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Mesenchymal stem cells‑based therapy 
in liver diseases
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Abstract 

Multiple immune cells and their products in the liver together form a complex and unique immune microenviron‑
ment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvi‑
ronment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been 
attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchy‑
mal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have 
been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; 
On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified 
into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical load‑
ing, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infec‑
tions and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs 
for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the 
liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and 
immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases 
with both immune imbalance patterns.
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Introduction
Liver diseases are a major global health problem with 
approximately 2 million deaths per year worldwide [1]. 
According to the latest statistics from the World Health 
Organization, liver diseases accounted for 4.6% of deaths 
in the Asia–Pacific region in 2015, compared with 2.1% 
in the United States and 2.7% in European countries [2, 
3]. The common types of liver diseases have changed. The 
prevalence of chronic hepatitis C in the United States 
has decreased nearly twofold compared to 20 years ago, 
but the prevalence of nonalcoholic fatty liver diseases 
(NAFLD) has been increasing in recent years [4] and 

has become the second most common indication for 
liver transplantation in the United States [5]. In addition, 
chronic hepatitis B virus infection remains a major con-
tributor to liver disease-related deaths and hepatocellular 
carcinoma (HCC) in the Asia–Pacific region, but at the 
same time, NAFLD has become a notable growing liver 
disease in the region [3]. The progression of liver diseases 
caused by viral infections (e.g., hepatitis B and C), auto-
immune hepatitis, alcoholic liver diseases, and NAFLD to 
end-stage liver failure, cirrhosis and HCC is responsible 
for the increased mortality from liver diseases [6]. Cur-
rently, only liver transplantation can effectively treat end-
stage chronic liver diseases and save patients’ lives, but 
the shortage of available livers for transplantation and 
lifelong use of immunosuppressive drugs greatly limit the 
clinical implementation of liver transplantation. There-
fore, there is an urgent need to explore more treatment 
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strategies for liver diseases to effectively prevent or delay 
the progression of chronic liver diseases to end-stage 
liver diseases and HCC, which is the key to treating liver 
diseases, reducing mortality and alleviating the medical 
burden.

The variety of liver diseases and the complexity of 
their etiology and pathogenesis pose challenges for the 
subsequent treatment and the development of effective 
therapeutic agents. In fact, the liver is a complex and 
unique organ that not only undertakes metabolic, bio-
synthetic, detoxification and excretion functions, but 
is also the largest immune organ in the body [7], which 
capable of recruiting, aggregating and activating innate 
and adaptive immune cells to build a diverse, dynamic 
and interacting hepatic immune microenvironment 
[8, 9]. In recent years, the use of emerging technolo-
gies such as single-cell sequencing and spatial-omics 
has led to an unprecedented understanding of the liver 
immune microenvironment landscape and its dynam-
ics in different disease contexts. It has been found that 
common causes of liver diseases such as long-term viral 
infections, alcohol intake, intestinal microbial transloca-
tion and obesity-induced metabolic disorders can cause 
imbalance in the immune microenvironment of the liver, 
either leading to immune hyperactivation or to immu-
nodeficiency or failure, resulting in a series of pathologi-
cal changes in the liver that eventually drive these liver 
diseases to end-stage liver diseases such as cirrhosis and 
HCC [7, 8]. Corresponding immunotherapies targeting 
the hepatic immune microenvironment have been pro-
posed and clinically studied, but their side effects and 
established efficacy need further observation. Before 
being formally approved for clinical treatment, these 
immunotherapies need to overcome the impairment 
of normal immune function associated with nonspe-
cific immunosuppression and the poor improvement of 
clinical endpoints of interest with single-target drugs, as 
observed in non-alcoholic steatohepatitis (NASH) [10].

Mesenchymal stem cells (MSCs) are coming into the 
limelight due to their powerful immunomodulatory 
capacity, and their therapeutic potential in liver diseases 
has become a matter of interest [11–13]. Importantly, 
this immunomodulatory capacity of MSCs is integra-
tive and plastic, capable of both suppressing excessive 
immune inflammatory responses and acting as immune 
enhancers by interacting with innate and adaptive 
immune cells in the hepatic immune microenvironment 
[14, 15]. Taking advantage of this property, MSCs-based 
immunotherapeutic strategies have been developed 
and investigated in inflammatory and immunocompro-
mised liver diseases that follow different immune imbal-
ance patterns, and their combined immunomodulatory 

capacity, as well as tissue repair and antifibrosis, is 
unmatched by systemic immunosuppressive agents 
or single immune targeting agents. For example, the 
immunosuppressive ability of MSCs has been utilized 
to achieve good efficacy and research results in the 
treatment of inflammatory liver diseases such as AIH 
and NASH [16, 17]. In immunocompromised liver dis-
eases, such as chronic viral hepatitis (CVH) and HCC, 
this property of MSCs may help viruses and tumors to 
evade immune surveillance, and thus their therapeu-
tic value has been somewhat overshadowed [18–20]. 
In fact, MSCs can not only interact with liver immune 
cells to act as direct immune enhancers, but can also 
be engineered to act as cellular carriers for antiviral 
and antitumor vaccines and carry oncolytic viruses and 
other types of immunomodulators to indirectly modu-
late the liver immune microenvironment for antiviral 
and antitumor purposes [21, 22]. Taking advantage of 
the tumor tropism and intra-tumor penetration proper-
ties of MSCs, they have been used as cellular vectors to 
load antitumor-related drugs to precisely target tumor 
tissues and then modulate the tumor microenvironment 
(TME) and kill tumor cells to achieve synergistic antitu-
mor effects [22].

To this end, in this review, we present the hepatic 
immune microenvironment and the relevant cellular and 
molecular mechanisms of immune microenvironment 
imbalance in inflammatory and immunocompromised 
liver diseases to elucidate the need for immunotherapy 
in liver diseases and the limitations of currently devel-
oped immune-targeted drugs. Meanwhile, we focused on 
the immunotherapeutic potential of MSCs in liver dis-
eases, and summarized the different immunomodulatory 
mechanisms and immunotherapeutic strategies of MSCs 
in inflammatory and immunocompromised liver diseases 
(including chronic viral hepatitis and HCC), with the aim 
of providing comprehensive and safe immunotherapeutic 
options for liver diseases. We conclude with a discussion 
of challenges in the field.

Liver immune microenvironment
The liver receives portal and arterial blood and is an 
important and critical component of defense against 
blood-borne infections as it needs to accurately recog-
nize, capture, and remove bacteria, viruses, and mac-
romolecules when receiving blood-borne pathogens of 
enteric origin [23]. The liver must also maintain immune 
tolerance to antigens from nutrients or resident microor-
ganisms to prevent causing self-injury [24]. This balance 
between immune activation and tolerance is essential for 
the normal homeostasis and function of the liver, making 
it the first-line immune organ [25].
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In the liver, a large number of innate immune cells, 
including Kupffer cells, dendritic cells (DCs), hepatic 
sinusoidal endothelial cells (LSECs), hepatic stellate 
cells (HSCs), natural killer (NK) cells, natural killer T 
(NKT) cells, γδ T cells, and recruited mononuclear 
macrophages, neutrophils, and adaptive immune cells, 
form a complex interplay network that together orches-
trate the unique hepatic immune microenvironment 
[26–28] (Fig.  1). Here, we make the necessary update 
on the main hepatic immune cells that constitute the 
hepatic immune microenvironment and their functions.

Macrophages
Hepatic macrophages consist mainly of liver-resident 
Kupffer cells and circulating monocyte-derived mac-
rophages recruited [29]. Kupffer cells are important 
innate immune cells and antigen-presenting cells of the 
liver, derived from erythro-myeloid progenitors (EMPs) 
or hematopoietic stem cells-derived monocytes migrat-
ing to the fetal liver for further differentiation [30–32]. 
During liver injury, Kupffer cells and other hepatic 
parenchymal cells (e.g., hepatic stellate cells, hepato-
cytes) secrete chemokines such as CCL2 and many 

Fig. 1  Structure and cellular composition of the immune microenvironment of the healthy liver. The hepatic lobules are the basic units that 
make up the tissue of the liver. The central vein is located in the center of the hepatic lobules and is surrounded by hepatocytes arranged in 
a radial pattern. Blood flow from the portal vein and hepatic artery converges into the central vein through the hepatic sinusoids, which are 
composed of endothelial cells. Bile produced by hepatocytes is released into the intestine through bile ducts composed of bile duct cells. The 
hepatic artery, portal vein and bile ducts are located in the confluent area between the hepatic lobules. The cells in the liver consist of resident 
immune cells and immune cells recruited from the circulation. The former includes Kupffer cells, DCs, LSECs, HSCs, and ILC1, etc.; the latter includes 
monocyte-macrophages, neutrophile, NK cells, NKT cells, αβ T cells, γδ T cells and B cells and so on. These cells are important components of the 
hepatic immune microenvironment and play an important role in clearing foreign bodies, initiating a rapid and controlled immune response in the 
face of external infections, and maintaining tolerance to autoantigens and food antigens
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inflammatory factors, recruit monocytes to infiltrate the 
liver, and produce large numbers of inflammatory mono-
cyte-derived macrophages [33–36]. Traditionally, mac-
rophages have been assigned as inflammatory or “M1” vs. 
anti-inflammatory or “M2” [37], and the single-cell RNA 
sequencing analysis revealed the presence of two distinct 
populations of CD68 + macrophages in the liver, which 
appeared to separate into pro-inflammatory and immu-
nomodulatory phenotypes [38]. Given the important role 
of macrophages, targeting macrophages has become a 
new strategy for the treatment of liver diseases [29].

Dendritic Cells (DCs)
DCs play a central role in phagocytic clearance and anti-
gen presentation by pathogens, are considered to be the 
most efficient antigen-presenting cells to activate naive 
T cells, and consist of multiple specialized isoforms 
[39]. The DCs family usually consists of plasmacytoid 
dendritic cells (pDCs) that produce type I interferon 
(IFN-I) and conventional DCs (cDCs), which are pri-
marily responsible for antigen expression and immune 
regulation [40]. Therefore, DCs-based immunotherapies 
including DCs vaccines have been widely used in HCC 
to enhance the body’s anti-tumor immunity with a high 
safety profile [41].

Liver Endothelial Cells (LSECs)
LSECs are hepatic non-substantial cells that form the 
sinusoidal wall, lacking basement membranes and pos-
sessing open fenestrations that allow them to efficiently 
regulate sinusoidal blood flow and material exchange 
[42]. Meanwhile, LSECs together with hepatic mac-
rophages constitute the largest waste removal cells popu-
lation in the body and are able to efficiently phagocytose 
and remove viral particles and waste macromolecules 
from the blood through endocytic receptors [43, 44]. 
In addition to their extraordinary scavenger functions, 
LSECs possess powerful immune functions, including 
filtration, endocytosis, antigen expression, leukocyte 
recruitment [45], and the ability to maintain HSCs in a 
quiescent state [46].

Hepatic Stellate Cells (HSCs)
HSCs are lipid-storing cells that reside in a virtual sub-
endothelial space between hepatocytes and LSECs (space 
of Disse) and also contain 50–80% of all vitamin A in the 
body [47]. It is widely believed that activated hematopoi-
etic stem cells play a central role in the progression of 
liver fibrosis [48, 49]. A variety of immune cells and blood 
platelet in the microenvironment of injured/inflamed 
liver tissue and their extrahepatic factors can regulates 
the activation and apoptosis of HSCs directly or indi-
rectly [50, 51]. Activated HSCs produce collagen fibrils 

and extracellular matrix components that are directly 
involved in liver fibrosis and are involved in the recruit-
ment of inflammatory cells, leading to a vicious cycle 
between liver injury, inflammation and fibrosis in chronic 
liver disease and promoting the development of HCC 
[52].

