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Abstract

Background and Aims: With high rates of recurrence 
post-treatment, hepatocellular carcinoma (HCC) is one 
of the most common types of cancer worldwide and the 
major cause of cancer death. To improve the overall sur-
vival of HCC patients, identification of a reliable biomarker 
and precise early diagnosis of HCC remain major unsolved 
problems. Methods: We initially screened data from the 
Cancer Genome Atlas liver cancer cohort to identify po-
tential prognosis-related genes. Then, a meta-analysis of 
five international HCC cohorts was implemented to validate 
such genes. Subsequently, artificial intelligence models 
(random forest and neural network) were trained to predict 
prognosis accurately, and a log-rank test was performed for 
validation. Finally, the correlation between the molecular 
hepatocellular carcinoma prognostic score (mHPS) and the 
stromal and immune scoring in HCC were explored. Re-
sults: A comprehensive list of 65 prognosis-related genes 
was obtained, most of which have been not extensively 
studied thus far. A universal HCC mHPS system depending 
on the expression pattern of only 23 genes was established. 
The mHPS system had general applicability to HCC patients 
(log-rank p<0.05) in a platform-independent manner (RNA 
sequencing or microarray). The mHPS was also correlated 
with the stromal and immune scoring in HCC, reflecting 
the status of the tumor immune microenvironment. Con-
clusions: Overall, the mHPS is an easy and cost-effective 
prognosis predicting system, which can disclose previously 
uncovered heterogeneity among patient subpopulations. 
The mHPS system can further stratify patients who are at 
the same clinical stage and should be valuable for precise 
treatment. Moreover, the prognosis-related genes recog-

nized in this study have potential in targeted and immune 
therapy.
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Introduction

With a high postoperative recurrence rate, hepatocellu-
lar carcinoma (HCC) is currently the sixth most common 
tumor worldwide (∼850,000 incidence of cases) and the 
second leading cause of global cancer-associated mortal-
ity (∼840,000 deaths).1,2 To improve the prognosis of HCC 
and identify reliable biomarkers related to its pathogenesis, 
early diagnosis and prognosis for HCC have become an ur-
gent focus of research. Elucidating the genes related to the 
occurrence and development of HCC will be helpful for early 
detection, the development of prognostic markers, and the 
determination of therapeutic targets.

Methods to better identify high-risk individuals with HCC 
have been a focused research priority for decades. Patients 
have been classified based on the American Joint Com-
mittee on Cancer (AJCC)-tumor, node, metastasis (TNM) 
stage3 and the Barcelona Clinic Liver Cancer stage (BCLC),4 
which are the most two widely accepted clinical classifica-
tion systems for HCC. Although these systems have proved 
to be valuable in prognosis, the overall outcome can differ 
markedly, even for patients at the same clinical stage. Thus, 
there is still an urgent need for a highly efficient predictive 
algorithm for evaluating HCC prognosis.

Recent technological advances have made great strides 
in developing molecular prognostic indicators for several 
types of cancers, including breast, lung and colorectal, 
some of which are recommended in the American Society 
of Clinical Oncology guidelines. The metastasis risk clas-
sifier predicted well recurrence and survival attributed to 
metastatic HCC in two independent cohorts with mixed eti-
ologies.5 Other useful tools, including various multiple-gene 
predictive modeling approaches for HCC prognosis, have 
been also developed.6–9 However, these tools are neither 
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pervasive nor economical, given that they are confined 
to certain platforms, or the high cost of test for multiple 
genes. Additionally, none of the tests developed so far are 
sufficiently accurate to predict overall survival (OS). These 
restrictions are attributable, to some extent, to the reality 
that no comprehensive atlas of prognosis-related genes has 
been discovered, with only finite genes having been sub-
stantially checked in this regard. This status quo highlights 
the lack of unbiased integrated methods to undrape and 
formulate all prognosis-related molecules, which can act as 
molecular profiles through the application of large-scale se-
quencing or array for tumor genomes and transcriptomes.

