATS,
we trained mice to perform delayed non-match to sample (DNMS), delayed paired
association (DPA), Go/No-go (GNG), and GNG reversal tasks. These tasks probed
cognitive functions including sensory discrimination, working memory, decision making
and cognitive flexibility. Mice reached stable levels of performance within several days in
the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore
greatly enhanced the experimental efficiency. Combined with causal perturbation and
activity recording techniques, HATS can greatly facilitate our understanding of the
neural-circuitry mechanisms underlying learned behaviors.
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INTRODUCTION

Behavioral design and analysis are critical for understanding neural mechanism of cognition
(Gomez-Marin et al., 2014), including working memory (Fuster, 1997; Baddeley, 2012), decision
making (Gold and Shadlen, 2007; Lee et al., 2012), and reversal of learnt rules (Bunge and Wallis,
2008). Combined with novel neural-circuitry technologies, such as optogenetics (Fenno et al.,
2011), chemogenetics (Armbruster et al., 2007) and imaging methods (Deisseroth and Schnitzer,
2013), well-disigned behavioral paradigms can greatly facilitate the ciruitry level understanding
of behaivor. Reliable behavioral paradigms are also useful in pre-clinic studies such as target
identification and mechanistic studies for brain diseases (Götz and Ittner, 2008; Nestler and
Hyman, 2010; Fernando and Robbins, 2011).

Optimally, behavioral training systems should be automatic, ready to scale up, blind in design,
and flexible in changing paradigms. Automatic training systems (Schaefer and Claridge-Chang,
2012) met well with these criteria. There was a long history of designing automatic behavior-
training systems, for example in studies of operant conditioning (e.g., Davidson et al., 1971).
Automatic training systems are composed of monitoring and feedback controlling of behavior.
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In free-moving mice, automatic measurement has been
implemented in characterizing visual performance (de Visser
et al., 2005; Benkner et al., 2013; Kretschmer et al., 2013),
evaluation of pain sensitivity (Kazdoba et al., 2007; Roughan
et al., 2009), freezing behavior during fear conditioning (Kopec
et al., 2007; Anagnostaras et al., 2010), home-cage phenotyping
(Jhuang et al., 2010; Hübener et al., 2012; Balci et al., 2013),
anxiety (Aarts et al., 2015), diurnal rhythms (Adamah-Biassi
et al., 2013), and social behavior (Ohayon et al., 2013; Weissbrod
et al., 2013; Hong et al., 2015). With feedback controlling
components, automatic training systems have been successfully
implemented in multiple behavioral domains, including memory
assessment (Reiss et al., 2014), operant learning (Remmelink
et al., 2015), and training limb function (Becker et al., 2016).
Automatic training systems with multiple cognitive behaviors
requiring memory, attention and decision making have been
developed previously in free-moving rats (Erlich et al., 2011;
Poddar et al., 2013) and mice (Romberg et al., 2013; Gallistel
et al., 2014; Burgess et al., 2017). Moreover, such systems
were successful in dissecting neural-circuitry mechanisms
underlying cognitive behaviors (e.g., Erlich et al., 2011; Brunton
et al., 2013; Hanks et al., 2015). Head-fixed mice (Dombeck
et al., 2007; Guo et al., 2014) renders great flexibility in
recording (Harvey et al., 2009; Boyd et al., 2012; Fukunaga
et al., 2012; Kollo et al., 2014) and imaging (Dombeck et al.,
2007; Komiyama et al., 2010; Boyd et al., 2015; Chu et al.,
2016; Yamada et al., 2017) technologies. Moreover, free-moving
and head-restrained mice exhibit similar ability of olfactory
discrimination (Abraham et al., 2012). However, automatic
training systems in head-fixed mice were not developed
previously.

