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Purpose: To develop and validate a radiomics nomogram integrated with clinic-
radiological features for preoperative prediction of DNA mismatch repair deficiency
(dMMR) in gastric adenocarcinoma.

Materials and Methods: From March 2014 to August 2020, 161 patients with
pathologically confirmed gastric adenocarcinoma were included from two centers
(center 1 as the training and internal testing sets, n = 101; center 2 as the external
testing sets, n = 60). All patients underwent preoperative contrast-enhanced
computerized tomography (CT) examination. Radiomics features were extracted from
portal-venous phase CT images. Max-relevance and min-redundancy (mRMR) and least
absolute shrinkage and selection operator (LASSO) methods were used to select
features, and then radiomics signature was constructed using logistic regression
analysis. A radiomics nomogram was built incorporating the radiomics signature and
independent clinical predictors. The model performance was assessed using receiver
operating characteristic (ROC) curve analysis, calibration curve, and decision curve
analysis (DCA).

Results: The radiomics signature, which was constructed using two selected features,
was significantly associated with dMMR gastric adenocarcinoma in the training and
internal testing sets (P < 0.05). The radiomics signature model showed a moderate
discrimination ability with an area under the ROC curve (AUC) of 0.81 in the training set,
which was confirmed with an AUC of 0.78 in the internal testing set. The radiomics
nomogram consisting of the radiomics signature and clinical factors (age, sex, and
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location) showed excellent discrimination in the training, internal testing, and external
testing sets with AUCs of 0.93, 0.82, and 0.83, respectively. Further, calibration curves
and DCA analysis demonstrated good fit and clinical utility of the radiomics nomogram.

Conclusions: The radiomics nomogram combining radiomics signature and clinical
characteristics (age, sex, and location) may be used to individually predict dMMR of
gastric adenocarcinoma.
Keywords: gastric cancer/adenocarcinoma, radiomics, tomography, X-ray computed, nomogram, DNA mismatch
repair deficiency
INTRODUCTION

Globally, gastric cancer (GC) is one of the most common
malignant tumors and is a common cause of cancer-related
death (1, 2). The symptoms of early GC are occult and often
neglected, so many patients in China have locally advanced disease
at the time of diagnosis (3). Since microsatellite instability (MSI)
was found in hereditary non-polyposis colorectal cancer in 1993, it
has been detected in many forms of malignant tumor, such as lung
and bladder cancers (4–6). Increasingly, clinical trials have
confirmed that MSI/DNA mismatch repair deficiency (dMMR)
plays an important role in the occurrence and prognosis of GC (7–
9). The Cancer Genome Atlas has identified MSI or dMMR as a
hallmark of the second molecular subtype of GC (10, 11). MSI or
dMMR status in GC is crucial for clinical decision making, as it
identifies patients with different treatment responses and
prognoses of GC (12–14). According to the 2021 guidelines of
the National Comprehensive Cancer Network (NCCN) for GC
(15), all newly diagnosed GC patients should be tested for MSI by
polymerase chain reaction (PCR)-based molecular testing or DNA
mismatch repair (MMR) protein using immunohistochemistry
(IHC). Conventional MSI/MMR testing is recommended, but
many patients remain untested. Testing for MSI/MMR is
expensive, and interobserver variability in interpretation has
been found among the different primary modalities (16, 17).
Presurgery prediction of mismatch repair gene expression in GC
would be of great significance for the selection of the treatment
plan and treatment method and the evaluation of prognosis. There
is a critical need for development of an objective, broadly
accessible, and cost-efficient testing method for patients with GC.