Nowadays, immunotherapy has revolutionized cancer 
treatment in a wide range of tumor types.10 However, de-
spite the durable clinical long-term responses, the majority 
of patients failed to respond to immunotherapy, demonstrat-
ing primary resistance. In addition, parts of those who were 
initially responsive to therapy eventually suffered relapse 

attributable to acquired resistance. Dozens of mechanisms 
of resistance have already been unveiled, and more need to 
be characterized. Identifying the molecular predictor related 
to the response to immunotherapy has become a focus of 
recent experimental and clinical lines of research.11–13

Estimation of STromal and Immune cells in MAlignant Tu-
mor tissues using Expression data (ESTIMATE) is a newly de-
veloped algorithm that takes advantage of the unique prop-
erties of the transcriptional profiles of cancer tissues to infer 
tumor cellularity as well as the different infiltrating normal 
cells.14 This algorithm could infer clinical outcomes of patients 
with cancer, and analysis of datasets of different cancer types 
revealed that ESTIMATE scores are useful indicators of tissue-
based patient prognosis.15–17 Yet, it has been reported that 
HCC patients with low immune, stromal and ESTIMATE scores 
had better clinical outcomes than those with high scores.17

We have now built a new system for the prediction of the 
prognosis of HCC patients (Fig. 1). To this end, we first in-

Fig. 1.  Study summary. All protein-coding genes were examined for their potency as prognosis-related genes with the utility of the data from the TCGA-LIHC cohort 
and five international multicenter datasets (Step 1). The number of validated genes fell off to 23 with the random forest machine-learning approach (Step 2). A universal 
prognostic score, appointed as mHPS, was established through a neural network approach (Step 3). Finally, the usage of mHPS was validated in different circumstances 
(Step 4). LIHC, Liver Cancer Cohort; TCGA, The Cancer Genome Atlas; mHPS, molecular hepatocellular carcinoma prognostic score.
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spected all protein-coding genes for their relevance with OS 
in HCC patients. Then, we identified 23 prognosis-related 
genes by a meta-analysis of five HCC cohorts assembled. 
Artificial intelligence-based methods were applied to estab-
lish the molecular hepatocellular carcinoma prognostic score 
(mHPS), a versatile molecular prognostic score system that 
is capable of precisely stratifying the OS of HCC patients ac-
cording to the binary expression status of a mere 23 genes.

Other than the existing scoring system, the mHPS served 
well in multiple independent HCC cohorts and reflected the 
status of the tumor immune microenvironment. We also 
showed that mHPS can stratify patients even within the 
same clinical subgroup, emphasizing the importance of the 
combination of mHPS with conventional staging systems.

Methods

Study design and cohorts

The initial analysis was performed with the TGCA-Liver Can-
cer Cohort (LIHC; discovery cohort), given that this is the 

most representative cohort available. The mRNA expres-
sion data of the LIHC were downloaded from the website, 
https://xenabrowser.net/datapages/. The available clinical 
information of 373 patients was obtained with R package 
cgdsr, and details are shown in Table 1 and Supplementary 
Table 1. Then, we conducted a retrospectively comprehen-
sive analysis of five independent HCC cohorts (NCI cohort, 
Korean cohort, LCI cohort, MSH cohort, INSERM cohort), all 
published previously.

For the establishment of the mHPS, we took in other HCC 
datasets of the International Cancer Genome Consortium 
(ICGC). Data of 687 HCC samples with both mRNA expres-
sion profile and clinical information (232 cases from ICGC-
LIRI-JP, 161 cases from LICA-FR, and 294 cases from LIHC-
US, respectively) were downloaded from the ICGC database 
(https://icgc.org/) (Table 2, Supplementary Table 2).

We then validated mHPS with combined TCGA and ICGC 
cohorts. We also used two independent microarray-based 
HCC cohorts: dataset GSE145205 with 221 samples and 
GSE4087318 with 49 samples (including 17 samples from 
multicentric occurrence and 39 from non-multicentric oc-
currence) for further validation of the mHPS. The detailed 
clinicopathological features of the patients are shown in 
Supplementary Tables 3 and 4.

Gene list

For the integrated analysis of all protein-coding genes, we 
obtained the intact list of human genes from the HUGO 
Gene Nomenclature Committee.