Olfaction is an important sensory modality for cognitive
behavior (Doty, 1986; Ache and Young, 2005). Previous studies
have demonstrated that rodents are very good at olfactory
discrimination, memory, and decision (Passe and Walker, 1985;
Slotnick et al., 1991; Lu et al., 1993; Mihalick et al., 2000;
Hübener and Laska, 2001; Cleland et al., 2002; Petrulis and
Eichenbaum, 2003; Uchida and Mainen, 2003; Abraham et al.,
2004; Rinberg et al., 2006; Kepecs et al., 2007; Barnes et al.,
2008; Komiyama et al., 2010; Haddad et al., 2013; Liu et al.,
2014). Automatic behavioral systems have been developed for
studying innate olfactory behaviors (Qiu et al., 2014). Olfactory
behavioral testing has been developed in head-fixed rodents and
greatly facilitates the understanding of neural circuits underlying
olfaction (Verhagen et al., 2007; Wesson et al., 2008; Shusterman
et al., 2011; Kato et al., 2013; Boyd et al., 2015) and odor-based
cognition (Komiyama et al., 2010; Liu et al., 2014; Gadziola
et al., 2015). However, fully automatic training systems for
odor-based cognitive behaviors were not available for head-fixed
mice.

We therefore designed a high-throughput automatic training
system (HATS) for olfactory behaviors in head-fixed mice. Using
the automatic step-by-step training procedures, we trained mice
to perform olfactory delayed non-match to sample (DNMS),
delayed paired association (DPA), Go/No-go (GNG) and GNG
reversal tasks. Mice reached stable levels of performance within
several days in the tasks. HATS can be an important tool in our

understanding of the neural-circuitry mechanisms underlying
odor-based cognitive behaviors.

MATERIALS AND METHODS

Animals
Male adult C57BL/6 mice (SLAC, as wild-type) were used for the
current study (8–40 weeks of age, weighted between 20 g and
30 g). Wild-type mice were provided by the Shanghai Laboratory
Animal Center (SLAC), Chinese Academy of Sciences (CAS),
Shanghai, China. Mice were group-housed (4–6/cage) under a
12-h light-dark cycle (light on from 5 a.m. to 5 p.m.). Before
behavioral training, mice were housed in stable conditions
with food and water ad libitum. After the start of behavioral
training, the water supply was restricted. Mice could drink water
only during and immediately after training. Care was taken
to keep mice body weight above 80% of a normal level. The
behavioral results reported here were collected from a total of 25
wild-type mice. All animal studies and experimental procedures
were approved by the Animal Care and Use Committee of
the Institute of Neuroscience, Chinese Academy of Sciences,
Shanghai, China.

Animal Surgery
Mice were anesthetized with analgesics (Sodium pentobarbital,
10 mg/mL, 80 mg/kg body weight) before surgery. All surgery
tools, materials and experimenter-coats were sterilized by
autoclaving. Surgery area and materials that cannot undergo
autoclaving were sterilized by ultraviolet radiation for more
than 20 min. Aseptic procedures were applied during surgery.
Anesthetized mice were kept on a heat mat to maintain normal
body temperature. Scalp, periosteum and other associated soft
tissue over skull were removed. Skull was cleaned by filtered
artificial cerebrospinal fluid (ACSF) with cotton applicators.
After skull was dried out, a layer of tissue adhesive was applied
on the surface of the skull. A steel plate was placed on the skull
and then fixed by dental Cement.

Behavior Setups
HATS was composed of a mouse containing, head-fix, odor
delivery and reward delivery, Arduino based control and data
acquisition units (diagram in Figure 1A, photo in Figure 1B). All
valves and motors were controlled by Arduino based processors
and customized software. The 3d printing files, a step by
step instruction for hardware assembling, the source code for
behavior training and the data acquisition source code were
publically available1,2.

Three-dimensional printing technique was used to generate
the small components in the system (Figure 1C). The training
tube was used to maintain the relative position of mouse body to
the water- and odor-delivery ports. The motor slot held a direct-
current motor to move the water port forward or backward. The
water tube slot held a metal needle with a blunt tip, from which

1https://github.com/wwweagle/serialj
2https://github.com/jerryhanson/frontiers
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FIGURE 1 | Components and operational processes for high-throughput automatic training system (HATS). (A) Schematics showing the components of HATS.
(B) Photos of HATS hardware. a, sound-attenuated box; b-c, odor containers; d, flow meter; e, needle valve; f, training tube for restraining mouse body; g, camera;
h, holder for the odor- and water-delivery unit and motors; i, capacitance detector for licking; j, 3D-printed odor and water delivery unit; k, ventilator. (C) 3D-printed
components. 1, mouse-body tube; 2, a socket for odor-delivery tubes; 3–4, slots for the motor of the moveable water port; 5, a holder for the odor- and
water-delivery unit and motors; 6, a socket for the training tubes. (D) Schematics of the operational processes for HATS.

mice obtained water as a reward. The odor-tube slot connected
the odor tube from the odor-delivery unit.