Hepatic lymphocytes
The liver has a large number of resident and recruited 
lymphocytes, including innate and adaptive immune 
systems. Among them, hepatic innate lymphocytes with 
unique characteristics, including natural killer cells 
(NK cells), innate lymphoid cells (ILCs), natural killer T 
(NKT) cells, γδ T cells, and mucosal associated invari-
ant T (MAIT) cells, which play an important role in the 
maintenance of hepatic homeostasis and the progression 
of liver diseases and HCC [53]. In addition, αβ T cells 
and B cells constitute the hepatic adaptive system that 
exerts specific immune responses against viral and tumor 
antigens.

Human natural killer (NK) cells are important immune 
cells that can resist viral infection and clear tumor cells 
through direct and indirect cytotoxicity without prior 
sensitization [54]. NK cells have two easily distinguish-
able subtypes, shown as the CD56dimCD16 + and the 
CD56brightCD16-/ + phenotypes [55]. CD56bright NK cells 
are strong cytokines producers (IFN-γ, TNF, GM-CSF), 
which are mainly involved in immune regulation but have 
weak cytotoxicity. However, they can also be activated by 
pro-inflammatory cytokines such as IL-15, thus exhibit 
potent antitumor responses [56]. In contrast, CD56dim 
NK cells populations can mediate continuous killing of 
infected and/or malignant cells and induce apoptosis of 
target cells [57, 58].

Conventional αβ T cells comprise CD8 + and CD4 + T 
cells, both of which interact and coordinate together to 
establish effective hepatic adaptive immunity [25]. T cells 
can easily recognize and come into contact with immune 
cells, especially APCs, which are effectively activated and 
differentiated into effector and memory T cells by the 
combined action of antigen-presenting and co-stimula-
tory molecules, then exert immune effects such as anti-
viral and anti-tumor [59]. In liver, antigen presentation of 
CD4 + and CD8 + T cells is usually accomplished by pro-
fessional APCs called DCs and non- professional APCs, 
including Kupffer cells, B cells, LSECs, HSCs and even 
liver cells [60, 61]. Therefore, a new era of liver immu-
notherapy has been opened by understanding the func-
tional biology of hepatic T cells and the application of T 
cells-based immunotherapy.

In conclusion, the composition of the hepatic immune 
microenvironment is complex and dynamic, and its true 
nature has not yet been fully revealed, even with the help 
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of single-cell sequencing and spatial-omics technologies. 
Maintenance of hepatic immune tolerance and immune 
activation against pathogens requires the normal and 
efficient functioning of these liver-resident and recruited 
innate and adaptive immune cells. However, in the con-
text of liver diseases, profound and complex changes in 
the hepatic immune microenvironment occur, which 
have a dramatic impact on the occurrence and develop-
ment of the liver diseases [62, 63].

Imbalance of liver immune microenvironment 
and liver diseases
Liver diseases have a complex pathogenesis and a high 
degree of heterogeneity, and the genetic factors and 
diverse environmental triggers of these diseases are not 
fully known. However, it is well known that stimula-
tion by external factors, such as viruses, alcohol, hepatic 
lipids and intestinal microbial metabolites, can cause 
abnormalities in hepatic immune cells and recruitment 

of circulating cells, leading to a disruption of the balance 
of the hepatic immune microenvironment. This immune 
imbalance can lead to a series of immunopathological 
alterations that can result in liver disease [7, 8] (Fig.  2). 
Specifically, immune imbalance in liver diseases is char-
acterized by two distinct pathologies: in the first, exces-
sive immunity in the absence of infection leads to the 
development of inflammatory liver diseases (e.g. autoim-
mune hepatitis (AIH) [64, 65], acute viral hepatitis (AVH) 
[66, 67], alcoholic hepatitis (AH) [68, 69], non-alcoholic 
steatohepatitis (NASH) [70, 71], cirrhosis [72, 73]). In the 
second, failure to initiate an effective immune response 
when needed, i.e., low/insufficient hepatic antiviral 
and antitumor immunity, may lead to the formation of 
chronic viral infections or failure to clear HCC cells [74–
76]. In this section, we will discuss inflammatory liver 
diseases and immunocompromised liver diseases sepa-
rately, summarizing the specific immunopathogenesis of 
each liver disease. A comprehensive understanding of the 

Fig. 2  The relationship between imbalance in the hepatic immune microenvironment and liver diseases. Normal hepatic immunity and immune 
tolerance together maintain the balance of the immune microenvironment. The immune microenvironment is disrupted under the stimulation of 
multiple external factors. On the one hand, excessive immune activation leads to the development and progression of inflammatory liver diseases, 
including AIH, AVH, AH, NASH, and cirrhosis. Among them, cirrhosis is characterized by the coexistence of inflammation and immune deficiency. On 
the other hand, low antiviral and antitumor immunity leads to the development and progression of immunocompromised liver diseases, including 
CVH and HCC. Without effective treatment, these chronic liver diseases will gradually develop into cirrhosis and then transition to HCC, or can 
develop directly into HCC
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immunopathogenesis and immunopathological manifes-
tations of these liver diseases will facilitate the develop-
ment of immunotherapeutic strategies with potential 
applications.

Imbalanced liver immune microenvironment 
in inflammatory liver diseases
Autoimmune hepatitis: T cells‑centered autoimmune injury
AIH is an autoimmune response-mediated inflammation 
against hepatocytes, characterized by elevated serum 
transaminases, positive serum autoantibodies, hyper-
immunoglobulin G and/or γ-globulinemia, and histologi-
cal manifestations of interface hepatitis [64]. The current 
view is that in genetically susceptible individuals, envi-
ronmental pathogens and certain chemical agents trig-
ger a T cells-mediated immune response against liver 
autoantigens through a molecular mimicry mechanism 
[77]. Importantly, even if the interaction between exter-
nal pathogenic factors and autoimmune T cells ceases, T 
cells-mediated liver injury as well as inflammation per-
sist and are mutually causal, leading to the progression of 
AIH to cirrhosis and liver failure in severe cases [64, 78].

Thus, T cells-mediated killing of self-liver cells is a 
major feature of the altered immune microenvironment 
in AIH, including the production of cytotoxic CD8 + T 
cells (CTLs), as well as impaired immune regulation of 
CD4 + T cells subsets and Treg cells [79] (Fig.  3a). Ini-
tially, autoantigens are mishandled by antigen-presenting 
cells and presented to naive CD4 + T helper (Th0) cells. 
Th0 cells are then activated in response to appropriate 
costimulatory signals and mature and differentiate into 
different T helper subsets such as Th1, Th2, and Th17 
cells in a different cytokine environment [64]. Th1 cells 
produce cytokines such as IL-2 and interferon-γ (IFN-
γ) that promote the activation of CTLs, thus exert their 
cytotoxic effects [80]. IFN-γ also induces the activation of 
monocytes, DCs and NK cells, promoting autoimmune 
responses and liver injury [81, 82]. Th2 cells induce B 
cells to mature into plasma cells by secreting cytokines, 
which in turn secrete autoantibodies to attack normal 
hepatocytes in an antibody-dependent cytotoxic (ADCC) 
and complement-dependent manner causing hepatocyte 
death [83]. For example, multiple autoantibodies can 
be detected in AIH patients and the titer levels of these 
autoantibodies are positively correlated with the degree 
of disease activity [84, 85]. Th17 cells are also involved in 
the pathogenesis of AIH, which is associated with their 
production of cytokines such as IL-17, IL-22 and TNF 
[86, 87]. IL-17 can also induce IL-6 expression in hepato-
cytes by stimulating the MAPK signaling pathway, which 
in turn further stimulates Th17 cells, forming a positive 
feedback loop [88]. Nevertheless, the role of Th17 cells in 
AIH is still under investigation [89].

In the course of T cells-mediated autoimmune 
responses against hepatocytes, in addition to altera-
tions in the immune effects of T cells subsets, altera-
tions in T cells immune checkpoints are also included. 
Detection in liver tissue of AIH patients not only 
observed aggregation of CD4 + and CD8 + T cells over-
expressed by immune checkpoint PD-1 and 4-1BB, but 
also found that PD-1 + CD8 + T cells were strongly 
associated with disease activity and degree of liver 
injury in AIH patients rather than PD-1 + CD4 + T cells 
[90]. In addition, a study isolated circulating SLA-spe-
cific CD4 + T cells. The study found that the autoreac-
tive T cells receptor clone type was limited to memory 
PD-1 + CXCR5- CD4 + T cells, and the co-expression 
levels of PD-1 and CD38 in T cells reflect the degree 
of disease activity of AIH [91]. Zhao et al. showed that 
by using immunotoxic complexes that block PD-1, a 
reduction in the number of PD-1-positive cells, total T 
lymphocytes, and especially autoreactive T cells, could 
be observed in different mouse models of autoimmune 
disease without negatively affecting normal adaptive 
immunity [92].

Treg cells are immunosuppressive cells that sup-
press CD4 + T cells and CTLs-mediated autoimmune 
responses by secreting immunosuppressive cytokines 
such as IL-10, TGF-β and IL-35, as well as granzyme 
and perforin [93]. Studies on whether Treg cell function 
is abnormal are not uniform [94–96]. However, most 
published data suggest that Treg cells are defective in 
number and function in AIH [97–99]. Treg cells are sig-
nificantly impaired in number during active phase of 
the disease, while the reduced sensitivity of Treg cells 
to IL-2 leads to a defect in IL-10 production [100]. The 
controversial nature of the aforementioned studies is 
partly due to the heterogeneity of Treg cells and the dif-
ferences in defining Treg cells markers. Indeed, studies 
relying on CD25 expression tend to find a decrease in 
Treg cells, while studies relying on foxp3 expression 
show an increase in Treg cells [101, 102]. A phase I clin-
ical trial to evaluate the efficacy and safety of Treg cells 
for the treatment of AIH is underway (NCT02704338).

In summary, AIH is an adaptive immune cells-medi-
ated autoimmune liver disease with a core of T cells and 
has been extensively studied. Less research has been 
done on the innate immune system, but some evidence 
suggests that gut microbes can activate macrophages 
and may be involved in the pathogenesis of AIH [103]. 
Given the complexity of the hepatic immune micro-
environment, it is believed that the hepatic immune 
landscape of AIH will be further refined in the future 
to better guide clinically accurate immunosuppressive 
therapy.
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Fig. 3  Cellular and molecular mechanisms behind the imbalance of the immune microenvironment in liver diseases. Inflammatory liver diseases 
including (a) AIH, (b) AVH, (c) AH and (d) NASH share the same pathological features and manifest as hepatic inflammation, hepatocyte death and 
liver fibrosis mediated by innate and adaptive immune cells
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Acute viral hepatitis: antiviral immune‑mediated liver injury
Hepatitis B and C viruses belong to hepatotropic viruses, 
which can infect hepatocytes and are the main types of 
viruses that cause AVH in clinical practice [104]. Symp-
toms of acute hepatitis C virus (HCV) infection are usu-
ally subclinical, whereas acute hepatitis B virus (HBV) 
infection tends to result in symptomatic hepatitis in 
adults, with patients’ clinical presentation ranging from 
asymptomatic to fulminant liver failure [105, 106]. Data 
show that 23.1% of patients with acute viral hepatitis 
B-related acute liver failure eventually die [107].