Radiomics can provide more information than conventional
CT images. The rise of radiomics makes it possible to convert
imaging data into high-dimensional feature data, and the multiple
quantitative features extracted from original images by
bioinformatics can predict the underlying biological behavior of
tumors (18–20). In recent years, many studies have found that
certain radiomics features have diagnostic and prognostic value
(21–23). Zhang et al. reported that the magnetic resonance
imaging (MRI) texture signature may serve as a potential
predictive biomarker for immunophenotyping and overall
survival of intrahepatic cholangiocarcinoma patients (23). In the
field of radio-genomics, imaging features are allied to genotype.
Tumors with poor prognosis also tend to have greater genomic
heterogeneity of tumor tissues (24). Radio-genomics is an
2

evolution on the foundation of radiomics, which assumes that
genomic heterogeneity at the microscopic level can present as
tumor heterogeneity, and variation in the microenvironment of
the lesion may be manifested as morphological characteristics and
macroscopic images (25). Hence, the application of radiomics
offers a new path to remove the limitations of traditional biopsy
methods. Kim et al. found that the texture features based on
multiparametric MRI were particularly connected with the
isocitrate dehydrogenase mutation and tumor aggressiveness in
diffuse lower-grade glioma (26). In recent years, radiomics
nomograms, which are based on multiple variables, have been
widely accepted as a user-friendly tool for predicting prognosis
and have been used successfully to forecast the genotype of
malignant tumors preoperatively (27–29). Wang et al. reported
that the radiomics nomogram integrated with clinic-radiological
features holds promise for clinical use as a non-invasive tool in the
individual prediction of lymph node metastasis in GC (30). Wang
et al. found that the nomogram-integrated CT-radiomics
signature and CT-reported T stage can enhance prediction of
the human epidermal growth factor receptor 2 status of
esophagogastric junction adenocarcinoma before surgery (31).

Therefore, in this research, we aimed to develop and validate a
radio-clinical nomogram based on a combination of radiomics
signature and clinical risk factors for the preoperative prediction
of DNA mismatch repair deficiency in patients with
gastric adenocarcinoma.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the review board of our
institution (The Cancer Hospital of the University of Chinese
Academy of Science). The requirement for informed consent was
waived. This study retrospectively collected data from 1,456
patients with pathologically confirmed GC who underwent
radical gastrectomy between March 2014 and August 2020 at
two centers. In total, 161 patients were enrolled according to the
inclusion and exclusion criteria (detailed below). Among these,
101 cases from center 1 (The Cancer Hospital of the University of
Chinese Academy of Science) were used as the training and
internal testing sets, and 60 cases from center 2 (The Second
Affiliated Hospital Zhejiang University School of Medicine) were
used as the external testing set. A flowchart of the patient record
July 2022 | Volume 12 | Article 865548
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selection process is shown in Figure 1. All patients underwent
preoperative contrast-enhanced CT examination of the abdomen.

The inclusion criteria were as follows: (1) postoperative
pathologically confirmed gastric adenocarcinoma at stage 3 or
4 according to the diagnostic criteria of the 8th edition of the
American Joint Committee on Cancer Staging Manual; (2)
patients who underwent contrast-enhanced CT of the upper
abdomen or the whole abdomen within 1 month before surgery;
(3) IHC detection was performed on pathological tissue to
evaluate the MMR status postoperatively. The exclusion
criteria were the following: (1) incomplete clinical or
pathological information (2); pathological type signet ring cell
carcinoma or mucinous adenocarcinoma; (3) treatment was
given before surgery; (4) poor CT image quality with longest
diameter of less than 5mm. Patients’ clinical and imaging data
including sex, age, tumor location, and MMR status were
Frontiers in Oncology | www.frontiersin.org 3
recorded. The location of GC was based on pathology,
including cardia, gastric body, and gastric antrum.