A movable water port was connected to a peristaltic pump,
which was controlled by an Arduino board. The volume of water
reward was controlled by changing the duration of the output
signal to peristaltic pump from the Arduino board. Peristaltic
pumps of different setups were calibrated for the stable volume
of water delivery in each trial (5± 0.5 µL).

Water- and odor-delivery units were both controlled
by an Arduino board. During behavior training, detailed
timing information of events was sent back to the computer
via the USB-simulated serial-port interface and stored by
a customized Java program. The stored events included
an odorant valve on/off, peristaltic pump on/off, and

licking start/end. Licking event was detected by a capacity
detector. Infrared LED-based licking detectors were used for
electrophysiological recording if required. An infrared camera
was placed under the water port to monitor behavioral states of
mice.

Olfactometer
The olfactometer was designed to efficiently and reliably mix
and deliver odor. Air source was a pump that provided air flow
with the flow rate of ∼120 L/min. The filter was applied to
eliminate moisture and dust. Eight training setups shared one
set of pump and filter. For each setup, pure air with the flow
rate of 2 L/min is constantly delivered to mice during the entire
process. The air input to each air route could be turned on
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FIGURE 2 | Design, implementation and reaction time of the olfactometer. (A) Schematic showing the “standby” condition of the olfactometer. Diagram for the
two-odor delivery unit was shown. The flow meter was designed for monitoring potential system failure. The flow rate was labeled as the numbers with the unit
“L/min”. Arrows indicated for the direction of air flow. (B) Schematic showing the “working” condition when one odor was delivered (through “r2”). Reduction of the
readout from the flow meter indicated for normal operation. (C) Photo of the flow-controlling unit for the olfactometer. (D) Photo of the tubing unit and mixing
chamber. Thin tubes were used for fast reaction for odor delivery. Mixing chamber was designed for a maximal mixture of pure air (from “r1” in B) and the delivered
odor (from “r2” in B). (E) Fast response of the olfactometer. Readout from photoionization detector (PID) was plotted in the log scale for main figure and linear scale
for inset (Mean ± SEM, standard error of the 0mean, unless stated otherwise; calculated from odor application of 200 trials). Rising/decay time constant and time
with residual-odor were shown in Table 1. (F) Odor stability across trials.

and off by a manual valve (labeled as ‘‘M’’ in Figures 2A,B).
The flow rate was adjusted by a needle valve (labeled as ‘‘V’’
in Figures 2A,B). As shown in the Figure 2B, one type of
odorant in liquid state was stored in one airtight bottle. The
air-in tube was placed right above the surface of the liquid

odorant. Two-way solenoid valves were used to switch the odor
to either mouse or flow mater. In the standby state (no odor
was delivered, Figure 2A), the valve to odorant bottle (labeled
as ‘‘O’’) was closed, and that to the flow meter (labeled as ‘‘F’’)
was opened. Therefore, no odor will be mixed with pure air
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TABLE 1 | Rising and decay properties of odorants.

Odorant name Relative volume ratio in air (%) Rising latency (95% of peak) Decay constant time (1/e of peak)

1-Butanol 10 18 ± 1 20 ± 1
Methyl butyrate 2.5 17 ± 1 22 ± 1
Hexanoic acid 15 31 ± 1 41 ± 1
Octane 5 71 ± 1 31 ± 1

Time was in a millisecond. Mean ± standard error of the mean.

and delivered to the mouse. In the working state that odor
was delivered (Figure 2B), ‘‘O’’ was open and ‘‘F’’ was closed.
Therefore odor was mixed with constant air and delivered to
the mouse. Four kinds of odorants were used in the behavior
tasks, 1-Butanol, Methyl butyrate, Hexanoic acid and Octane.
The relative volume ratios of these odorants in the pure air were
10%, 2.5%, 15% and 5%, respectively. The difference was due to
the distinct evaporation pressure of different odorant molecules
at room temperature (see Table 1 for detailed rising/decay and
residual time of the odorants). The odor tubes after ‘‘O’’ valves
and before mixture chamber had an inner diameter of 0.5 mm.
The odor tube for constant air before mixture chamber had an
inner diameter of 2.5 mm.