As an immune organ, cells in the liver immune micro-
environment can rapidly recognize and initiate their 
own antiviral immune response at the early stages of 
viral invasion and work closely with each other to clear 
the infected virus [108, 109]. Briefly, once activated, the 
hepatic antiviral immune system first exerts its antiviral 
immune action by releasing interferon to act on antigen-
presenting cells and activating adaptive immune cells, 
and awakens the immune response of IFNs in uninfected 
hepatocytes to defend against viral attack [110]. HBV has 
been considered a recessive virus because it has rarely 
been observed to induce an obvious immune response to 
IFNs [111]. However, several studies have also shown that 
HBV can induce such intracellular immune responses 
under specific experimental conditions s [112–114]. A 
recent study showed that MX2 is an important IFN-α 
inducer that effectively reduces HBV-RNA levels and 
inhibits HBV replication by indirectly impairing the for-
mation of cccDNA [115]. Unlike HBV, HCV induces high 
levels of ISGs expression while often evading the innate 
immune response through elaborate strategies and exhib-
iting a propensity for chronic infection [116].

A strong and rapidly responsive innate and espe-
cially adaptive immune response is necessary to control 
acute viral infections, but also consequently induces 
immunopathological liver damage and inflammation 
[117], which in severe cases will trigger acute liver 
failure and lead to death. The immunopathogenesis of 
AVH, although still not fully clarified, has come a long 
way [118] (Fig.  3b). The central role of virus-specific 
CD8 + T cells in the clearance of acute viral infection 
and virus-associated liver injury is now well established 
[119, 120]. For example, CD8 + T cells and NK cells 
clear infected cells by secreting antiviral cytokines (e.g., 
IFN-γ) and with perforin-dependent cytotoxic effects, 
but this leads to indiscriminate liver injury [121, 122]. 
By constructing a mouse model of AVH-induced liver 
failure, investigators found that virus-specific CD8 + T 
cells not only induced liver injury in a perforin-depend-
ent manner, but their mediated elimination of LSECs 
led to loss of endothelial integrity of the liver sinusoids 

and severely impaired sinusoidal perfusion, which indi-
rectly led to hepatocyte death [123]. In addition, when 
HBV-specific CD8 + T cells fail to control viral repli-
cation, they can also recruit non-viral-specific T cells, 
which leads to further liver injury [124]. In addition to 
CD8 + T cells, both HBV and HCV infection can pro-
mote the recruitment of hepatic Th17 cells, which in 
turn can exacerbate liver injury, inflammation and even 
fibrosis during viral infection through paracrine effects 
[125, 126]. Excessive Th1 and Th17 cytotoxic responses, 
as well as secreted IL-17 triggering IL-8-mediated 
recruitment of hepatic neutrophils, have been shown to 
be associated with the development of HBV-associated 
liver injury and inflammation [127].

Treg cells and MDSCs are able to inhibit these cells-
mediated pathological injury to some extent and do 
not affect their normal antiviral immune capacity. For 
example, foxp3 + Treg cells have been shown to pro-
tect the liver from immune injury in the early stages 
of acute HBV infection without affecting the prolif-
eration of HBV-specific CD8 + T cells and memory T 
cells [128]. In addition, CD4 + CD25 + Tregs directly 
inhibit NK cell-mediated hepatotoxicity by interact-
ing with NK cells through mTGF-β and OX40/OX40L 
in a cell-contact manner [129]. Treg cells also control 
the recruitment of innate immune cells such as mac-
rophages and dendritic cells, thereby reducing liver 
inflammation, although this leads to some degree of 
HBV clearance delayed [128]. Another type of suppres-
sor cells, myeloid-derived suppressor cells (MDSCs), 
have been shown to inhibit T- and NK-cells-mediated 
liver injury in AVH by producing arginase [130–132].

In conclusion, the hepatic antiviral immune response 
leads to the death of virally infected hepatocytes, 
but also damages uninfected cells, and the liver dam-
age itself induces further inflammation exacerbating 
the liver damage. In addition to the cytotoxic cells-
mediated liver injury described above, recent stud-
ies have revealed an emerging role for LSECs in liver 
injury in AVH. In the mouse hepatitis 3 virus (MHV3)-
induced AVH model, LSECs undergo a shift from an 
anti-inflammatory to a pro-inflammatory phenotype 
characterized by the release of the pro-inflammatory 
factors TGF-β, IL-6, and TNF-α, and reduced IL-10 
secretion [133]. This phenotypic shift is associated with 
virus-induced activation of TLR2 signaling and also 
corresponds to the severity of hepatitis [133]. Thus, 
moderate immunity and inflammation are necessary 
to clear the virus, while excessive and uncontrolled 
immune responses are detrimental. How to strike a 
delicate balance between antiviral and anti-damage to 
maximize the therapeutic effect in patients with AVH is 
a question that deserves further investigation.
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Alcoholic hepatitis: inflammatory dysregulation due 
to alcohol exposure
Alcohol-related liver disease (ALD) is a chronic liver 
disease caused by long-term, high-frequency alcohol 
intake with poor treatment response, prognosis and 
survival [134]. Alcoholic hepatitis (AH) is a clinical 
form of ALD characterized by acute alcohol-induced 
liver injury as a pathological manifestation [135]. In 
particular, the clinical prognosis of severe AH is poor, 
with 40% of patients with severe AH dying within 
6  months of the onset of clinical symptoms [136]. 
Recent studies have shown that hepatic immune cells 
and the gut-liver axis play a key role in the development 
of alcohol-induced hepatocellular injury, liver inflam-
mation and liver fibrosis [137–139].

Alcohol is sufficient to cause inflammatory liver dam-
age directly or indirectly [140]. In the presence of a sus-
tained increase in ethanol, the accumulation of its toxic 
metabolite acetaldehyde in the liver increases causing 
oxidative stress, which generates reactive oxygen species 
and induces endoplasmic reticulum stress and mitochon-
drial dysfunction, ultimately leading to hepatocyte apop-
tosis and dysfunction of various immune cells in the liver 
[141, 142].

In addition to the direct effects caused by alcohol, 
activation of Kupffer cells by intestinal microbial metab-
olites (e.g., LPS) that break the intestinal mucosal bar-
rier under the damaging effects of alcohol is thought to 
be the initiating link in triggering liver inflammation in 
AH [143, 144] (Fig.  3c). PAMPs such as bacterial endo-
toxin and LPS are recognized by TLR4 on the surface of 
Kupffer cells, and then activated Kupffer cells trigger the 
maturation of IL-1β via the inflammatory vesicle path-
way[145] and secrete other active factors such as TNF, 
chemokines, acute phase response proteins and extracel-
lular vesicles (EVs) [143, 144], activating liver-resident 
immune cells and recruit neutrophils and lymphocytes, 
which are involved in shaping the hepatic pathologi-
cal features of AH [146]. Importantly, TLR4 receptors 
on Kupffer cells further recognize damage-associated 
molecular patterns (DAMPs) released after hepato-
cyte injury, creating a vicious cycle between liver injury, 
inflammation, and fibrosis [143]. In addition, alcohol can 
transform hepatic macrophages into an M1 phenotype 
characterized by increased production of inflammatory 
cytokines and ROS [147, 148], which may be associated 
with NOTCH1 signaling-mediated metabolic repro-
gramming [149]. Early evidence from studies on ALD 
mouse models and ALD patients suggests that patho-
genic macrophage subpopulations can be successfully 
translated into new options for disease treatment [150]. 
Recent study has demonstrated that hepatocytes respond 
to alcohol exposure in a caspase-dependent manner by 

releasing EVs containing CD40L, which in turn leads to 
the activation of macrophages [151].

One of the remarkable hepatic pathological features 
of AH patients is neutrophil infiltration and is associ-
ated with patient survival [152]. These neutrophils not 
only participate in inflammatory liver injury by produc-
ing ROS, but also exhibit insufficient phagocytic and bac-
tericidal activity to effectively control infection, hence 
the high rate of infection and mortality in patients with 
advanced AH [153]. The presence of defects in the IL-33/
ST2 pathway in patients with severe AH has been shown 
to be associated with a reduced ability of neutrophils 
to migrate, leading to a higher chance of infection in 
patients [154].

T lymphocytes are widely present in the liver of ALD 
patients and are significantly associated with liver inflam-
mation, sclerosis and Kupffer cells abnormalities [155]. 
Identification of disease-associated differential TCRs by 
high-throughput assays provides evidence of a unique 
antigen pool present in AH to activate bystander and 
antigen-specific T cells responses [156]. The product of 
lipid peroxidation originated from alcohol consumption, 
malondialdehyde (MDA), 4-hydroxynonenal (HNE), can 
be used as a neoantigen to activate T cells and B cells 
immune responses [157]. Indeed, Each T cells subset 
plays a different role in the pathogenesis of ALD by pro-
ducing characteristic cytokine profiles [158]. Th1 cells 
mediate specific cellular responses to alcohol dehydro-
genase (ADH) in AH mainly through secretion of IFN-γ 
[159, 160]. Th17 cells not only recruit neutrophils by 
secreting IL-17 [161], but also contribute to liver repair 
by producing IL-22 through STAT3 activation [162]. 
More importantly, using an alcohol-induced HCC model 
with global IL-17A gene defect, it was found that drug 
blockade of IL-17A/Th17 cells was consistent with IL-
17A knockdown and could effectively inhibit the progres-
sion of HCC in alcohol-fed mice [163].

NKT cells are a subpopulation of T cells with two phe-
notypes, pro-inflammatory type I NKT cells and anti-
inflammatory type II NKT cells. IL-1β from Kupffer 
cells after alcohol exposure is able to recruit and activate 
hepatic pro-inflammatory type I NKT cells [164], which 
subsequently induce neutrophil infiltration into the liver 
[165]. Furthermore, in a chronic AH model, type I NKT 
cells show high expression of Fas and FasL and secrete 
IFN-γ, suggesting that they can directly cause liver injury 
[166].

In summary, AH is a severe clinical stage of ALD in 
which continuous exposure to alcohol causes liver dam-
age, inflammation, and subsequent liver fibrosis in 
both direct and indirect ways. The study of its immu-
nopathogenesis has made great breakthroughs in recent 
years. Moreover, infection is an important cause of poor 
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prognosis in AH, especially in severe AH, suggesting 
that activated immune cells may have functional abnor-
malities, as manifested in neutrophils. Whether similar 
properties exist in other immune cells, especially T cells, 
needs to be further investigated and is crucial to prevent 
the progression of AH to HCC. Therefore, immunother-
apy is a promising future therapeutic strategy for AH, 
and in addition to effectively suppressing inflammation, 
the ability of the liver to control infection also needs to be 
preserved.

Non‑alcoholic fatty hepatitis: inflammation‑centered 
metabolic syndrome
Non-alcoholic fatty liver disease (NAFLD) is a hetero-
geneous disease that includes a range of hepatic mani-
festations starting with hepatic steatosis, liver injury 
and inflammation and progressing to cirrhosis and even 
hepatocellular carcinoma in NASH [167]. NASH is a clin-
ically severe form of NAFLD, the incidence of which has 
increased significantly worldwide in recent years and in 
2019 has become the second largest and fastest growing 
indication for liver transplantation in the United States 
[5]. Innovative therapies have been developed in an 
attempt to treat this growing chronic disease, but there 
are currently no approved clinical therapies [10]. Several 
studies have already suggested that factors from adipose 
tissue or the gut (e.g., LPS and other endotoxins, bile 
acids, free fatty acids), as well as insulin resistance-driven 
lipid accumulation and hepatic oxidative stress within the 
liver, together initiate intracellular stress pathways that 
induce hepatocyte injury and activation of inflammatory 
cells in NASH [70, 168–170]. It is clear that inflammation 
has become a central event in the progression of NASH 
[170], and inflammation and liver injury promote each 
other, creating a vicious cycle of liver injury, inflamma-
tion and fibrosis in NASH (Fig. 3d).