Identification of prognosis-related genes

We acquired gene expression profile and survival data of 
HCC patients from TCGA-LIHC. For each protein-coding 
gene, the potency as a prognostic marker was interrogated 
using the TCGA-LIHC discovery cohort, and then we vali-
dated the candidate genes in the other five independent 
HCC cohorts (NCI cohort, Korean cohort, LCI cohort, MSH 
cohort, and INSERM cohort). We employed a preprocessing 
pipeline published previously.19 For Affymetrix array data, 
the MAS5 method20 was applied for normalization before 
log2 conversion for preprocessing, whereas non-Affymetrix 
data were downloaded as they were deposited in the public 
databases. In each cohort, samples were stratified into the 
high or low expression group according to the median for 
a particular gene. Kaplan-Meier survival analysis was per-
formed using the survival and survminer R packages,21,22 
and the hazard ratios (HRs) and 95% confidence intervals 
(CIs) were calculated using the Cox regression R package.23

Table 1.  Clinical-pathological features of HCC patients from TCGA

Clinical features Number (%)

Age in years

    >60 195 (52.3)

    <=60 177 (47.5)

    not available 1 (0.3)

AJCC metastasis pathologic

    M0 267 (71.6)

    M1 4 (1.1)

    MX 102 (27.3)

AJCC nodes pathologic

    N0 253 (67.8)

    N1 4 (1.1)

    NX 115 (30.8)

    not available 1 (0.3)

AJCC tumor pathologic

    T1 182 (48.8)

    T2 95 (25.2)

    T3 80 (21.4)

    T4 13 (3.5)

    TX 1 (0.3)

    not available 2 (0.5)

AJCC pathologic stage

    I 172 (46.1)

    II 87 (23.3)

    III 85 (22.8)

    IV 5 (1.3)

    not available 24 (6.4)

AJCC, American Joint Committee on Cancer; HCC, hepatocellular carcinoma; 
TCGA, The Cancer Genome Atlas.

Table 2.  Clinical-pathological features of HCC patients from ICGC

Clinical features Number (%)

Sex

    female 194 (28.2)

    male 493 (71.8)

Status

    alive 413 (60.1)

    deceased 119 (17.3)

    not available 155 (22.6)

ICGC, International Cancer Genome Consortium; HCC, hepatocellular carci-
noma.

https://xenabrowser.net/datapages/
https://icgc.org/
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Random forests for classification

The combination of multiple machine learning methods, al-
leged “ensemble learning”, has been demonstrated to ame-
liorate the predictive performance. Combining the artificial 
intelligence-based machine learning algorithm referred to 
as a random forest with a neural network was regarded 
as an effective approach among several machine learning 
tasks.24 Hence, we employed these two methods to build 
the mHPS system (Supplementary Fig. 1). For the genera-
tion and validation of mHPS, we collected and analyzed the 
TCGA-LIHC and ICGC data.

Introduced by Breiman, random forest is a popular non-
parametric tree-ensemble method that combines several 
randomized decision trees and aggregates their predictive 
potency by averaging for the analysis of survival data.25,26 
Random forest is an algorithm that integrates multiple trees 
through the idea of integrated learning. Its basic unit is a 
decision tree, every branch of which depends on a random 
vector, and all vectors in a random forest are independently, 
identically distributed. Random forest is used to randomize 
the column variables and row observations of the dataset to 
generate multiple numbers of categories. Finally, the classi-
fication results will be summarized. In our study, data from 
the TCGA-LIHC and ICGC cohorts (training dataset, n=905) 
were first employed to a random forest classifier. Expression 
levels of the 23 newly identified prognosis-related genes 
(designated P) and the survival status [designated s, alive 
(0) or deceased (1)] at 3 years after diagnosis for each 
patient in the training dataset (n=905) were then put into 
the random forest classifier. We created the model with the 
usage of the radomForest R package27 and with default pa-
rameters, with the exception of n_trees (500) and max_
depth (=10). Based on the importance values (cutoff=1), 
23 genes were selected after stratified 10-fold cross-valida-
tion for training the neural network.

Calculation of expression status of prognosis-related 
genes

The 23 genes could be obligated to the OS of HCC patients, 
with 13 and 10 genes being associated with a poor OS if 
their expression level is higher or lower than the median, 
respectively. The expression status (P) of the 23 prognosis-
related genes was transformed to “Gene_score Matrix” (M) 
according to the expression level (above or below the me-
dian) and HR for each gene with the steps shown in Table 3.