CT Image Acquisition
All patients underwent contrast-enhanced abdominal CT using
the following multidetector row CT systems: BrightSpeed, Optima
CT680 Series (GE Medical Systems), and Siemens Somatom
Definition AS 64, Perspective (Siemens Medical Systems). The
acquisition parameters were as follows: tube voltage, 120–130 kV;
tube current, 150–300 mAs; reconstructed axial-section thickness
5 mm, slice interval 5 mm, pitch 0.6. The contrast agents were
Ultravist (Bayer Schering Pharma, Berlin, Germany), Optiray
(Liebel-Flarsheim Canada Inc., Kirkland, Quebec, Canada), and
Iohexol (Beijing North Road Pharmaceutical Co. Ltd., Beijing,
China). A total of 70–100 ml of contrast agent was administered
using a pump injector into an antecubital vein. Arterial phase and
FIGURE 1 | Flowchart of the recruiting study population and model construction.
July 2022 | Volume 12 | Article 865548
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portal venous phase contrast-enhanced CT scans were performed
after delays of 30–35 s and 50–60 s after injection of the contrast
medium, respectively.
Mismatch Repair Protein Status
IHC was used to evaluate the results of MMR protein status
according to the 2021 Gastric Cancer NCCN guidelines as
follows: FmutL homologue 1 (MLH1), mutS homologue 2
(MSH2), mutS homologue 6 (MSH6), and PMS1 homologue 2
(PMS2) proteins were detected, which were positively located in
the nucleus. Any protein expression loss was evaluated as dMMR
(mismatch repair function defect), and all four protein
expressions were positive as pMMR (mismatch repair
function complete).
Tumor Segmentation
The portal-venous phase CT images of GC patients were acquired
from the picture archiving and communication systems. The
patient’s abdominal portal venous phase CT digital image was
exported in digital imaging and communications in medicine
(DICOM) format. Radiologists with over 5 years of experience
in interpreting abdominal diseases examined each layer of the
patients’ CT images. Two radiologists outlined the regions in each
patient’s CT images. Lesions were delineated using ITK-SNAP
(version 3.8.0, http://www.itksnap.org) as shown in Figure 2.

For the tumor regions of interest (ROIs), radiologists
reviewed all of each patient’s CT image slices and selected the
largest tumor area slice to segment. The ROI was selected to
cover the whole area of the tumor. Observer 1 delineated the
lesions of all patients with GC. Observer 2 confirmed the tumor
segmentation (32). If the segmented lesions were inconsistent
between the two observers, consensus was reached by discussion.
During the delineation process, ROI selection avoided the areas
of gastric air, necrosis, and adipose tissue.
Frontiers in Oncology | www.frontiersin.org 4
Radiomics Feature Extraction
and Selection
The radiomics feature extraction process for this study was
performed using YITU AI Enabler, which is an integrated
machine learning platform for medical data analysis using
well-established python pyradiomics (version 3.0.1) and the
scikit-learn (version 0.22) package. Resampling through the
radiomics features was first extracted based on the original
image data set. Then a feature stability check was performed
on the features extracted within the lesion ROI and the extended
lesion ROI to filter out unstable features with minor change of
ROI using an intra-class correlation algorithm. The extended
lesion ROI was made by extending the boundary of lesion ROI by
one image pixel. We used max-relevance and min-redundancy
(mRMR) and least absolute shrinkage and selection operator
(LASSO) methods to select features, and then the rad-score of
each GC patient was calculated by their coefficients.

Construction of a Predictive Model
Multivariable logistic regression analysis was used to develop a
prediction model by combining significant rad-score, sex, age, and
tumor location (with P values less than 0.05 in the univariable
analysis). In the training set, for clinicians’ convenience we
constituted the model as a radio-clinical nomogram based on
multivariable logistic regression analysis. Finally, the generalization
ability of the nomogram was evaluated in the internal and external
testing sets.
Performance of the Radiomics Nomogram
The predictive performance of the radiomics nomogram was
evaluated using the receiver operator characteristic (ROC) curve,
calibration curve, and decision curve analysis (DCA). Model
evaluation 10-fold cross-validation was used in model training,
and the diagnostic performance of radiomics, clinical, and radio-
clinical models were validated in the internal testing set. The area
BA

FIGURE 2 | An example of manual segmentation in gastric cancer. (A) Localized thick wall of gastric cancer with enhancement is observed on the portal venous
phase computed tomography (CT) image. (B) Manual segmentation on the same axial slice is depicted with red label.
July 2022 | Volume 12 | Article 865548
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under the ROC curve (AUC), sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive value
(NPV) of the nomogram were calculated. DCA analysis was
performed to assess the model’s clinical utility by calculating the
net benefits at different threshold probabilities. Finally,
generalization of the radiomics nomogram was evaluated in
the independent external testing set.