Innate immune cells are considered to be important 
players in liver inflammation in NSAH. NASH involves 
activation of Kupffer cells and recruitment of leukocytes, 
such as neutrophils, monocytes, and NK cells. The afore-
mentioned cells, as well as hepatocytes [171], produce 
biokines such as cytokines, chemokines, nitric oxide and 
reactive oxygen species, which stimulate liver inflamma-
tion, hepatocyte steatosis, apoptosis and necrosis as well 
as induce fibrosis in NASH [172–174]. Among them, 
cytokines such as TNF-α [175, 176], TGF-β [177], IL-11 
[178] and IL-1 [179] are essential for pathological charac-
terization of NASH.

The inflammatory response triggered by Kupffer cells 
together with apoptotic hepatocytes becomes an early 
event that drives the liver from steatosis to steatohepa-
titis. Pro-inflammatory cytokines, LPS or other PAMPs 
derived from intestinal bacteria, DAMPs released from 

apoptotic hepatocytes and lipid metabolites (e.g., free 
fatty acids) all contribute to the activation of Kupffer cells 
and subsequent recruitment of circulating monocytes to 
the liver. Several studies have revealed the fate, ecologi-
cal niche and regulatory landscape of liver tissue-resident 
and recruited macrophage populations in NASH by 
single-cell sequencing. These studies found that hepatic 
Kupffer cells were actually reduced, and that infiltrat-
ing monocytes had at least two fates: monocyte-derived 
Kupffer cells (MoKC), which replenished the depleted of 
Kupffer cells pool in liver, and monocyte-derived lipid-
associated macrophages (LAM) or scar-associated mac-
rophages (SAM) with the expression of CD9, TREM2 
and osteopontin, which show differences in lipid and 
inflammatory genes and an association with fibrotic eco-
topes [180–182]. The central role of macrophages in the 
pathogenesis of NASH makes them a potential target for 
NASH therapy [183].

In NASH patients, neutrophils are recruited to infil-
trate the periportal vein and are a source of IL-17 in 
NASH [184, 185]. In a mouse model of NAFLD, deple-
tion of neutrophils by antibodies suppressed meta-
bolic dysregulation, liver inflammation and fibrosis in 
mice [186]. Liver-infiltrating neutrophils mediate the 
inflammatory response between neutrophils and other 
inflammatory cells such as macrophages through the pro-
duction of ROS, the release of a large number of granular 
proteins (e.g., myeloperoxidase, neutrophil elastase, etc.) 
[187–189]. In addition, neutrophils release a structure 
called neutrophil extracellular traps (NETs) during a self-
induced death process called NETosis, which is thought 
to contribute to the development of inflammation and 
liver fibrosis in NASH [187]. In mice, neutrophil infiltra-
tion and NETosis can promote the progression of NASH 
to hepatocellular carcinoma [190].

There is growing evidence that adaptive immunity is an 
additional factor promoting liver inflammation. The fac-
tors that activate CD4 + T cells and the mechanisms of 
immune effects are unclear and remain to be investigated. 
Early evidence suggests that DCs and other APCs provide 
OSEs to CD4 + T helper cells, leading to activation and 
polarization of CD4 + T cells [191–193]. It has also been 
shown that OX40 expression in CD4 + T cells mediates 
infiltration and differentiation of hepatic CD4 + T cells to 
Th1 cells and correlates with liver inflammation and dis-
ease severity [194]. B2 cells can influence the polarization 
of T cells. Studies have shown that B2 cells are activated 
earlier than T cells and that selective deprivation of B2 
cells prevents maturation of plasma cells and polariza-
tion of CD4 + T cells to Th1 cells and effectively amelio-
rates steatohepatitis [195]. In addition, a CXCR3 + Th17 
cell (ih Th17 cells) has recently been identified in NASH, 
a subpopulation of pro-inflammatory Th17 cells whose 
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cellular metabolism is characterized by increased glyco-
lysis and exerts its pathogenic potential through the pro-
duction of IL-17A, IFN-γ and TNF-α [196].

CD8 + T cells were found to regulate inflammation 
and liver injury in obesity-associated NASH and acti-
vate hepatic stellate cells to promote the development 
of disease fibrosis, in contrast to not observed in lean 
NASH models [197]. Recent studies have found that 
fatty liver microenvironment-induced autoaggressive 
CXCR6 + CD8 + T cell subsets, unlike antigen-specific 
CD8 + T cells, can promote liver injury and conversion of 
NASH to HCC by secreting pro-inflammatory cytokines 
and directly killing hepatocytes in a FASL-dependent and 
TNF-dependent manner [198]. In addition, accumula-
tion of PD1 + CD8 + T cells was observed in the liver of 
NASH patients, which may lead to tissue damage and 
impaired immune monitoring and reduce the responsive-
ness of NASH-HCC patients to PD-1/PD-L1 immuno-
therapy [199].

In summary, the idea that NASH is centered on inflam-
matory events has been widely accepted, and the immune 
cells involved in inflammatory events involve not only 
innate immune cells but also adaptive immune cells. 
Although the intra- and extra-hepatic factors that initiate 
immune cells, and the changing patterns of phenotype, 
function, and cellular metabolism of these immune cells 
remain somewhat elusive, further understanding of the 
immunopathogenesis of NASH could help in the devel-
opment of innovative target drugs.

Cirrhosis: coexistence of inflammation‑mediated fibrosis 
and immunodeficiency
Fibrosis is a highly conserved response to liver injury, and 
liver fibrosis and its end-stage cirrhosis are the ultimate 
common pathway in almost all chronic liver diseases, 
the development of which is observed in patients with 
chronic viral hepatitis, NAFLD, ALD, cholestasis and 
autoimmune liver diseases [200]. Liver fibrosis implies 
an excessive accumulation of extracellular matrix (ECM) 
caused by the activation of hepatic stellate cells and their 
production of collagen, etc., as well as a failure in the 
regulation of ECM degradation. More importantly, the 
formation of ECM and aberrations in the liver regenera-
tion process lead to abnormalities in liver structure and 
function, eventually leading to cirrhosis and its end-stage 
liver failure [201]. Adequate studies have shown that liver 
fibrosis can be reversed to some extent by reducing liver 
damage and controlling inflammation, but there is still no 

effective and applicable treatment for liver fibrosis itself 
[202]. The imbalance of the immune microenvironment 
in cirrhosis is unique and is characterized by the coexist-
ence of inflammation and immune deficiency [73, 203] 
(Fig. 4a).

Inflammation and fibrosis  Liver fibrosis is a multi-
cellular response in which activated HSCs differenti-
ate into myofibroblasts that act as major effector cells 
and produce ECM [48, 204]. The activation of HSCs is 
complex and plastic, resident and recruited cells in the 
hepatic immune microenvironment and platelets regu-
late the activation of HSCs, and these new findings also 
inform the development of immunotherapeutic strategies 
against liver fibrosis [73, 205–207].

Hepatic macrophages are considered to be the key cells 
in the development and regression of liver fibrosis [208, 
209]. Inflammatory cytokines and chemokines, such as 
TNF-α, IL-6 and IL-1α, as well as CCL2, produced during 
the hepatic damaging inflammatory response, promote 
the activation of Kupffer cells and the recruitment and 
differentiation of circulating monocytes, and then acti-
vate HSCs to cause collagen production [210]. However, 
hepatic macrophages are a very heterogeneous popula-
tion of immune cells, and different phenotypes of mac-
rophages play opposite roles in inflammation and liver 
fibrosis [211]. For example, infiltrating Ly6C + monocyte-
derived macrophages are associated with chronic inflam-
mation and fibrosis. During fibrosis regression, mono-
cyte-derived cells differentiate into Ly6C (Ly6C, Gr1) 
low-expressing “restorative” macrophages and promote 
the regression of injury [212]. Thus, macrophages are a 
cellular regulator of liver fibrosis deposition and resolu-
tion [213].

TREM-1 is an activating receptor expressed on the sur-
face of several innate immune cells and is responsible 
for inflammatory regulation and inflammatory signaling 
[214]. It has been demonstrated that the TREM-1 path-
way on Kupffer cells plays a crucial role in liver inflam-
mation and fibrosis in a mouse model of fibrosis by pro-
moting the infiltration of inflammatory macrophages and 
the activation of HSCs. Deletion of TREM-1 alleviated 
liver injury, inflammatory cell infiltration and fibrosis in 
mice [215]. The recently identified monocyte-derived 
TREM2 + CD9 + macrophages subset is thought to be a 
specific macrophage subpopulation that promotes NASH 

Fig. 4  Cellular and molecular mechanisms behind the imbalance of the immune microenvironment in liver diseases. The early stages of (a) 
cirrhosis are characterized by a vicious cycle of liver inflammation, liver damage and fibrosis, whereas the advanced stages are characterized by 
immunodeficiency. Immunocompromised liver diseases include (b) CVH and (c) HCC, which have immunocompromised hepatic innate and 
adaptive immune cells resulting in impaired immune surveillance against viruses and tumors

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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fibrosis, unlike monocyte-derived Kupffer cells [180–
182]. In a first-in-human phase 1 trial of autologous mac-
rophages for cirrhosis, patients infused at different doses 
showed no adverse effects, meeting the primary end-
points of safety and feasibility [216]. However, we must 
realize that the study of the interaction between hepatic 
immune cells and hepatic stellate cells must rely on reli-
able ex  vivo experimental models to better model the 
complex ecological niche of HSCs. The concrete immune 
mechanisms of cirrhosis still need to be investigated in 
depth.

Immunodeficiency in cirrhosis  Cirrhosis is not only a 
pathological feature manifested by inflammation, fibro-
sis, tissue repair and vascular remodeling in the liver, 
but also a clinical syndrome called cirrhosis-associated 
immune dysfunction (CAID) manifested by increased 
intestinal microbial translocation and the coexistence of 
systemic persistent inflammation and immune deficiency 
[73, 203]. As the disease progresses and worsens, in 
patients with cirrhosis in end-stage liver failure, the “pro-
inflammatory” systemic inflammatory phenotype trans-
forms into an “immunodeficient” systemic inflammatory 
phenotype, leading to immune paralysis. This undoubt-
edly increases the risk of bacterial infection and the per-
sistence of systemic inflammatory response, and leading 
to patient deterioration and multi-organ failure [73].

The immunodeficient phase of CAID, in which innate 
and adaptive immune cells and their functions are exten-
sively damaged [205, 217]. The antimicrobial activity of 
innate immune cells such as circulating neutrophils and 
monocytes is severely compromised, leading to disease 
progression [205, 218]. In addition, earlier than the onset 
of ACLF, adaptive immune cells are impaired in cirrho-
sis, as evidenced by a decrease in Th0 cells and effector 
T (Teff) cells [217]. In detail, the frequency of Th1 cells 
was significantly higher, the frequency of Th17 cells was 
lower, and the relative number of Treg cells was increased 
in patients with acute decompensated cirrhosis/ACLF; 
meanwhile, the proportion of CD8 + T cells was sig-
nificantly higher in all stages of cirrhosis [217]. Impor-
tantly, changes in CD4 + and CD8 + T cells are not only 
reflected in numbers and subpopulations, but co-stimu-
latory molecules and immune checkpoints on these cells 
are upregulated and the production of pro-inflamma-
tory cytokines is significantly reduced [217], and these 
changes may increase the risk of infection and ACLF in 
patients with cirrhosis.