For Cox regression, 2/3 of the samples of ICGC-LIRI-JP 
were randomly grouped as the training set, with 1/3 as the 
validation set first. Then, we performed the univariate Cox 
regression for each clinical feature; the clinical features with p 
value less than 0.05 were selected for multivariate regression 
analysis (Surv(time, status) ∼ TNM_STAGE_T + VEIN_INVA-
SION + ALCOHOL + mHPS). At last, the nomograms were 
constructed, including those variables significant to 0.05 on 
multivariate analysis. The Cox model of nomogram construc-
tion has been described.28 To evaluate the predictive accu-
racy of the nomogram, we used the receiver operating char-

acteristic curve analysis and Harrell’s concordance index.29 
Calibration curves were generated to visualize the discrimina-
tion between the actual and predicted 1-, 3- and 5-year OSs. 
A dense neural network system was then built and trained 
(Supplementary Fig. 1) using the Python-based Keras library. 
In each hidden node, the rectified linear unit was utilized as 
an activation function. In the output layer, two nodes (n1 and 
n2, for alive and deceased, respectively) were generated and 
a softmax function was applied to each node, then designated 
x2 (probability of death; that is, the n2 node) as X. We used 
categorical_crossentropy as a loss function (F) and optimized 
each weight with the Adam method (learning rate=0.001; 
epochs=1,000). After the training, the weights of the nodes 
(“Gene_Weight”) were utilized to compute mHPS (sum of 
Gene_Score multiply Gene_Weight for all 23 genes).

Measures of tumor purity and immune cell content

ESTIMATE, which infers the fraction of stromal and immune 
cells in tumor samples, was applied to predict clinical out-
comes of patients with cancer.14,15 For the TCGA-LIHC data, 
ESTIMATE stromal and immune scores were generated us-
ing the estimate R package (https://r-forge.r-project.org/
projects/estimate/).30

Results

Limitation of single-gene predicting methods driven 
by hypothesis

Since the initial discovery of the HCC-predicting genes, such 
as AFP and GPC3, tremendous advances have been made in 
the field of oncogenes. Given that these oncogenes play pivot-
al roles involved in tumor development and progression,31–33 
we hypothesized that their expression might be correlated 
with the OS in HCC patients. HCC patients in the TCGA cohort 
were divided into two groups (high and low expression level) 
according to the median mRNA expression of alpha-fetopro-
tein, and the diversity in survival between the two groups 
was evaluated. Unexpectedly, there was no significant differ-
ence between the two groups (Fig. 2A). Likewise, the mRNA 
abundance of GPC3, which is often examined as a biomarker 
for HCC,32 showed no difference in the OS between the two 
groups of the TCGA-LIHC cohort (Fig. 2B). Moreover, the ex-
pression of these two genes also had no significant correlation 
with the OS in the ICGC-LIRI-JP cohort (Supplementary Fig. 
2), which could represent the data of Asian people.

Computational analysis for all prognosis-related 
genes

According to the median mRNA expression of each protein-
coding gene, the relation between mRNA abundance and 
OS in the TCGA LIHC (as a discovery cohort) dataset were 
interrogated. Although the expression of most genes was 
not associated with the clinical outcome, 2,492 protein-
coding genes had a significant relationship with OS (OS-
related genes). High expression of SLC2A2, for instance, 
was related to a longer survival, while low expression of 
RALA was related to a better OS (Fig. 2C, D). The 2,492 
OS-related genes in the TCGA-LIHC discovery cohort, with 
the complete list of these genes and their log-rank p values, 
has been provided in Supplementary Table 5.

The 2,492 potential prognostic genes identified through 
the TCGA-LIHC cohort were further validated by meta-
analysis composed of five published liver cancer cohorts34 

Table 3.  Gene score matrix for the expression status (P) of the 23 
prognosis-related genes

Gene_score matrix
Gene expression

low high

HR <1 1 0

>1 0 1

https://r-forge.r-project.org/projects/estimate/
https://r-forge.r-project.org/projects/estimate/
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Fig. 2.  Identification of all prognosis-related genes in the TCGA-LIHC cohort and validation in five international cohorts. (A–B) Kaplan-Meier (K-M) 
curves of OS for the patients in the TCGA-LIHC cohort based on alpha-fetoprotein (AFP) (A) or GPC3 (B) expression levels higher or lower than the median (left), and 
distribution of AFP expression level (RSEM) among these patients. The log-rank p-value and the HR with corresponding 95% CI are shown, (C and D) K-M curves of 
OS for the TCGA-LIHC cohort based on SLC2A2 (C) and RALA (D) expression levels, respectively. (E) Logarithm of the integrated HR for all 23 prognosis-related genes 
in the validation datasets. The complete gene list is provided in Supplementary Table 7. (F) Characteristics of mHPS bins. Distribution of mHPS for all patients in the 
TCGA+ICGC training cohort (n=905). (G) Numbers of patients classified according to clinical tumor stage in each of the two mHPS bins for the training cohort. See also 
Supplementary Table 9. LIHC, Liver Cancer Cohort; TCGA, The Cancer Genome Atlas; mHPS, molecular hepatocellular carcinoma prognostic score; ICGC, International 
Cancer Genome Consortium; HR, hazard ratio; OS, overall survival; K-M curves, Kaplan-Meier curves.