Statistical Analysis
All statistical analyses were performed using R software (version
3.4.1; http://www.Rproject.org) and IBM SPSS Statistics (Version
26.0; IBM Corp., New York, USA). Quantitative data were
described by mean ± standard deviation, and qualitative data
by frequency (percent). Normally distributed continuous data
were compared using the Student’s t-test. The chi-square test was
used to compare the distribution of categorical data between
groups. A multivariate logistic regression analysis was applied to
determine the independent predictors among all the clinical
variables. P < 0.05 was considered statistically significant. The
“glmnet” package was used for LASSO logistic regression
analysis. The multivariable logistic regression analysis and
calibration plots were conducted using the “rms” package. The
ROC plots of radiomics signature were performed with the
“pROC” package. The “rmda” package was applied for decision
curve analysis (DCA).

RESULTS

Clinical Characteristics
Among 101 patientswithGC fromcenter 1, there were dMMR (n=
35) and pMMR (n = 66) cases. The patients were randomly divided
into a training set of 71 cases and an internal testing set of 30 cases.
In the training set, statistically significant differences in sex, age, and
tumor location were found between dMMR and pMMR GC
patients (P < 0.05). In the training and internal testing sets, a
significantly higher rad-score was found in dMMR than in pMMR
in both cohorts (P < 0.05). Among 60 patients withGC from center
2 as an external testing set, there were dMMR (n = 21) and pMMR
(n = 39) cases. Additional details are provided in Table 1.
Frontiers in Oncology | www.frontiersin.org 5
Radiomics Feature Selection and
Radiomics Signature Construction
A total of 1,648 radiomics features were extracted from CT
images of each GC patient, among which 989 features with good
stability were selected for radiomics model establishment.
Initially, mRMR was performed to eliminate the redundant
and irrelevant features, and 30 features were retained. Then,
LASSO was conducted to choose the optimized subset of
features to construct the final model. The optimal l in the
LASSO logistic regression analysis with 10-fold cross-
validation was used to select the best radiomics feature with a
non-zero coefficient, as shown in Figure 3. Finally, two
radiomics features were selected to construct the radiomics
signature, and the rad-score was calculated by summing the
selected features weighted by their coefficients. The final formula
for rad-score is as follows:

Radscore = 0:666 ∗ original _ shape _Maximum2DDiameterColum

+ −0:283 ∗ original _ firstorder _Median   +  −0:747
Development of an Individualized
Radiomics Nomogram
Univariate analysis showed that sex, age and tumor location with
P values less than 0.05 were independent clinical risk factors for
MMR status in GC patients. Multivariable analysis was
performed to develop a prediction model by combining the
rad-score, sex, age, and tumor location (Table 2). Further, the
radiomics nomogram is visualized in Figure 4. The formula for
the nomoscore is as follows:

Nomoscore   =   Interceptð Þ ∗−7:56566042486333
+ Age ∗ 0:127948643930096

+ Location ∗ −1:49110528477808

+ Sex*1:64766133092359

+ Radscore ∗ 2:22277808425775
TABLE 1 | Clinic-radiological characteristics of patients in the training and testing sets.

Characteristic Training set Internal testing set External testing set
dMMR pMMR dMMR pMMR dMMR pMMR

Age (Y)
mean (sd) 72.8 (9.1) 65.6 (10.4) 69.3 (7) 68.1 (8.1) 70.0 (8.5) 64.8 (9.3)

Sex
Male 13 (54.2) 38 (80.9) 6 (54.5) 15 (78.9) 9 (42.9) 33 (84.6)
Female 11 (45.8) 9 (19.1) 5 (45.5) 4 (21.1) 12 (57.1) 6 (15.4)