To summarize, cirrhosis is the common end-stage of 
several liver diseases, where inflammation-driven fibro-
sis is the main pathological feature and a vicious cycle 

between hepatocyte injury-inflammation-fibrosis is evi-
dent behind its pathological progression. From an immu-
nological perspective, inflammation and immunodefi-
ciency coexist in cirrhosis, two often overlapping entities, 
and research on their specific immunological features is 
just beginning. How exactly does the landscape of the 
immune microenvironment change as cirrhosis pro-
gresses to HCC? What are the factors influencing it and 
through which pathways? These remain to be further 
explored.

Imbalanced liver immune microenvironment 
in immunocompromised liver diseases
Chronic viral hepatitis: low antiviral immunity
HBV and HCV remain the major pathogen types caus-
ing chronic viral hepatitis worldwide [219, 220]. HBV and 
HCV are both hepatotropic viruses, but different virol-
ogy and immunology determine their different ways and 
manifestations of chronic infection [221]. Most adults 
who are infected with HBV tend to present with self-
limited infection, which leads to persistent chronic infec-
tion in a subset of immunocompromised or deficient 
adults and in children with vertical transmission through 
mother-to-child transmission [117, 222]. In contrast, 
HCV tends to progress to chronic infection, and its clini-
cal manifestations in the untreated setting are marked 
and continuously progressive [116].

The immunological profile of acute and chronic viral 
infections is different [221], with the former focusing 
more on hepatic immune-mediated damage and the lat-
ter on the antiviral immunodeficiency behind persistent 
viral infection. Both HBV and HCV have evolved mech-
anisms to evade the body’s antiviral immunity during 
chronic infection, including evasion of recognition, pre-
vention of interferon production, expansion of immuno-
suppressive cells, and upregulation of cytotoxic cytosolic 
immune checkpoint receptors (ICRs), resulting in per-
sistent infection in liver tissues and high blood loads of 
virus [223, 224] (Fig. 4b).

Interferons
Both HBV and HCV have evolved complex mechanisms 
to evade host intrinsic immunity, including evasion of 
complement and antibody recognition and killing, eva-
sion of recognition of intracellular and extracellular 
PRRs, inhibition of cellular PRRs downstream signaling 
pathways (IRF, NK-κB, and JAK/STAT signaling path-
ways), and thus evasion of interferon-mediated antivi-
ral effects [225]. In addition, some IFNs isoforms may 
have a negative effect of mediating viral immune escape. 
For example, a recent study demonstrated that IFNλ4-
induced endoplasmic reticulum stress impairs HCV 
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antigen processing and presentation to CD8 + T cells, 
which directly leads to attenuated HCV-specific T cells 
responses [226]. Besides, interferon-induced transmem-
brane proteins (IFITMs) are innate effector proteins that 
may exert significant selective pressure on HCV during 
the acute phase of infection, leading to viral evasion of 
antibody-mediated neutralization responses [227].
Innate cellular immunity
DC cells  The role of DCs in CVH needs further clarifi-
cation. Several studies have shown that in chronic HBV 
infection, HBV is able to inhibit TLR9-mediated IFN-α 
production in pDCs cells [228–230], and the number of 
pDCs and TLR9 expression are inversely correlated with 
serum HBV viral load [230]. HBsAg also inhibits IFN-α 
production by pDCs by inducing TNF-α and IL-10 pro-
duction in monocytes [231]. Similar to HBV, HCV core 
protein leads to TNF-α and IL-10 production through 
activation of monocyte TLR2 signaling, which leads to 
increased apoptosis in pDCs and their impaired ability to 
secrete IFN-α [232].

Kupffer cells  HBV and HCV infection can impair the 
antiviral activity of Kupffer cells by interfering with 
PRRs receptor-mediated signaling, inhibiting the release 
of pro-inflammatory cytokines such as TNF-α, and 
increasing the production of anti-inflammatory factors 
[233–235]. Kupffer cells-mediated viral immune escape 
is at least partially related to their induction of CTLs 
depletion. HBV and HCV infection can upregulate the 
expression of the inhibitory ligands PD-L1 and galactose 
lectin-9 on the surface of Kupffer cells and induce the 
failure of CTLs by binding to the corresponding inhibi-
tory receptors PD-1 and Tim-3 on the surface of CD8 + T 
cells [233, 236]. In addition, both HBsAg and HBcAg can 
achieve antiviral immune escape by activating the TLR2 
signaling pathway in macrophages. The difference is that 
HBsAg inhibits IL-12 production by macrophages for 
immune escape, whereas HBcAg inhibits antigen-specific 
CD8 + T cells by promoting IL-10 production by mac-
rophages [237, 238].

NK cells  In chronic HBV and HCV infections, down-
regulation of activating receptors (e.g., NKG2D, NKp30, 
NKp46, etc.) and upregulation of inhibitory receptors 
(e.g., NKG2A, KIR, PD-1, Tim-3, etc.) in NK cells was 
observed, resulting in impaired function of NK cells. This 
is manifested by impaired secretion of cytokines such 
as IFN-γ without a significant decrease in cytotoxicity 
[239, 240]. This phenomenon is known as the “functional 
dichotomy” of NK cells [241, 242]. In addition, chronic 
HCV infection induces the shedding of CD16 receptors 
mediating ADCC on NK cells, which may impair the 

ADCC function of NK cells and promote immune escape 
of HCV virus [243]. In addition to the effects of altered 
receptor phenotype on NK cells, various immune cells 
such as Treg cells and Breg cells [239, 244, 245], also keep 
NK cells in a state of exhaustion, mainly in the form of 
a marked decrease in IFN-γ production capacity [246]. 
During chronic HBV infection, activated NK cells are 
able to delete specific T cells, leading to persistent viral 
infection [241, 244]. Similarly, in chronic HCV infection, 
the enhanced effect of cytotoxicity of NK cells on T cells 
induced by CD14 + monocytes-derived hemagglutinin-9 
may be associated with liver injury and persistent infec-
tion in chronic HCV infection [247]. Recent evidence 
suggests that there is an immunosuppressive cascade 
that mediates the expression of high levels of PD-1 by NK 
cells and the secretion of IL-10 to achieve suppression of 
T cells in chronic HBV infection; Suppressive monocytes 
induced by hepatitis B surface antigen (HBsAg) confer 
such properties to NK cells [248].

Adaptive cellular immune  The role of the adaptive 
immune response in the clearance of viruses or control 
of viral infections is widely recognized. During chronic 
HBV and HCV infection, the adaptive immune response 
is extensively disrupted by multiple mechanisms and this 
phenomenon may persist after reduction or elimination 
of the virus by direct antiviral therapy [249]. There are 
two main mechanisms that may contribute to the failure 
of virus-specific T cells response: T cells exhaustion and 
viral escape mutations [250].

One mechanism of low antiviral responses of T cells is 
the depletion of virus-specific CD8 + T cells due to per-
sistent HBV and HCV infection, characterized by high 
expression of suppressive immune checkpoints, including 
PD-1, CTLA-4, lymphocyte activation gene 3 (LAG-3), T 
cell membrane 3 (Tim-3) and CD244 (2B4) [251, 252]; as 
well as a reduction in direct and indirect cytotoxic effects 
and a decrease in cytokine release [253]. Blocking the 
PD-1/CTLA-4 pathway was able to partially reverse the 
immune effects of HBV-specific CD8 + T cells depletion 
[254], however, recent studies point out that its clini-
cal therapeutic effects may be limited [255]. Treg cells 
up-regulate PD-1 on T cell surface and impair its secre-
tion through effector molecules such as IL-10 [256, 257]. 
MDSCs are another type of immunosuppressive cells that 
suppress T cells responses and are associated with viral 
persistence in patients with chronic HBV infection [258, 
259].

During CVH, abnormalities in CD4 + T cells are mainly 
characterized by reduced cell numbers, high expression 
of immune checkpoint receptors (e.g., PD-1, CTLA-4, 
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and LAG-3) [260, 261], reduced cytokine secretion (e.g., 
IFN-γ, IL-2, and TNF-α), and poorly differentiated T cells 
subpopulations [262, 263]. Tfh cells are an effector sub-
population of CD4 + T cells that promote the differentia-
tion of B cells into antibody-secreting plasma cells [264, 
265]. In mouse models and in patients with persistent 
HBV infection, Treg cells have been shown to inhibit Tfh 
cells-mediated HBV clearance [266]. In a recent clinical 
trial, the impaired function of Tfh cells was effectively 
improved with TLR8 agonists, thereby restoring HBV-
specific B-cells responses [267].

Studies of defective B cells are limited. Although HBsAg-
specific B cells have been identified in the blood and 
liver of many patients with chronic HBV infection, they 
exhibit defects in antibody secretion [268, 269]. The 
accumulation of atypical memory B cells (atMBC) may 
explain this phenomenon, as the high PD-1 expression 
on the surface of these cells may impair B cells immu-
nity [268]. In addition, in chronic HBV infection, Breg 
cells may mediate T-cells immune abnormalities through 
IL-35, the number of which positively correlates with 
serum ALT and HBV viral load [270, 271]. The HCV-spe-
cific antibodies primarily target E1 and E2 envelope pro-
teins, has viral neutralizing activity but is also susceptible 
to loss of neutralizing activity due to viral immune escape 
[272, 273].

CVH patients have antiviral immune deficiency involv-
ing IFNs, innate and adaptive immune system abnormali-
ties. The mechanisms by which the virus evades immune 
surveillance are becoming clear, but the mechanisms by 
which the virus affects the immune system are still worth 
investigating, which is directly related to the combination 
of direct antiviral drugs with immune boosters and the 
restoration of antiviral immunity after antiviral therapy. 
In addition, the restoration of antiviral immunity still 
needs to consider the problem of liver inflammation and 
deterioration of liver function in CVH, and research in 
this area requires the accumulation of data from clinical 
studies and further basic research.

Hepatocellular carcinoma: immunosuppressive tumor 
microenvironment
HCC is a significant cause of cancer-related deaths, caus-
ing nearly 800,000 deaths worldwide in 2018 [274]. As 
the majority (80–90%) of HCC cases occur in a chronic 
hepatic inflammatory setting (e.g., chronic hepatitis B 
and C, alcoholic and non-alcoholic liver disease, liver 
fibrosis/cirrhosis) [275–279], it is considered to be the 
prototype of inflammatory cancers caused by chronic 
liver injury.

Although the respective microenvironments of alco-
holic and nonalcoholic liver disease, chronic viral infec-
tion and HCC have been intensively studied, little is 
known about the transition from the microenvironment 
of chronic liver diseases to the tumor immune micro-
environment (TME). Among them, the precancerous 
inflammatory factors of chronic liver diseases (chronic 
liver injury, inflammation and fibrosis) driving the devel-
opment of TME has been a matter of interest [280]. 
Unlike precancerous inflammatory factors, recent studies 
suggest that pathogenic factors of chronic liver disease 
(i.e., precancerous non-inflammatory factors) such as 
(viral infection, alcohol, lipid metabolism, gut microbes) 
can directly affect immune cells in TME without under-
going inflammation-related processes [280, 281] (Fig. 4c). 
Tumor tissues and cells can also further shape the 
immune landscape of TME through complex interactions 
with immune cells [282]. In addition, adaptive immune 
cells that undertake immune surveillance functions, such 
as NK cells [283], CD8 + T cells [199], Th17 cells [284, 
285] and B cells [286] have their own deleterious aspects 
of promoting tumor development, which are discussed in 
detail in some excellent reviews [287–289].