Journal of Clinical and Translational Hepatology 2022 vol. 10(2)  |  273–283278

Jia J. et al: 23 Gene-based mHPS system for HCC prognosis

(NCI cohort, Korean cohort, LCI cohort, MSH cohort, and 
INSERM cohort), and 65 genes were associated with the OS 
(See Supplementary Table 6). A set of 23 prognosis-related 
genes were extracted by reduced dimensional analysis (See 
Fig. 2E, Supplementary Table 7 and Fig. 3). In the gene 
set obtained by the meta-analysis, SLC2A2 and RALA were 
the prognosis-related genes with the most potential, hav-
ing the highest and lowest HRs, respectively (Fig. 2E, Table 
4), which suggested that these two genes may be the most 
promising genes associated with the prognosis of HCC.

Artificial intelligence-based exploitation of a molecu-
lar HCC prognostic score

To testify the application values of the 23 newly identified 
prognosis-related genes in prediction for the survival rate of 
HCC patients at the third year, we combined the data from 
two datasets, TACG and ICGC (Ref.) (training set, n=905), 
to establish a molecular HCC prognostic score system as 
described amply in the Methods section and Supplemen-
tary Figure 1. The importance values of these 23 genes are 
shown in Supplementary Table 8.

In short, data from TCGA and ICGC (n=905; 155 cases 
were eliminated due to the missing prognostic information) 
were applied to a machine learning algorithm regarded as a 
random forest classifier, and 23 genes were selected for the 

further neural network algorithm. Then, the weight for each 
gene was optimized and a mHPS was computed by summa-
tion of “Gene_Score” × “Gene_Weight” for all 23 genes. We 
took these genes as input layers, and then set thereinto two 
hidden layers (four and two neurons, respectively). Lastly, 
we defined two nodes separately for “alive” and “deceased”. 
With such a four-layer neural network modeling, the ac-
curacy (ACC value) could reach 0.782, while the loss value 
dropped to 0.488. The weights of each gene were calculat-
ed based on the neural network derived from the modeling 
(Table 4), and subsequently, then a mHPS was constructed 
according to the integration of gene weights and expres-
sion (with the potential value ranging from 0 to 83.37034 
(Supplementary Table 9)). Two examples of actual mHPS 
calculations are presented (Supplementary Fig. 4).

For the training cohort, the mean of mHPS was 41.76 (inter-
quartile range of 26.08–59.01), and its distribution pattern is 
shown in Figure 2F. The characteristics of mHPS groups based 
on assignment to two bins (<=mHPS<40 and mHPS>=40) 
are summarized for the TCGA training cohort in Figure 2G, 
Supplementary Tables 1 and 9, which highlighted the correla-
tion between mHPS and AJCC pathologic tumor stage. A sig-
nificant correlation between mHPS and pathologic T and TNM 
stage was found, although the mHPS was not significantly 
correlated with pathologic N and M stages (Fig. 3A–D).

Moreover, we divided the mHPS into four groups: 
0<=mHPS<20, 20<=mHPS<40, 40<=mHPS<60, mHPS>= 