Behavior Training
Water Restriction
Mice were allowed at least 7 days for recovery after surgery
for head-plate implantation. Before the start of formal training,
mice were water restricted for 48–72 h, in which licking
for water was allowed (less than 1.0 mL per day, exact
amount was not monitored). Throughout the training, the
daily intake of water was at least 0.6 mL per day (as
in Guo et al., 2014) and typically 1.0 mL per day. Body
weight was closely monitored and a steady increase in
body was observed after initial decrease following 24 h
restriction.

Habituation Phases
The habituation phase started 30 min before the start of the
training phase and only occurred once. A training tube was
placed into the home cage. Mice could explore the tube freely to
be familiar with it. This step was designed to decrease the stress
level of mice on the first day.

Automatic Licking Teaching Phase
This phase was designed to teach mice to lick freely from the
water tube. A mouse was fixated on the head plate to a holding
bar connected to the training tube. The animals were transferred
from home cages to the apparatus and head fixed manually by
experimenters. The total time spent in transition was less than
a minute. Then the training tube was placed into and fixated to
sliding sockets in the sound-attenuated box (the typical decrease
from background noise was 15 dB). Initially, the tip of the water
port was placed five millimeters away from the mouse mouth.
By using a program-controlled movable water port, the initiation
of a teaching bout was associated with the forward movement
of the water port. During each day, this phase was divided into
three bouts to facilitate the association between movement of

FIGURE 3 | Step-by-step automatic training procedure. Duration in a given
step was labeled to the right.

the water port and delivery of water. In each bout, water port
moved forward firstly to seduce mouse to lick. After 2 s, water
port will be reset back to the original place. Once mouse licked,
one water drop (volume of ∼5 µL) was delivered for every three
licks. This bout ended when mice did not lick continuously
for 2 s, or rewarded size is larger than 200 µL from this bout.
The daily reward size could vary between each mouse (typically
0.6 mL and less than 1.0 mL). This phase lasted for 3 days. Mice
stayed in training apparatus for 1–2 h per day in all training
phases.

Automatic Shaping Phase
This phase was designed to teach mice to lick for water only
in the response window, which was from 0.5 s to 1.5 s after
the offset of the second odor delivery. Only rewarded condition
was applied, which were non-matched pairs for DNMS task,
paired odors for DPA task, or go cue for GNG task, respectively.
Mice could lick in response window to trigger water reward
from every trial. During this phase, water port may or may
not move while water was delivered. If mice missed several
trials, lick-teaching would resume, in which the water port was
moved forward and water was delivered during the response
window. The reward in lick-teaching was program-controlled
and was not triggered by lick. Two types of trials were defined
for this phase, the self-learning (Figure 5, left) and program-
teaching (Figure 5, right) trials, which switched automatically
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FIGURE 4 | Automatic lick-teaching protocol. (A) Flow chart for the automatic lick-teaching protocol. (B) Daily consumed water volume in the lick-teaching phase.
(C) Diagram of the moveable water port. (D,E) Diagram showing relative position between water port and mouse mouth in self-learning (D) and teaching (E) phases.

under the condition introduced below. The water port was
moved forward during the response window in the program-
teaching trials, in which the water delivery was automatic without
triggered by licks. In the self-learning trials, however, reward
delivery was licking-triggered, and water port did not move.
The condition for switching from self-learning to program-
teaching trials was that mice missed five times within 30 trials
or missed during the last program-teaching trial. The condition
for switching from program-teaching trial to self-learning trial
is that mice licked in response window and obtained a reward
from the last teaching trial. Daily shaping phase ended when
mice performed 100 hit trials in total. This phase lasted for
3 days.