Factors influencing the formation of TME
Tumor cells and tissues  HCC cells can mediate TME 
immunosuppression and autoimmune escape through 
various mechanisms leading to dysfunction of effec-
tor cells such as T cells and NK cells [282]. For instance, 
full T cells activation requires co-stimulation of B7 mol-
ecules on APCs and CD28 molecule receptors on T 
cells, whereas HCC downregulates the expression of 
co-stimulatory molecule receptors such as B7.1 / B7.2, 
leading to tumor immune escape [290]. Yang et al. dem-
onstrated that tumor cells-derived Wnt ligands stimu-
late the polarization of M2-TAMs through classical 
Wnt/β- catenin signaling, which leads to immunosup-
pression in HCC [291]. Furthermore, culture super-
natants of the hepatoma cell line Huh7 appear to pro-
mote CD4 + CD25 + Treg cells proliferation and inhibit 
CD4 + CD25- T cells proliferation [292].

Tumor-derived exosomes (TEXs) mediate communica-
tion and interactions between tumor cells and immune 
cells and are an important way for tumor cells to pro-
mote TME formation [293–295]. In HCC, HCC-derived 
exosomes lead to impaired antitumor capacity of tumor-
infiltrating T lymphocytes (TILs), which may be related 
to the delivery of 14–3-3ζ protein from HCC cells to T 
cells via exosomes [296]. In addition, Ye et al. found that 
the high mobility group box 1 (HMGB1) protein in EVs 
promoted T cells immunoglobulin and mucin domain 



Page 16 of 51Han et al. Molecular Biomedicine            (2022) 3:23 

1 (TIM-1) regulatory B cells expansion and suppressed 
CD8 + T cells proliferation as well [297].

For quite some time, cell–cell fusion between immune 
cells and tumor cells has been hypothesized to be a 
mechanism promoting tumorigenesis and especially 
metastasis [298, 299]. A recent classical study confirmed 
by multiple discrete evidences the production of hybrid 
fusions by fusion of macrophages with tumor cells and 
found that such cells fusion products do exist in tissue 
specimens from different patients with solid tumors and 
in circulation [300]. This hybrid fusion confers enhanced 
tumorigenic potential and growth advantage to the tumor 
cells, tissue metastasis and immune privileges due to the 
macrophage identity [300]. Moreover, physical condi-
tions within the tumor such as ECM stiffness, low pH, 
and additional factors such as hypoxia and high intersti-
tial fluid pressure also tend to suppress the recruitment 
and function of anti-tumoral immune cells [301, 302].

Precancerous inflammatory factors  The pre-cancerous 
environment (PME) characterized by inflammation at the 
core of chronic liver diseases consists mainly of chronic 
liver injury-mediated hepatic oxidative stress, inflam-
mation, fibrosis, and DNA damage in hepatocytes [280]. 
On the one hand, the sustained expression of cytokines 
(e.g. IL-1, IL-6, TNF-α and lymphotoxin β) [303] and the 
recruitment of immune cells in the context of a chronic 
inflammatory state may lead to DNA damage and in 
some cases to epigenetic alterations leading to muta-
tions and tumor transformation [304–306]. Importantly, 
chronic inflammation leads to the production of growth 
factors that promote the growth of new tumors, making 
them appear as “non-healing wounds”[281]. On the other 
hand, chronic inflammation induces changes in the phe-
notype and effects of immune cells that exert anti-tumor 
activity, allowing cancer cells to evade hepatic immune 
surveillance [281]. For example, pro-inflammatory sig-
nals such as the chemokine axis CCR6-CCL20, IL-10 and 
TGF-β promote the activation of immunosuppressive 
Treg cells [307, 308].

Another prominent features of HCC is its strong associa-
tion with liver fibrosis, with 80–90% of HCC occurring 
in fibrotic or cirrhotic livers [309]. HCC is closely asso-
ciated with liver fibrosis and cirrhosis, suggesting that 
the pre-cancerous fibrotic environment of HCC may 
influence tumor formation [310]. In chronic HBV infec-
tion, HBV-specific CD8 + T cells have been identified 
as key players in the antiviral response, and extremely 
activated CD8 + T cells induce a huge inflammatory 
response and subsequent fibrosis that can promote 

hepatocarcinogenesis [311, 312]. Recently, it has been 
shown that HSCs increase the levels of Th17 cells and 
upregulate Treg cells, which may contribute to the 
development of HCC after HBV cirrhosis [313]. Hence, 
chemopreventive strategies that reduce inflammation 
and inhibit the initiation or propagation of ongoing 
inflammation may prevent or delay cancer development 
[304, 314]. For example, the regular clinical use of non-
steroidal anti-inflammatory drugs (NSAIDs) that inhibit 
inflammation, such as aspirin, has been associated with 
a reduction in the incidence of hepatocellular carcinoma 
[315–318]. In addition, aspirin may be used as an adju-
vant to other therapies to reduce recurrence of hepato-
cellular carcinoma [319].

Precancerous non‑inflammatory factors  As mentioned 
above, the stage of chronic liver disease into cirrhosis is 
closely related to the development of HCC, and it is esti-
mated that 80% of HCC occurs in the context of cirrhosis 
[309]. However, 20% still occur in the context of non-cir-
rhotic liver diseases, called non-cirrhotic hepatocellular 
carcinoma (NCHCC) [320]. This laterally suggests that 
non-inflammatory factors prior to HCC formation are 
directly involved in HCC development and lead to HCC-
specific TME formation.

Chronic viral infection. Viral infections are associated 
with NCHCC. Individuals with NCHCC have hepatitis 
B core antibodies and occult HBV infection, suggesting a 
role for hepatitis B infection in NCHCC [321]. In Asia, a 
data from Korea showed that the main cause of NCHCC 
was HBV infection (77.2%) [322]. HBV-infected hepato-
cytes do not trigger significant fibrosis or inflammation 
in the liver, which is a characteristic manifestation of 
HBV-induced NCHCC [323]. HBx proteins can initiate 
epigenetic modifications to dysregulate miRNAs expres-
sion, which in turn can regulate downstream epigenetic 
changes in HBV-HCC pathogenesis, demonstrating the 
complex interplay between HBV infection, epigenetic 
changes, disease and immune response [324].

NAFLD/NASH. Patients with NAFLD, especially those 
with fibrosis or progressing to cirrhosis, are at increased 
risk of progression to NAFLD-related HCC, but 20–50% 
of NAFLD-related HCC cases still occur in the absence 
of advanced fibrosis [325, 326]. Multiple analyses of data 
from clinical settings suggest that NAFLD is a major 
cause of NCHCC [323, 327]. There is research to prove 
that dysregulation of lipid metabolism in NAFLD induces 
hepatic accumulation of linoleic acid and subsequent loss 
of CD4 + T cells due to increased reactive oxygen species 
(ROS), leading to an increased incidence of HCC [328]. 
In addition, obesity, a risk factor for NAFLD, impairs the 
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function of CD8 + T cells and enhances the immunosup-
pressive potency of tumor-infiltrating MDSCs [329, 330]. 
Metabolic therapy may play a role in the prevention of 
HCC in patients with hepatic steatosis and concomitant 
liver diseases [331]. Recent evidence suggests that bacte-
rial extracts from the NAFLD-HCC microbiota, trigger a 
T cells immunosuppressive phenotype characterized by 
the expansion of IL-10 secreting Treg cells and attenua-
tion of CD8 + T cells, at least in part through increased 
production of short-chain fatty acids [332]. Both obe-
sity and gut microbes contribute to the accumulation of 
hepatic bile acids (BA) and metabolites [333, 334], and 
inhibition of 7α-dehydroxylation, which is responsible for 
secondary BA metabolism, is associated with a low inci-
dence of HCC in mice [335].

TME in HCC  The microenvironment of HCC is char-
acterized by an immunosuppressive environment of 
immune cells and tumor vasculature that is structurally 
and functionally abnormal [336]. Briefly, the immune 
cells and cellular mediators are profoundly altered in the 
immunosuppressive microenvironment of HCC, espe-
cially tumor-specific immunosuppressive cells, including 
TAMs, TANs, CAFs, MDSCs and Treg cells, which pro-
mote tumor development as well as metastasis [337]. The 
upregulation of immune checkpoints, e.g., PD-1/PD-L1 
and CTLA-4, is one of the mechanisms by which can-
cer suppresses antitumor immune responses, and these 
cells granzyme B and effector cytokine levels are reduced 
[251].

In conclusion, studies on the factors affecting anti-tumor 
immune cells during the progression of chronic liver 
diseases to HCC and the molecular mechanisms behind 
this shift in the pro-tumor effect of immune cells are 
inadequate, and we briefly describe the pre-cancerous 
inflammatory and non-inflammatory factors and the role 
of tumor tissue and cells in TME formation, information 
that is essential for the prevention of HCC development 
by boosting anti-tumor immunity and for the treatment 
of HCC.

Current status of immunotherapy for liver diseases
As mentioned above, abnormalities in the hepatic 
immune cell microenvironment are directly involved in 
the development of liver diseases, and therapeutic strat-
egies targeting these immunopathogenic pathways are 
increasingly being used in preclinical and clinical studies, 
showing good promise. We summarized representative 
therapies with clinical potential for various liver diseases 
and their mechanisms (Table 1). Although some immu-
notherapies showed some potential in preclinical studies, 

the phenotypes were not satisfactory in clinical studies. 
For example, therapeutic agents targeting inflammation 
and fibrosis in NASH, CCR2/CCR5, TLR4, ASK1 and 
lysine oxidase were considered ineffective in recent clini-
cal trials to alleviate endpoint outcomes in NASH, par-
ticularly fibrosis [10, 338]. Furthermore, although several 
smaller clinical trials in patients with end-stage liver dis-
ease of varying severity have shown that G-CSF improves 
patient survival and reduces complications [339]. How-
ever, in a recent multicenter controlled trial, G-CSF did 
not have a significant beneficial effect in patients with 
chronic acute liver failure, suggesting that it should not 
be used as standard of care for end-stage liver diseases 
[340].

MSCs‑based immunotherapy for liver diseases
MSCs are stem cells with multidirectional differentia-
tion potential that can be isolated from the bone marrow, 
adipose tissue, dental pulp, umbilical cord and placenta, 
peripheral blood, and induced pluripotent stem cells 
[394, 395] (Fig. 5a), easy to obtain and culture, and have 
low immunogenicity; moreover, MSCs-derived exosomes 
are increasingly used for cell-free therapy and therapeu-
tic vectors. Based on these advantages MSCs are increas-
ingly used for the treatment of liver-related diseases [12]. 
The mechanism of MSCs in the treatment of liver dis-
eases is mainly attributed to their immunomodulatory 
and liver tissue regenerative abilities, in addition to their 
direct anti-fibrotic effects and good homing properties to 
inflammatory injury and tumor sites, making them the 
star cells for the treatment of liver diseases [396].

Currently, there are 62 ongoing clinical trials using 
MSCs for different liver diseases [Accessed January 01, 
2022]https://​www.​clini​caltr​ials.​gov/. The studies involved 
a variety of liver diseases, including AIH (n = 2), acute 
liver failure (n = 17) and cirrhosis (n = 43) caused by alco-
hol, hepatitis B or C virus infection, NASH and primary 
biliary cholangitis, as well as unspecified causes. There 
was significant heterogeneity in these clinical studies in 
terms of dose and dose of injected cells, source of stem 
cells, type of transplantation, route of injection, and study 
design. We summarize in detail 20 of these clinical trials 
with clear etiology, including AIH (n = 2); Liver cirrhosis 
caused by alcohol (n = 2), hepatitis B (n = 3), hepatitis C 
(n = 1), hepatitis C or NASH (n = 1), Primary biliary cir-
rhosis (PBC) (n = 4); and Liver failure caused by hepatitis 
B (n = 6), alcohol (n = 1) (Table  2). They have demon-
strated safety and efficacy in clinical treatment.