Location
Cardia 1 (4.2) 14 (29.8) 1 (9.1) 7 (36.8) 17 (81.0) 12 (30.8)
Gastric body 10 (41.7) 19 (40.4) 5 (45.5) 7 (36.8) 3 (14.3) 21 (53.8)
Antrum 13 (54.2) 14 (29.8) 5 (45.5) 5 (26.3) 1 (4.7) 6 (15.4)

Rad-sore
Median [iqr] -0.2 [-0.7, 0.6] -1.1 [-1.5,-0.8] -0.6 [-0.8, 0.0] -1.1 [-1.3,-0.7] -1.1 [-1.4,-0.8] -1.5 [-1.9,-1.0]
July 2022 | Volume 12 |
 Article 865548

http://www.Rproject.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tong et al. Radiomics Predicting dMMR
Performance of the Radiomics Nomogram
Table 3 lists the performance of the radiomics nomogram in the
training, internal, and external testing sets. The prediction model
based on the radiomics features provided only moderate
predictive power, as shown in Figure 5. The AUC value of
radiomics signature in the training set and internal testing sets
was 0.81 and 0.78, respectively. The predictive model based on
clinical features alone showed that the AUC values in the
training and internal testing sets were 0.82 and 0.69,
respectively. The radiomics nomogram model combining
clinical factors and radiomics features shows superior ability to
differentiate MMR status compared with the other two models
generated with clinical features and radiomics features alone.
The AUC values of the radiomics nomogram in the training set
and internal testing set were 0.93 and 0.82 (Figure 5). The
external testing set radiomics nomogram showed an AUC value
of 0.83 (Figure 6). The calibration curve of the radiomics
nomogram showed good predictions in both the training and
validation cohorts (Figure 7). The DCA of the radiomics
nomogram demonstrated the higher overall net benefit
compared to the clinics model, showing an excellent clinical
utility in distinguishing MMR status (Figure 8).

DISCUSSION

In the present study, we developed and validated a radio-clinical
nomogram for the prediction of the MMR status of GC
Frontiers in Oncology | www.frontiersin.org 6
perioperatively. The user-friendly nomogram, which consisted
of the radiomics signature, sex, age, and tumor location, showed
good performance in both cohorts and may effectively stratify
patients according to MMR status. The combined analysis of
multiple radiomics and clinical markers as a signature is the
approach that demonstrates the most promise to change clinical
practice (21, 33).

Since MSI was detected in many different types of tumors, the
MMR status of tumors has become an important determinant in
the choice of therapeutic method. In recent years, immunotherapy
has gradually attracted attention and has developed rapidly.
Immune checkpoint inhibitors, including anti-programmed
death-1 and anti-cytotoxic T-lymphocyte-associated protein-4
antibodies, were effective for MSI-high or dMMR solid tumors
in many trials (34). In 2017, the Food and Drug Administration of
the United States approved pembrolizumab to treat patients with
dMMR/MSI-H non-resectable or solid metastatic tumors. The
MSI status is currently used as a biomarker for cancer
immunotherapy (35). In addition, MMR status plays an
important role in predicting the efficacy of neoadjuvant
chemotherapy (13, 14). Accurate prediction of the DNA
mismatch repair deficiency status is consequential for the
selection of individualized treatment plans in patients with GC.
A recent study found that deep learning can differentiate routine
hematoxylin and eosin (H&E)-stained, formalin-fixed, paraffin-
embedded digital whole-slide images (WSIs) of colorectal cancer
into those with microsatellite stability and microsatellite
TABLE 2 | Univariate and multivariate logistic regression analysis of the clinic-radiological features.