Full Task Training Phase
DNMS task training
In the DNMS task, a sample odor was delivered at the start
of a trial, followed by a delay period (4–5 s) and then a test
odor, same to (matched) or different from (non-matched) the
sample (Figure 6). Two kinds of odorants were used in DNMS
task, 1-Butanol, and Methyl butyrate. The relative volume ratios
in the pure air were 10% and 2.5%, respectively. Odor-delivery
duration was 1 s. Mice were trained to lick in the response
window in non-match trials. The response window was from
0.5 s to 1.5 s after the offset of the second odor delivery. Licking
events detected in the response window in the non-match trials

were regarded as Hit and will trigger instantaneous water delivery
(a water drop around 5 µL). The false choice was defined as
detection of licking events in the response window in the match
trials. Mice were not punished in the False Choice trials. Mice
were neither punished nor rewarded for the Miss (no-lick in
a non-match trial) or the Correct rejection (CR, no-lick in a
matching trial) trials. Behavioral results were binned in blocks
of 24 trials. There was a fixed inter-trial interval of 10 s between
trials. After training ended each day, mice were supplied with
water of at least 300 µL and upto 1 mL daily intake. This
phase lasts for 4–5 days. The well-trained criterion was set to
the existence of three continuous correct-rates larger than 80%,
calculated using a sliding window of 24 trials. The reason to use
24 trials as a block is to maintain the consistency of different
trial types between different tasks, with the need to be commonly
divided by four and eight types of odor sequence for different
tasks (4 for DNMS, 4 for DPA). It was intended to facilitate
the comparison of the performance in the different tasks in the
current study. It can be easily modified according to different
needs.

DPA task training
For the DPA task, a sample and a test odor were delivered,
separated by a delay period (Figure 7). Four kinds of odorants
were used, 1-Butanol (S1), Methyl butyrate (S2), Hexanoic acid
(T1) and Octane (T2). The relative volume ratios in pure air were
10%, 2.5%, 15% and 5%, respectively. Odor delivery duration
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FIGURE 5 | Automatic shaping protocol. (A) Design paradigm and time line for the delayed non-match to sample (DNMS) shaping. Only non-matched trials were
applied. (B) Licking performance in the shaping phase. (C) Flow chart for the DNMS shaping. Left: self-learning trials. Right: teaching trials.

was 1 s. Delay period between two odors in a trial was 8–9 s.
Response window was set to 0.5–1 s after the offset of the
test odor in a trial. Mice were trained to lick to obtain water
reward only after the paired trials (S1-T1 or S2-T2). Licking
events detected in the response window in paired trials were
regarded as Hit and will trigger instantaneous water delivery.
The false choice was defined as detection of licking events in
the response window in non-paired trials (S1-T2 or S2-T1), and
mice were not punished in False Choice trials. Mice were neither
punished nor rewarded for Miss (no-lick in the paired trial)
or CR (no-lick in a non-paired trial) trials. Behavioral results
were binned in blocks of 24 trials. There was a fixed inter-trial
interval of 16 s between trials. After training ended each day,
mice were supplied with water of at least 300 µL and up to

1 mL daily intake. This phase lasts for 4–5 days. The well-trained
criterion was set to the existence of three continuous correct-
rates larger than 80%, calculated using a sliding window of
24 trials.

GNG and GNG reversal task training
For the GNG task, mice were trained to lick for water only
after the Go cue but not No-go cue. Hexanoic acid and Octane
were used as Go and No-go cues, respectively. The relative
volume ratios in the pure air were 15% and 5%, respectively.
Odor-delivery duration was 1 s. Response window was 0.5–1.5 s
after the offset of a cue. Licking events detected in the response
window in Go trials were regarded as Hit and triggered
instantaneous water delivery. The false choice was defined as
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FIGURE 6 | Automatic DNMS training protocol and behavioral results. (A) Design paradigm and time line for the DNMS training. Both non-matched and matched
trials were applied. (B) Performance of mice in the DNMS training phase. Bin size: 24 trials. (C–E) Correct rejection (CR) rate, hit rate and d’ in the DNMS training,
respectively. (F) Re-learning in each day of the DNMS training, measured by the number of trials to criterion (defined as more than 80% performance in
24 consecutive trials). NRC, not reaching criteria. Mice that were NRC in the 2nd and 3rd days were not included. (G) Licking rates for training day 1 and 5.
(H) Licking efficiency in the DNMS training. Licking efficiency was defined as the ratio of successful licks resulting water reward.