Immunomodulatory capacity of MSCs
The immunomodulatory capacity of MSCs is not immu-
table, but is modified according to the different and evolv-
ing microenvironments to which they are exposed, and is 

https://www.clinicaltrials.gov/
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referred to as immune plasticity [14, 397]. MSCs can pro-
mote inflammation when the immune system is under-
activated and suppress inflammation when the immune 
system is over-activated in order to avoid self-attack. This 
activity is also referred to as a function of “sensors and 
switches of the immune system” [15]. Different levels of 
inflammatory factors (including IFN-γ, TNF-α and IL-1β, 
etc.) and specific types of activated TLRs determine the 
immunophenotype of MSCs [398–401]. Specifically, 
TLR4-activated MSCs exhibit a pro-inflammatory/tumor 
suppressive MSC1 phenotype, whereas TLR3-activated 
MSCs exhibit an immunosuppressive MSC2 phenotype 
[402, 403]. In conclusion, the ability of MSCs to exert 
opposing compensatory immunomodulatory effects in 
microenvironments with different levels of inflamma-
tion underlies their use in the treatment of liver diseases 
mediated by immune imbalance.

The plasticity of MSCs immunomodulation has enabled 
MSCs to show an irreplaceable role in the immunother-
apy of acute and chronic liver-related diseases. Numer-
ous preclinical and clinical studies have demonstrated 
that MSC-based immunosuppressive therapies can 
effectively suppress immune hyperactivation in inflam-
matory liver diseases, thereby reducing immune-medi-
ated liver injury, inflammation and fibrosis [404, 405]. 
In addition, in viral infections and oncological diseases, 

the application of MSCs is still relatively rare and clinical 
studies are lagging behind due to concerns about the risk 
of virus carriage and tumorigenesis. However, in recent 
years, indirect immunotherapeutic strategies based on 
MSCs platforms, especially the adaptation of MSCs and 
their extracellular vesicles into targeted delivery systems 
for therapeutic drugs or immunomodulators by genetic 
modification and other physical or chemical means, can 
enhance antiviral and antitumor immunity in CVH and 
HCC and effectively circumvent their deleterious proper-
ties [22, 406, 407].

Pathways of immunomodulatory function of MSCs
The powerful immunomodulatory capacity of MSCs has 
been demonstrated and is a major advantage for their 
use in the treatment of liver diseases, especially immune 
inflammatory liver diseases. It has immunomodulatory 
capacity on a wide range of innate and adaptive immune 
cells in the liver and in the circulation [408, 409]. The 
immunomodulatory function of MSCs is mainly exerted 
through interactions with immune cells, including direct 
or indirect intercellular contacts, and paracrine effects 
[410–412] (Fig.  5b). MSCs modulate the host immune 
system through paracrine signaling [14, 411], including 
the secretion of soluble molecules, or release of more 
complex structures called extracellular vesicles (EVs) 

Fig. 5  Sources of MSCs and the Pathways of MSCs exerting immunomodulatory effects. a MSCs can be isolated from the bone marrow, adipose 
tissue, dental pulp, umbilical cord and placenta, peripheral blood, and induced pluripotent stem cells. b There are three main pathways for MSCs 
to exert immunomodulatory effects: ① Paracrine effects, including microvesicles, exosomes and bioactive molecules; ② Cell-to-cell contact, 
including direct intercellular contact and intercellular contact mediated by the binding of cell surface receptors and ligands; ③ Apoptotic MSCs: 
MSCs are attacked by complement system components, complement activated neutrophils and perforin positive cytotoxic cells, then phagocytes 
engulf apoptotic MSCs to mediate immune regulation 
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Table 2  Summary of clinical trials on mesenchymal stem cells for liver diseases

Liver Disease and 
cause

Start time (year) Type of clinical 
trials

Source of MSCs Route Dose of MSCs Phase ClinicalTrials.
gov identifier

Autoimmune 
hepatitis

2011 Parallel-controlled 
trial

Allogenic, umbilical 
cord

Peripheral vein 1 × 106 cells / kg 
body, 4 doses

1/2 NCT01661842

2018 Parallel-controlled 
trial

Allogenic, umbilical 
cord

Peripheral vein combination of 
0.5, 1.0, 2.5 million 
cells / kg body (3 
dose levels), single 
infusion

2a NCT02997878

Liver cirrhosis 
caused by alcohol

2019 No control group Autologous, bone 
marrow

Hepatic artery 5 × 107 cells / 10 mL, 
single infusion

1 NCT03838250

2021 Randomized con‑
trolled trial

Autologous, bone 
marrow

Hepatic artery 7 × 107 / dose, 
single infusion

3 NCT04689152

Liver cirrhosis 
caused by hepatitis 
B

2012 Parallel-controlled 
trial

Allogenic, umbilical 
cord

Hepatic artery 1 × 106 cells / kg 
body, single infusion

1/2 NCT01728727

2018 No control group Autologous, bone 
marrow

Peripheral vein 0.5–1 × 106 cells / kg 
body, single infusion

3 NCT05080465

2018 No control group Autologous, umbili‑
cal cord

Peripheral vein 100 million cells / 
dose, single infusion

1/2 NCT04357600

Liver cirrhosis 
caused by hepatitis 
C

2016 No control group Autologous, adipose Peripheral vein 
or Hepatic 
artery

1 million cells / kg 
body, 3 doses in the 
Peripheral vein and 
3 million cells / kg 
body, 3 dose into 
the right hepatic 
artery

1/2 NCT02705742

Liver cirrhosis 
caused by hepatitis 
C or non-alcoholic 
steatohepatitis 
(NASH)

2017 No control group Autologous, adipose Peripheral vein None 1/2 NCT03254758

Primary biliary cir‑
rhosis (PBC)

2011 Parallel-controlled 
trial

Autologous, umbili‑
cal cord

Peripheral vein 1 × 106 cells / kg 
body, 3 doses

1/2 NCT01662973

2011 Parallel-controlled 
trial

Autologous, bone 
marrow

Peripheral vein 5–50 million cells 
/ kg body, single 
infusion

1 NCT01440309

2017 Parallel-controlled 
trial

None Peripheral vein 0.1–1 × 106 cells / kg 
body, 3 doses

None NCT03668145

2019 Paired, controlled 
study

Autologous, umbili‑
cal cord

Hepatic artery 1 × 106 cells / kg 
body, 2 doses

1/2 NCT04522869

Liver failure caused 
by hepatitis B

2013 Parallel-controlled 
trial

Autologous, umbili‑
cal cord and bone 
marrow (2 experi‑
mental groups)

Peripheral vein combination of 
1 × 105 cells / kg 
body, 1 × 106 cells 
/ kg body, 1 × 107 
cells / kg body (3 
dose levels), 8 doses

1/2 NCT01844063

2016 Parallel-controlled 
trial

Autologous, umbili‑
cal cord

Peripheral vein None 2 NCT02812121

2017 Randomized con‑
trolled trial

Autologous, None Peripheral vein 1 × 106 cells / kg 
body, 3 doses

None NCT03209986

2019 Parallel-controlled 
trial

Autologous, umbili‑
cal cord

Peripheral vein 1 × 106 cells / kg 
body, 3 doses

2 NCT03945487

2019 Parallel-controlled 
trial

Autologous, human 
exfoliated decidu‑
ous teeth

Peripheral vein 1 × 106 cells / kg 
body, 4 doses

1 NCT03957655

2021 No control group Autologous, umbili‑
cal cord

Peripheral vein 1 × 108 cells / dose, 
2 doses

None NCT05106972

Liver failure caused 
by alcohol

2009 No control group Autologous, bone 
marrow

Hepatic artery 5 × 106 cells / mL, 2 
doses

2 NCT01741090
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[413]. Specifically, the MSCs can secrete myriad growth 
factors [414], chemokines [415], and immunomodulatory 
cytokines ( such as IL-10 [416], IDO [417, 418], HO-1 
[419], TSG6, PGE2 [420, 421]), and other soluble mol-
ecules. Moreover, EVs are cell membrane encapsulated 
vesicles, including exosomes, microvesicles and apoptotic 
vesicles, which can carry various bioactive molecules, 
including lipids, proteins, DNA and RNAs such as micro-
RNAs. These contents are transported and released into 
immune cells to regulate their phenotype and function 
[422–424].

In addition, recent findings suggest that apoptotic, 
metabolically inactivated, and even fragmented MSCs 
also show immunomodulatory potential [425, 426] 
(Fig. 5b). Back in 2005 Thum et al. published the “dying 
stem cell hypothesis”, which suggested that apoptosis of 
bone marrow MSCs causes modulation of local immune 
responses, leading to downregulation of innate and adap-
tive immunity [427]. In later studies, apoptotic adipose 
tissue-derived MSCs (A-ADMSCs) were shown to be 
effective in treating organ injury in sepsis models, reduc-
ing inflammation, fibrosis and apoptosis levels [428, 429]. 
Importantly, compared to surviving MSCs implanted in 
different tissue microenvironments, apoptotic MSCs 
showed no change in immunomodulatory properties 
across stimuli, suggesting their potential for clinical 
application [430].

Traditionally, transplanted MSCs were attacked by 
components of the complement system, complement-
activated neutrophils and perforin-positive cytotoxic 
cells, inducing them to undergo apoptosis. Apoptotic 
MSCs can be taken up by phagocytes, producing immu-
nosuppressive consequences [14]. A study using a mouse 
graft-versus-host disease (GvHD) model demonstrated 
that cytotoxic cells actively induce apoptosis in MSCs in a 
perforin-dependent manner. Further studies have shown 
that IDO, produced by phagocytes after phagocytosis of 
apoptotic MSCs, is essential for the initiation of immu-
nosuppressive effects by apoptotic MSCs [431].

MSCs for inflammatory liver diseases

MSCs for autoimmune hepatitis
As previously mentioned, AIH is an autoimmune dis-
ease caused by the erroneous attack of T cells on their 
own hepatocytes and loss of immune tolerance. MSCs 
are promising candidates for the treatment of AIH with 
immunosuppressive properties that can reintroduce 

self-tolerance in the liver by correcting excessive immune 
responses [16, 432, 433]. Three MSCs clinical trials have 
been conducted (Table  2). Studies have shown that for 
autoimmune diseases, including AIH, the specific mecha-
nisms by which MSCs exert their therapeutic effects lie in 
the inhibition of lymphocyte activation and proliferation 
and in the promotion of Treg cell formation [434, 435] 
(Fig.  6b). These abilities are associated with the expres-
sion/secretion of molecules such as CTLA-4, PD-L1, 
IDO-1, FasL, iNOS, TGF -β and PGE2 by MSCs [432].

Chen et  al. earlier investigated the therapeutic effect 
of bone marrow MSCs (BM-MSCs) transplantation in 
experimental autoimmune hepatitis (EAH) in mice and 
showed that BMSCs transplantation, especially multi-
dose transplantation, increased hepatic PD-L1 levels 
along with decreased IL-17 levels, producing immuno-
suppressive effects [436]. Similarly, a recent study used 
lentiviral transfection to construct PD-L1-high express-
ing MSCs-EVs, which successfully initiated immunosup-
pressive signaling in activated immune cells, including T 
cells, macrophages and DCs, by interacting with PD-1 on 
the surface of these cells [437]. By constructing mouse 
autoimmune disease models of ulcerative colitis and pso-
riasis, this study further revealed that extracellular vesi-
cles with high PD-L1 expression could specifically target 
liver lesion sites and effectively modulate the balance 
between Th1, Th2, Th17 and Treg cells subsets to attenu-
ate autoimmune responses in AIH [437].