Characteristics Univariate analysis Multivariate analysis
OR 95% CI P value OR 95% CI P value

Age 1.08 [1.02;1.14] <0.01 1.14 [1.03;1.25] <0.01
Sex 3.57 [1.21;10.55] 0.021 5.19 [0.88;30.54] 0.068
Location 0.37 [0.17;0.79] 0.012 0.23 [0.07;0.73] 0.013
Rad score 5.51 [2.30;13.18] <0.01 9.23 [2.95;28.92] <0.01
Jul
y 2022 | Volume 12 | Article
BA

FIGURE 3 | Feature selection with the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (l) selection
of the LASSO model. Binomial deviance was drawn versus log(l). Vertical dotted lines were plotted at the best value using 10-fold cross-validation to tune parameter
(l) selection in the LASSO model. (B) LASSO coefficient profiles of the features. Each colored line represents the corresponding coefficient of each feature. A vertical
dotted line was drawn at the selected l, where non-zero coefficients were obtained with two features.
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instability, with an AUC of up to 0.84 (36). Rikiya et al. developed
a deep learning model using 100 H&E-stained WSIs and found
that they performed better than human experts (gastrointestinal
pathologists) at detecting MSI in routine H&E-stained WSI (37).
Some researchers have begun to use artificial intelligence to predict
gene expression status non-invasively. The present study used
more easily available imaging data and achieved good predictive
performance. Radiomics enables non-invasive detection of the
revealing relationship between invisible high-dimensional image
features and pathophysiological characteristics. Radiomics has
developed rapidly in recent years, and now more than 1,000
radiomics features are available for various aspects of tumor
heterogeneity (38). The advantage of this study was presumably
that it took radiomics scores, incorporating numerous quantitative
features, into consideration. Radio-genomics builds on radiomics,
which hypothesizes that genomic heterogeneity at the microscopic
level may manifest in the tumor, and changes in the
microenvironment within the tumor can be expressed on
macroscopic images (18). Yang et al. reported that the proposed
CT-based radiomics signature is associated with KRAS/NRAS/
BRAF mutations; their study indicated that CT may be useful for
the analysis of tumor genotype in colorectal cancer and thus
helpful to determine therapeutic strategies (39). Combining
analysis of clinical features and CT-based radiomics signature
may improve predictive efficacy and allow patients to non-
invasively choose individualized treatment plans (40).

In this study, dMMR accounted for only 8 percent of GC, a
cohort of 80 out of 1,000 patients. Therefore, the sample size of this
experiment is small. Pathophysiological characteristics are the
foundation of the radiomics features. Since histopathological
Frontiers in Oncology | www.frontiersin.org 7
types and grades have more influence on image performance than
genotypes in GC, this study limited the pathological type of GC to
confirmed gastric adenocarcinoma at stage 3 or 4, excluding signet
ring cell carcinoma or mucinous adenocarcinoma. The above
criteria aimed to minimize the influence of factors other than
DNAmismatch repair status on image performance.

In our study, radiomics signature comprised two robust
radiomics features and manifest moderate predictive efficacy.
Texture features consider the interaction between neighboring
pixels and are therefore more propitious to quantifying tumor
heterogeneity (41). The LASSO algorithm was used for feature
redundancy elimination. This method has two primary
preponderances. First, it allows features to be selected on the
foundation of their univariable association with the outcome
without overfitting. Next, it enables a signature to be constructed
by a group of selected features (42). In this study, two texture
features related to dMMR were selected to build the radiomics
signature, which were intended to reveal tumor characteristics that
are not apparent in the visual image (43). The two features were
Original first-order Median and Original shape-Maximum 2D
diameter Column. Original first-order Median is a first-order
feature, while first-order statistics describes the distribution of
voxel intensities within the image region defined by the mask
through commonly used and basic metrics. The meaning of
“median” in this context is the median gray-level intensity within
the ROI.Original shape-Maximum2Ddiameter Column is a shape
feature. Maximum 2D diameter Column is defined as the largest
pair-wise Euclidean distance between tumor surface mesh vertices
in the row-sliceplane.Using this approach,weattempted todevelop
a radiomics signature for the prediction of DNA mismatch repair
TABLE 3 | Predictive performance of the radiomics nomogram.