the detection of licking events in the response window in No-go
trials. Mice were not punished in the False Choice trials. Mice
were neither punished nor rewarded for theMiss (no-lick in a Go
trial) or the CR (no-lick in a No-go trial) trials. Behavioral results
were binned in blocks of 24 trials. There was a fixed inter-trial

interval of 5 s between trials. After training ended each day, mice
were supplied with water of at least 300 µL and up to 1 mL daily
intake. This phase lasts for 3 days. The well-trained criterion was
set to the existence of three continuous correct-rates larger than
80%, calculated using a sliding window of 24 trials.

Frontiers in Neural Circuits | www.frontiersin.org 8 February 2018 | Volume 12 | Article 15

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Han et al. Automatic Olfactory-Behavior Training System

FIGURE 7 | Automatic delayed paired association (DPA) training protocol and behavioral results. (A–H) As in Figures 6A–H.

In the third day of training, the GNG reversal task began, in
which the odor-reward relationship was reversed.

Data Analysis
The performance of the correct rate (referred to as
‘‘performance’’ in labels of figures) of each bin was defined by:

Performance correct rate = (num. hit trials + num. correct
rejection trials)/total number of trials

Hit, False choice and CR rates were defined as follows:
Hit rate = num. hit trials/(num. hit trials + num. miss trials)
False choice rate = num. false choice trials/(num. false choice

trials + num. correct rejection trials)
Correct rejection rate = num. correct rejection trials/(num.

false choice trials + num. correct rejection trials)
Mean correct rate (CR rate/FA rate) was calculated as an

averaged correct rate (CR rate/FA rate) between different mice.
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FIGURE 8 | Automatic Go/No-Go (GNG) and reversal training protocol and behavioral results. (A–H) As in Figures 6A–H.

Error bars from the mean value of the correct rate (CR
rate/FA rate) was calculated by the standard error of the mean.
N represents the number of mice.

The licking rate was calculated as lick numbers within each
time bin (bin size:100 ms). The curve was smoothed by smooth
function fromMatlab with a span size of five bin.

Discriminability (d′) was defined by:
d′ = norminv (Hit rate) − norminv (False choice rate). The

norminv function was the inverse of the cumulative normal
function. Conversion of Hit or False choice rate was applied to

avoid plus or minus infinity (Macmillan and Creelman, 2005). In
conversion, if Hit or False choice rate was equal to 100%, it was
set to [1− 1/(2n)]. Here, n equals to a number of all possible Hit
or False choice trials. If Hit or False choice rate was zero, it was
set to 1/(2n).

Licking efficiency = rewarded licking number/(rewarded
licking number + unrewarded licking number).

A number of trials to criterion was calculated as the trial
numbers before reaching 80% correct rate for 24 consecutive
trials. ‘‘NRC’’ in Figures 6–8 represented Not Reaching
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Criterion, which indicated that mice did not reach the above
criterion for that day.

RESULTS

Overview of Hardware, Software and
Protocol
In our previous study (Liu et al., 2014), mice were manually
taught to lick for water and shaped for a DNMS task. The
goal of the current study was to allow fully automatic training.
The only things human operators need to perform were to
fixate mice onto head-fix bars, close doors of training boxes,
and run computer software controlling training protocols. The
current study fulfilled the goal by designing HATS for olfactory
and odor-based cognitive behavior in head-fixed mice. HATS
was composed of a mouse containing, head-fix, odor- and
water- delivery, Arduino based control, and data acquisition
units (diagram in Figure 1A, photo in Figure 1B, 3D-printed
parts in Figure 1C). Optogenetic, chemogenetic, recording, and
imaging methods can be easily integrated into HATS. All valves
and motors were controlled by Arduino based processors and
customized software. The daily routine was composed of system
adjustment, head-fixation of mice, choosing a protocol, and
training mice a given behavior (Figure 1D).