Table 4.  Twenty-three genes for calculation of the mHPS

Gene symbol Gene ID Full name High 
score

Low 
score Weight

RALA 5,898 RAS like proto-oncogene A 0 1 3.6386383

PLOD2 5,352 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 0 1 4.571733

PPT1 5,538 Palmitoyl-protein thioesterase 1 0 1 3.6378715

CTSC 1,075 Cathepsin C 0 1 2.929253

ETV5 2,119 ETS variant transcription factor 5 0 1 3.15026

ALDOA 226 Aldolase, fructose-bisphosphate A 0 1 3.5781527

ARPC2 10,109 Actin related protein 2/3 complex subunit 2 0 1 3.4750159

SLC38A1 81,539 Solute carrier family 38 member 1 0 1 4.9902163

TM4SF1 4,071 Transmembrane 4 L six family member 1 0 1 3.6512656

PFKFB3 5,209 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 0 1 4.242654

RGN 9,104 regucalcin 1 0 3.4342885

EPHX2 2,053 epoxide hydrolase 2 1 0 4.14249

IQGAP2 10,788 IQ motif containing GTPase activating protein 2 1 0 3.2472568

SLC22A7 10,864 Solute carrier family 22 member 7 1 0 3.2640932

CYP27A1 1,593 cytochrome P450 family 27 subfamily A member 1 1 0 3.2004652

COBLL1 22,837 cordon-bleu WH2 repeat protein like 1 1 0 3.4549387

CYP4F12 66,002 cytochrome P450 family 4 subfamily F member 12 1 0 4.133354

APOC3 345 Apolipoprotein C3 1 0 3.7753599

CDO1 1,036 Cysteine dioxygenase type 1 1 0 3.1609652

PAH 5,053 Phenylalanine hydroxylase 1 0 3.727815

ITPR2 3,709 Inositol 1,4,5-trisphosphate receptor type 2 1 0 3.3972855

SERPINA10 51,156 Serpin family A member 10 1 0 3.569119

SLC2A2 6,514 Solute carrier family 2 member 2 1 0 2.9978447

For genes with blue color in Figure 2E, patients with low expression (below the median) are assigned a score of 1. Conversely, for genes with red color in Figure 2E, 
patients with high expression (above the median) are assigned a score of 1.
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60, and there were significant differences in prognosis be-
tween the four groups (Fig. 4A). ESTIMATE is a recently ex-
ploited algorithm that is utilized to estimate the immune score 
and stromal score, which infer the abundance of infiltrating 
immune cells and tumor purity.14 We further computed the 
stromal and immune scores with R package estimation using 
the 905 cases from TCGA+ICGC. As shown in Figure 4B–D, 
in terms of OS, there was a statistically significant negative 
association between the ESTIMATE immune/stromal scores 
and the mHPS of HCC patients (Supplementary Table 10). 
Based on the univariate and multivariate analyses, we inte-
grated the clinicopathologic risk factors into a nomogram to 
predict OS of desmoid tumors at 1, 3, and 5 years in HCC 
patients from ICGC-LIRI-JP. The nomogram is shown in Figure 
4E (See also Supplementary Tables 11–14 and had a Har-
rell’s concordance index of 0.797 (95% CI: 0.701–0.892); 
the calibration curves demonstrated the agreement between 
the nomogram predicted and actual survival (Supplementary 
Fig. 5), indicating its potential clinical utility in predicting OS. 
Receiver operating characteristic curve analysis showed the 
areas under the curve of this model at 5-year OS reached 
0.83 in the validation cohort (Supplementary Fig. 6).

Moreover, we interrogated the potential mechanism by 
which the 23 genes affected the HCC outcome. Kyoto En-
cyclopedia of Genes and Genomes enrichment analysis was 
conducted and none of the adjusted p values was less than 
0.05. Even so, we found that the 23 genes might mainly 
affect the HCC outcome through regulating metabolic path-
ways, such as the pentose phosphate pathway, fructose and 

mannose metabolism, cholesterol metabolism, biosynthesis 
of amino acids, PPAR signaling pathway, taurine and hy-
potaurine metabolism, and the glucagon signaling pathway 
(Supplementary Fig. 7 and Table 15).

mHPS predicts prognosis of independent HCC cohorts

To examine if mHPS can stratify prognosis not only in the 
TCGA+ICGC cohort but also in other independent HCC co-
horts, we inspected the additional two independent data-
sets of GSE14520 (221 cases; Fig. 5A) and GSE40873 (49 
cases; Fig. 5B), calculated the mHPS of each sample (Sup-
plementary Tables 16 and 17), and split them into differ-
ent groups accordingly. The results showed that the mHPS 
system could stratify prognosis in both of the test cohorts 
(Fig. 5A, B), and is generally applicable to HCC in a plat-
form-independent manner (microarray or RNA sequencing). 
We further explored whether mHPS is also an applicative 
system for HCC patients with different clinical character-
istics, as well as the well-established AJCC tumor stages 
determined from clinical information. The mHPS showed 
superiority to the Sixty-Five Gene-Based Risk Score Classi-
fier,7 which was reported to be the prediction for OS in HCC, 
with regard to the stratification of prognosis (p<0.0001 for 
mHPS vs. 1.0×10−4 for risk score). It is also of note that 
mHPS costs lower to apply than risk score, for which 65-
gene expression profiling analysis is required.