Radiomics nomogram AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training set 0.93 (0.85–1.00) 0.873 0.917 0.851 0.759 0.952
Internal testing set 0.82 (0.66–0.98) 0.733 0.616 0.824 0.727 0.737
External testing set 0.83 (0.73–0.94) 0.767 0.821 0.667 0.821 0.667
July 2022 | Vo
lume 12 | Article 8
FIGURE 4 | The CT-based radiomics nomogram. The radiomics nomogram was built in the training cohort, with the radiomics signature, sex (0 is male, 1 is female),
age, and tumor location (0 is antrum, 1 is gastric body, 2 is cardia).
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deficiency in patients with GC. Our radiomics signature exhibited
moderate discrimination, with an AUC of 0.81 in the training set
and 0.78 in the internal testing set.

In this study, we extracted 2D CT annotations radiomics
features based on single CT image slices. Meng et al. conducted a
multicenter study comprehensively comparing the representation
and discrimination capacity of 2D and 3D radiomics features
regarding GC. The results based on three tasks showed that 2D
and 3D models showed comparable ability to characterize GC.
Their study indicated that 2D CT annotations might be a better
Frontiers in Oncology | www.frontiersin.org 8
choice than 3D inGC radiomics studies, because the lattermay add
noise (44).

Furthermore, the present study was not limited to the use of a
single CT image slice. The importance of clinical characteristics
should not be neglected, and the radiomics-derived data cannot
predict all clinical decision problems. The univariate analysis
showed that three clinical features (gender, age, and tumor
location) were independent predictors. We then constructed
the nomogram, a user-friendly, graphical analog computation
device. The nomogram has clinical significance in the support of
BA

FIGURE 5 | The ROC curves (AUC) of the three models in the training set (A) and internal testing set (B).
FIGURE 6 | The ROC curves (AUC) of the external testing set.
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clinicians selecting individualized treatment for patients with
GC. The AUC of the nomogram was 0.93, suggesting that the
radiomics nomogram achieved greater predictive efficacy than
either the radiomics signature or the clinical predictive model
alone. The calibration and discrimination in the internal and
external validation sets were also good. As a previous study
revealed, dMMR GC typically has an antral location (45).
Consistent with former research, the tumor locations in the
present study were significantly different between the dMMR
group and the pMMR group, with dMMR GC more likely to
occur in the gastric antrum. The results of the present study also
showed that pMMR (without DNA mismatch repair gene
deficiency) was more likely to occur in men and at a younger
age than the defective form. In contrast, Wang et al. reported that
dMMR GC was more common in men (65% vs. 35%) (46) and
that most of the cases were stage 2. In the present study, dMMR
GC was more common in women, and this difference may be due
Frontiers in Oncology | www.frontiersin.org 9
to Wang’s study including mostly dMMR cases at stage 2, while
the present study only included stage 3 or 4 GC patients.

The strength of our study is that the radiomics nomogram
consists of only three clinical factors that are easily accessible
preoperatively. Thus, the nomogram developed here may be used
as a credible and non-invasive modality to preoperatively predict
DNA mismatch repair deficiency in GC.

Our study was subject to some limitations. Firstly, the sample
size of this study is small, including few patients with dMMR GC.
Secondly, the tumor segmentation was manually sketched, which
is time-consuming and laborious. In future work, computer
algorithm-assisted automatic segmentation should be used.
Thirdly, due to the retrospective nature of our study, selection
bias was difficult to avoid, and patients not eligible for surgery
were excluded. Fourthly, the slice thickness of most segmented
CT images is 5 mm, and the volume effect of segmented CT
images with a diameter of less than 5 mm is clear.
B CA

FIGURE 7 | Calibration curves of the nomogram in the training set (A), internal testing set (B), and external testing set (C).
FIGURE 8 | Decision curve analysis (DCA) for the radiomics nomogram and clinics model. The DCA indicated that more net benefits within the most of thresholds
probabilities were achieved using the radiomics nomogram.
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CONCLUSIONS

In conclusion, our study demonstrated that the radiomics
nomogram based on radiomics signature and clinical
characteristics (age, sex, and tumor location) may be used for
personalized preoperative prediction of DNA mismatch
repair deficiency of GC and thereby assist in clinical
decision-making.
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