Fast Odor Delivery
In studying olfactory behaviors, it is critical to have fast rise and
decay for odor delivery.

Our olfactometer (Figures 2A–D) exhibited fast response
and stable performance. The reaction time constant for the
onset of these odors was between 11 ms and 71 ms (Table 1),
measured with a photoionization detector (PID). Another key
parameter was the time constant for decay after the offset of the
odor-delivery unit, which was especially important in working
memory-related tasks. The current odor-delivery unit exhibited
fast decay (time constant: 20–41 ms, Figure 2E, Table 1).
Moreover, odor concentration remained stable following more
than 200 trials of odor delivery (Figure 2F), which was important
for behavioral and recording experiments.

Automatic Training Protocol
To achieve fully automatic training, we developed a step-by-
step training protocol. The protocol was separated into two
preparatory steps (water deprivation and habituation) and three
training phases (lick-teaching, shaping and learning, Figure 3).

The first step of training was to automatically teach licking
freely from water tube (Figures 4A,B). Moveable water port
(Figures 4C–E) was located 5 mm away from the mouth of a
mouse. The flow chart of the lick-teaching protocol was plotted
in Figure 4A. At the start of a teaching bout, water port would
deliver 10 µL water and then moved forward until contacting the
mouth, thus encouraging the licking. If mouse licked, 4 µL water
would be rewarded for every three licks. After no licking was
detected for consecutive 2 s or water of 200µL was delivered, one
bout of teaching was completed, and the water port was moved
back to the initial position. The teaching bout was repeated for

several times until water of 400 µL was rewarded in total. The
volume of water rewarded in each day was plotted in Figure 4B.

The second step of training was shaping for a specific task.
This phase was designed to allow mice to be familiar with
the temporal structure of the tasks and the involved sensory
stimuli, without experiencing the full task. In shaping, only
the trials with water reward were applied. Specifically, for
DNMS task, only non-matched odor pairs were applied to
mice (Figures 5A,B). For DPA task, only paired trials were
applied. For GNG task, only Go cue was applied. Two types
of trials were designed, self-learning and teaching trials. In
self-learning trials, water delivery was triggered by licking in the
response window (Figure 5C, left box). In teaching trials, water
port moved forward and delivered water automatically during
response window (Figure 5C, right box). These two types of
trials were designed to switch automatically. The condition for
switching from learning to teaching trial was that mice missed
five trials in 35 trials. The condition for switching from teaching
to learning trial was that mice licked within the response window
in the last teaching trial. Daily shaping phase ended when mice
performed 100 hit trials in total. This phase lasted for 3 days.

Training the DNMS Task
We trained eight head-fixed mice to perform an olfactory
DNMS task (Liu et al., 2014; Figure 6A). In this design mouse
needed to temporally maintain information during the delay
period before behavioral choices and motor planning. After
the shaping protocol, we added the non-rewarded matched
trials, which induced false choice and reduced performance
to chance level (Figure 6B). Gradually the performance, CR
and discriminability (d′) progressively increased, whereas the
hit rate remained at a ceiling level (Figures 6B–E). After
the training of 5 days (600 trials), the performance showed
significant increase (ANOVA, p < 0.0001, F = 775.89). Mice
experienced a certain level of relearning each day, with a
decreased number to criteria (defined as a correct rate above 80%
in 24 consecutive trials) each day through learning (Figure 6F).
Most of the licking responses were associated with non-match
odor and expectation of water reward (Figure 6G). There were
licks associated with the first odor delivery in the early phase
of learning (Figure 6G, black curve), which were declined
through learning (Figure 6G, blue curve). Also, the licking
efficiency (defined as the ratio of successful licks resulting
water reward) was increased progressively through learning
(Figure 6H).