Fig. 3.  Correlation between clinical characteristics and mHPS. (A–D) Correlation between mHPS and tumor stage (A), pathologic T (B), pathologic N (C), and 
pathologic N (D). mHPS, molecular hepatocellular carcinoma prognostic score.
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Fig. 4.  The mHPS system accurately stratifies the prognosis and immune status of liver cancer patients. (A) K-M curves of OS according to the mHPS for 
the TCGA+ICGC cohort. (B–D) Correlation between the mHPS and ESTIMATE score (B), immune score (C), and stromal score (D). (E) A nomogram estimating the 
probability of OS at 1, 3, and 5 years in ICGC-LIRI-JP following mHPS scoring, alcohol consumption, and TNM_T stage. K-M curves, Kaplan-Meier curves; ESTIMATE, 
Estimation of STromal and Immune cells in Malignant Tumor tissues using Expression data; ICGC, International Cancer Genome Consortium; LIHC, Liver Cancer Co-
hort; mHPS, molecular hepatocellular carcinoma prognostic score; OS, overall survival; TCGA, The Cancer Genome Atlas; TNM, tumor node metastasis classification.
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Fig. 5.  The mHPS predicts prognosis of independent HCC cohorts. (A) K-M curves of OS for the public dataset GSE14520 according to the mHPS. (B) K-M curves 
of OS according to the mHPS for the public dataset GSE40873. (C) K-M curves according to mHPS for OS of patients in the GSE14520 dataset with serum ALT level 
lower than 50U/L. (D) K-M curves according to mHPS for OS of patients in the GSE14520 dataset with the main tumor size larger than 5 cm. (E and F) K-M curves ac-
cording to mHPS for OS of patients in the TCGA cohorts at clinical TNM stage I (E) and stage III (F). K-M curves, Kaplan-Meier curves; ALT, Alanine aminotransferase; 
BCLC, TNM, tumor node metastasis classification; mHPS, molecular hepatocellular carcinoma prognostic score; OS, overall survival; TCGA, The Cancer Genome Atlas.
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mHPS is suitable for various clinical settings

We investigated the utility of mHPS for different subtypes of 
HCC patients. In the GSE14520 dataset, the mHPS system 
precisely stratified not only the OS of patients with lower ala-
nine aminotransferase (<50 U/L) level (Fig. 5C) but also of 
patients got a main tumor diameter greater than 5 cm (Fig. 
5D), showing that mHPS is applicable to patients with certain 
clinical status. Lastly, we examined if mHPS is also suitable 
for well-established AJCC-TNM tumor stages. The mHPS sys-
tem revealed that stage I patients in the TCGA test cohort 
(n=172) are heterogeneous, with only 15% of individuals 
with a mHPS of <20 surviving for 40 months, whereas ∼40% 
of patients with a mHPS of >60 survived this long (Fig. 5E). 
This trend was observed in stage III patients (n=85), with 
those harboring a higher mHPS showing better prognosis 
and those with a lower mHPS the worse prognosis (Fig. 5F). 
Thus, these results suggested that the mHPS system can 
further stratify patients even at the same clinical stage.

Discussion

Liver cancer is a heterogeneous disease with distinct clinical 
outcomes. It is crucial to precisely predict the prognosis of pa-
tients with HCC for the selection of the appropriate treatment. 
In the present study, we have depicted a comprehensive atlas 
of prognosis-related genes for HCC, created a computational 
framework, and a new prognostic predicting system named 
mHPS that is applicable in HCC patients. Our algorism is likely 
to exceed previous scores because mHPS could also stratify 
patients even at the same clinical stage. The mHPS system is 
economical and simple to execute and is capable of uncover-
ing previously hidden heterogeneity among patient subpopu-
lations in a platform-independent manner.

There are multiple methods for the storage of tumor sam-
ples, extraction of RNA, and analysis of expression levels, 
which impeded us from building a universal threshold for each 
of the 23 genes in the present study. We proposed a “plat-
form-independent” scoring system that could be computed 
from data acquired with any standardly established protocol. 
Furthermore, the mHPS was related to clinical features. We 
found that the mHPS was significantly associated with path-
ologic T and TNM stage. Yet, comparison of the predicting 
protocols already applied in clinical setting, development of 
an accurate and robust approach to inspecting the expres-
sion status of the 23 genes, and performance of pilot studies 
therewith to test the distribution patterns are subsistent is-
sues that must be solved before the mHPS will be applicable 
in clinical practice. Besides, one of the foremost limitations of 
this study is the retrospective study design. Although cohorts 
with a sufficient sample size were utilized (n=1,330), includ-
ing the cohorts of TCGA, ICGC, GSE14520 and GSE40873, 
prospective studies are needed to validate our conclusions.