Training the DPA Task
The second set of head-fixed mice was trained to perform
an olfactory DPA task (Figure 7A). As in the DNMS task,
the performance, CR and discriminability (d′) progressively
increased, whereas the hit rate remained at ceiling level
(Figures 7B–E). After the training of 5 days (600 trials), the
performance showed significant increase (ANOVA, p < 0.0001,
F = 1139.03). Mice also experienced a certain level of relearning
each day (Figure 7F). Most of the licking responses were
associated with paired odor and expectation of water reward
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(Figure 7G). There were licks associated with the first odor
delivery in the early phase of learning (Figure 7G, black curve),
which were declined through learning (Figure 7G, blue curve).
Such early licks associated with the sample odor were lower than
that in the DNMS task. The licking efficiency also increased
progressively through learning (Figure 7H).

Training the GNG and Reversal Tasks
The third set of head-fixed mice was initially trained to perform
an olfactory GNG task (Figure 8A, above), then subsequently
sensory-cue reversal task (Figure 8A, below). The performance,
CR and discriminability (d′) progressively increased, whereas
the hit rate remained at ceiling level (Figures 8B–E). After
the training of 2 days (200 trials), the performance showed
significant increase (ANOVA, p< 0.0001, F = 3455.17).Mice also
experienced a certain level of relearning each day (Figure 8F).
Most of the licking responses were associated with paired
odor-pair and expectation of water reward (Figure 8G). The
licking efficiency also increased progressively through learning
(Figure 8H). After 2-days of GNG training, the odor-reward
relationship was reversed (Figure 8A, below). The performance,
CR, discriminability (d′) and licking efficiency were decreased
initially, and then progressively increased (Figures 8B–E).
The hit rate remained at ceiling level (Figure 8D) and
relearning was evident from the number of trials to criteria
(Figure 8F).

DISCUSSION

Automated, quantitative and accurate assessment of behaviors
is critical for understanding mechanisms underlying cognition.
Here we presented HATS, a new integrated hardware and
software system that combined fast olfactometer, 3D-printed
components, step-by-step automatic training, for automatic
training of cognitive behaviors in head-fixed mice. The
robustness of the system was validated in multiple olfactory
and odor-based tasks. The involved tasks require cognitive
abilities including working memory (Fuster, 1997; Baddeley,
2012), decisionmaking (Gold and Shadlen, 2007; Lee et al., 2012),
and reversal of learnt rules (Bunge and Wallis, 2008), all of
which are required in more naturalistic environment and vital
for survival.

An obvious limitation is that free-moving mice cannot
be trained with HATS. Another limitation is that HATS
only monitor the lick as behavioral readouts, therefore is
more suited for large-scale screening of optogenetic. Although
the head-movement was restrained in the current design,
one would like to monitor the muscles controlling head or
chewing movement to further eliminate the potential artifacts
in electrophysiological recording. To obtain deep understanding

of neural circuit underlying these behavior, one would also like
to integrate more monitoring systems for behavioral events,
such as sniffing (Kepecs et al., 2007; Verhagen et al., 2007;
Wesson et al., 2008; Shusterman et al., 2011; Deschenes et al.,
2012; McAfee et al., 2016), pupil size (Reimer et al., 2014, 2016;
McGinley et al., 2015; Vinck et al., 2015; Bushnell et al., 2016),
and whisker movement (Orbach et al., 1985; Friedman et al.,
2006; Birdwell et al., 2007; O’Connor et al., 2010; Deschenes et al.,
2012; Petreanu et al., 2012; Moore et al., 2013).

In designing HATS, we tried to fasten the training history,
therefore aiding the dissection of neural circuit. However, this
fast training in animals would only sufficiently model fast
learning in humans. Indeed, many human behaviors and human
learning are slow in learning and require extensive training, such
as fine motor skill (e.g., driving, playing piano) and sensory
discrimination (e.g., wine tasting). Thus, automations achieved
in HATS have limitations to what kinds of behavioral and neural
processes are being effectively modeled.

Nevertheless, HATS allowed for rapid, automated training
of cognitive behaviors across diverse experimental designs.
Our approach can also support high-throughput behavioral
screening. In summary, the newly developed HATS are
well-suited for circuitry understanding of odor-based cognitive
behavior.
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