The best-characterized gene among the 23 prognosis-re-
lated genes identified in our study is regucalcin (RGN). There 
were 31 papers with regard to a PubMed search for “RGN 
hepatocellular carcinoma”. Related to the calcium homeosta-
sis, the RGN protein is preferentially expressed in the liver 
and kidney. RGN acts as a suppressor in cell proliferation that 
is mediated through various signaling pathways in hepato-
ma cells.35 Moreover, the RGN gene and protein expression 
levels have been demonstrated to be specifically reduced in 
human HCC by studies of gene expression profiles and pro-
teomics.36–39

In contrast, most of the 23 prognosis-related genes (AL-
DOA, APOC3, CDO1, CTSC, CYP4F12, EPHX2, ETV5, ITPR2, 
PLOD2, PPT1, RALA, SERPINA10, SLC22A7, SLC38A1, and 
TM4SF1) have not been deeply studied in relation to HCC, 
given that PubMed searches for “‘GENE’ hepatocellular car-

cinoma” yielded less than 10 publications for each gene, 
with there being no publication at all for two of these genes 
(ARPC2 and COBLL1). Both basic and clinical research is 
required for an in-depth illustration of the mechanisms ac-
counting for the biological functions of the 23 mHPS-based 
genes, and for the development of new drugs to improve 
the prognosis of HCC patients. Mechanistically, although 
there was no significant enriched pathway in the Kyoto En-
cyclopedia of Genes and Genomes analysis, the results still 
underlined the potential pathway by which the 23 genes of 
the mHPS scoring system impact the HCC outcome.

The first six pathways involved were all metabolism-relat-
ed, which indicated that the scoring system we proposed is 
precise for the HCCs, as the liver is a crucial organ involved 
in metabolic processes and HCC cells and animal models 
show commonly metabolic dysregulation. Recently, immune 
checkpoint inhibitors, especially programmed death recep-
tor 1 (PD-1)/PD-ligand 1 inhibitor, have shown great prom-
ise and progress for HCC treatment. However, the Check-
Mate 040 and the KEYNOTE-224 studies reported that the 
efficacy of immunotherapy cannot be effectively predicted, 
suggesting that the predictive biomarkers for PD-1 inhibi-
tors in HCC are still ill-defined.40,41 In that regard, ESTI-
MATE, an analysis that previously revealed that stromal/
immune cell infiltration is associated with the prognosis in 
patients with various types of tumors,17,42,43 has been ap-
plied to investigate the relationship between the mHPS and 
microenvironment. It has been reported that HCC patients 
with high immune/stromal scores had a poorer prognosis 
than those with low scores.17 Consistently, there was a sig-
nificantly negative association between the mHPS and the 
ESTIMATE immune/stromal scores, suggesting that mHPS 
may be a potential predictive biomarker for the OS of HCC 
patients receiving immunotherapy.

Altogether, the application of the mHPS system defined 
by the expression pattern of 23 genes can predict the prog-
nosis of HCC patients in a reproducible and reliable manner 
across independent patient cohorts. Moreover, based on the 
precise prediction of personal prognosis, the system may not 
only facilitate the selection of therapeutic approaches but 
also expands our understanding of the basic biology of HCC 
and thereby will spur the development of new therapeutic 
strategies. We also developed a nomogram using Cox regres-
sion that assigns predictions for OS based on mHPS score, 
TNM_T stage, alcohol consumption, and other clinicopatho-
logical variables in the ICGC-LIRI-JP cohort. A nomogram was 
invented by the French engineer Philbert Maurice d’Ocagne 
and has been extensively applied in the electronic industry 
for many years. In recent decades, increasing numbers of 
nomograms have been developed for clinical prognosis of dif-
ferent malignancies, such as non-small cell lung cancer, rectal 
cancer and HCC.44–46 We propose that the nomogram offers 
more individualized OS predictions and could be helpful for 
the decision-making during treatment.47 Besides, the nomo-
gram has potential in estimating risk for clinical trial design, 
which could be applied to randomization in the studies based 
on their survival probability. However, this model should also 
be further evaluated in other independent populations.
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