IL-35 is known to belong to the IL-12 family, is pro-
duced by Treg cells and is required for the maximal sup-
pressive activity of Treg cells [438]. Wang, et  al. [439] 
showed hepatic by infusion of both IL-35 gene-modified 
mesenchymal stem cells (IL-35-MSCs) and adipose-
derived MSCs in a mouse model of Con A-induced ful-
minant hepatitis protective effect. They found that MSCs 
could attenuate liver injury by reducing hepatic secre-
tion of IL-17 but not IFN-γ, while IL-35-MSCs could not 
only reduce IL-17 secretion by Th17 cells but also reduce 
IFN-γ expression by Th1 cells through the JAK1-STAT1/
STAT4 signaling pathway, as well as reduce hepatocyte 
FasL expression thereby preventing hepatocyte apopto-
sis [439]. In addition, MSCs-derived exosomes also have 
a therapeutic effect on AIH by regulating immunity of 
liver Treg and Th17 cells through specific miRNAs. It 
was shown that miR-223 in BM-MSCs-exos reversed 
liver inflammation and cell death by downregulating 
mRNA and protein levels of NLRP3 and caspase-1 in 
an experimental AIH model, while decreasing levels of 

Fig. 6  Immunomodulation and immunotherapeutic strategies of MSCs in liver diseases. Due to the immunomodulatory plasticity of MSCs and 
their ability to deliver immunomodulators after modification, MSCs can exert immunosuppressive effects in inflammatory liver diseases including 
(a) Cirrhosis, (b) AIH, (c) AVH, (d) AH and (e) NASH, thereby ameliorating immune-mediated liver injury, liver inflammation and fibrosis. The dashed 
arrows indicate potential immunomodulatory mechanisms or immunotherapeutic strategies

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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pro-inflammatory cytokines (TNF-α, IL-17A and IL-1β) 
in serum and liver tissues [440]. The same group of inves-
tigators gave MSCs-exosomes overexpressing miRNA-
223-3p had a significant attenuating effect on liver injury. 
BM-MSCs-exos increased the proportion of Treg cells but 
decreased the proportion of Th17 cells, while serum and 
liver levels of IL-1β, IL-6 and IL-17 were reduced, while 
IL-10 levels were increased. These results may be related 
to the downregulation of STAT3 by miR-223-3p [441].

The development of antigen-specific immune tolerance 
approaches for the treatment of autoimmune diseases has 
received much attention in recent years [347, 442, 443]. 
Antigen-specific immunotherapy (ASIT) aims to rebuild 
immune tolerance to autoantigens by providing the rel-
evant antigen to a specific cell type or environment suit-
able for triggering a tolerogenic response while leaving 
the immune system to function effectively [444]. Liver 
antigen presenting cells, targeted by carrier particles, and 
steady-state dendritic cells, to which antigen-processing 
independent T cells epitopes(apitopes) bind selectively, 
as the principal targets for antigen-specific immuno-
therapy [348]. Apitopes induce tolerance through induc-
tion of anergy T cells and generation of Treg1 (Tr1) cells 
[445]. However, the core of ASIT design is the delivery of 
autoantigen peptides, and autoantigens and their constit-
uent epitopes vary widely in physicochemical properties 
such as size, charge, and solubility, and these differences 
can greatly affect the systemic transport of ASIT agents 
[446]. MSCs, especially extracellular vesicles, are known 
for their low immunogenicity, biosafety and targeting 
properties have been used as in vivo delivery vehicles for 
therapeutic agents [447], and could theoretically be used 
as targeted delivery vehicles for ASIT agents to overcome 
possible limitations of in  vivo factors such as suscepti-
bility to digestion by enzymes in  vivo, poor penetration 
across biological barriers, and rapid clearance by the 
reticuloendothelial system.

Regardless of preclinical and clinical trials, the thera-
peutic role of MSCs in AIH is receiving increasing atten-
tion and has demonstrated safety and efficacy. With 
further studies on the cellular and molecular mechanisms 
behind the changes in the immune microenvironment of 
AIH, the specific mechanisms behind the treatment of 
AIH with MSCs will be further validated. Importantly, 
based on the immunopathogenesis of AIH, the strategy 
of blocking immune damage in the liver by making MSCs 
transport immune-targeted drugs through genetic modi-
fication and physicochemical loading has good prospects 
for application.

MSCs for acute viral hepatitis
Pharmacological interventions for AVH are extremely 
limited, including antiviral therapy. Currently known 

antiviral drugs are approved for chronic viral infections, 
while antiviral treatment regimens for acute viral infec-
tions remain undeveloped, especially in complex patients 
with acute liver failure and severe liver injury, for which 
there is still no consensus [448, 449]. Some studies point 
out that direct antiviral agents (DAAs) for acute HCV 
infection appear to have shorter treatment times and 
better outcomes [450, 451]. However, two meta-anal-
yses assessing the efficacy of common pharmacologi-
cal interventions for acute hepatitis B and C showed no 
significant benefit of antiviral drugs in preventing com-
plications and disease progression compared to placebo, 
and other interventions, and varying degrees of adverse 
effects [452, 453]. In patients with acute severe hepatitis, 
especially acute fulminant liver failure, early liver trans-
plantation remains the most effective clinical option 
[454]. Acute HBV or HCV infection’s can trigger severe 
liver damage and liver failure, which is associated with 
lysis of infected hepatocytes by the antiviral immune sys-
tem. Therefore, further development of effective antiviral 
drugs to inhibit viral replication is needed, along with 
effective suppression of immune-mediated liver injury.

The initial use of MSCs in AVH has begun with the 
aim of controlling immune-mediated severe liver injury 
and maximizing the preservation of antiviral immunity 
(Fig.  6c). The treatment of viral infectious diseases with 
MSCs is predicated on their resistance to viral infection 
so as not to become a reservoir of viruses increasing the 
risk of virus transmission. It has been shown that MSCs 
are susceptible to viral invasion in vitro and in vivo [455, 
456], but MSCs are well resistant to viruses, thanks in 
part to their regulation of the expression of their own 
ISGs [457]. Moreover, IDO is the main mediator that 
slows down viral replication in human MSCs, but the 
same effect was not observed in mice [458]. Therefore, 
the ability of MSCs to inhibit their own viral invasion and 
replication may depend on the different species origin.

It is well known that the immune regulation of MSCs 
is markedly plastic [397], and their immunosuppressive 
phenotype depends mainly on the stimulation of a cer-
tain combination of inflammatory factors, such as IFN-γ 
with TNFα or IL-1β [459]. In an acute HBV-infected 
mouse model, the relay transfer of bone marrow MSCs 
reduced NKG2D expression on NK cells, inhibited NK 
cells cytotoxicity in  vitro and improved liver injury and 
liver inflammatory response. However, this resulted in 
enhanced hepatitis B virus gene expression and replica-
tion in  vivo, although the impact of BM-MSCs on pro-
longed viral clearance needs to be considered in the 
future [460]. Treg cells are able to suppress effector T 
cells activity and innate cells recruitment during acute 
HBV infection, thereby attenuating immune-mediated 
liver injury [128]. Despite the lack of direct evidence 
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in acute HBV or HCV infection, findings in a ConA-
induced model of similar viral and immune-mediated 
liver injury suggest that MSCs exosomes significantly 
inhibit liver injury in model mice with an increase in Treg 
cells number [461]. In the same model, tonsil-derived 
MSCs (T-MSCs) can reduce liver injury by suppress-
ing activated T cells through the secretion of Galectin-1 
[462]. Besides, it was further shown that MSCs inhibit 
the secretion of TNF-α, IFN-γ and IL-4 from NKT cells 
in an NO- and IDO-dependent manner, but promote the 
secretion of their immunosuppressive cytokine IL-10, 
thereby reducing the additional liver damage caused by 
the immune system [463].

Therefore, in parallel with antiviral drug therapy, MSCs 
could theoretically be used in a timely manner for tar-
geted treatment to reduce liver damage and liver failure 
in fulminant hepatitis. However, before the use of MSCs 
in AVH patients, reducing the risk of self-infection with 
MSCs and whether the immunosuppressive effect of 
MSCs impairs the body’s ability to clear the virus, leading 
to persistent or chronic viral infection, as well as affect-
ing the therapeutic efficacy of antiviral drugs, need to be 
further investigated. In patients with oncologic and auto-
immune diseases complicated by chronic viral infections, 
viral reactivation has been reported after the use of some 
drugs, such as corticosteroid therapy and immune check-
point inhibitors (ICIs) for more than 2 weeks [464], and 
viral reactivation significantly increases the risk of acute 
liver failure and death [465]. It is worthwhile to investi-
gate when and how MSCs can be applied to strike a bal-
ance between antiviral immunity and mitigation of liver 
pathological damage.
MSC for alcoholic hepatitis
The most commonly used clinical corticosteroids 
improve short-term survival in patients with severe AH, 
but do not provide long-term survival benefits [466]. In 
addition, approximately one quarter of patients with 
severe AH did not respond to corticosteroid therapy 
[467], and liver transplantation is still the most effective 
treatment for patients with decompensated AH [466]. 
Given the important role of immune-mediated liver 
injury in the development of AH, the effectiveness of the 
corresponding immunotherapeutic strategies has been 
evaluated (Table  1). However, TNF agents, growth fac-
tors and antioxidants have been shown not to show the 
expected efficacy in clinical trials for the treatment of 
severe AH [468, 469]. This may be partly attributed to 
the fact that the inhibition of inflammation also compro-
mises the beneficial effects of inflammation in promot-
ing tissue repair and resistance to microbial infection. 
The endogenous liver regeneration inducing, immu-
nomodulatory and attenuating liver fibrosis properties 
of MSCs allow it to play an active role in AH treatment 

[470, 471]. Recently, several clinical trials on the efficacy 
of BM-MSCs transplantation in patients with alcoholic 
cirrhosis have shown that MSCs are effective in reduc-
ing the extent of cirrhosis and improving liver function in 
patients [472–475]. We will focus on the immunomodu-
latory role of MSCs in AH treatment (Fig. 6d).

Activated recruitment of macrophages and massive 
infiltration of neutrophils are prominent features of 
hepatic immunopathology in AH. It has been demon-
strated that MSCs can reduce hepatic steatosis and liver 
injury by inhibiting neutrophil and macrophage infiltra-
tion [476]. In addition, a study showed that BM-MSCs 
injected into AH mice reduce liver injury by secreting 
the anti-inflammatory factor TSG-6 [477], which may be 
related to the inhibition of STAT3 activation by TSG-6, 
thereby inhibiting hepatic oxidative stress and inducing 
hepatic M2 macrophages polarization in AH mice [478]. 
Macrophages, however, also have a beneficial aspect 
of promoting tissue repair. One study investigated the 
impact of autologous bone marrow stem cells transplan-
tation (SCT) in AH, and patients receiving SCT exhibited 
a more significant expansion of CD68 + pro-inflamma-
tory hepatic macrophages compared to standard treat-
ment, along with an upregulation of the expression of 
a gene involved in the regenerative pathway (SPINK1 
mRNA) [479]. It has also been found that administra-
tion of TLR3 pre-activated BM-MSCs to enhance their 
immunotherapeutic effects effectively suppressed early 
intrinsic immune cells NKB cells, reduced IL-18 levels, 
and improved liver and intestinal injury. This may be 
associated with reduced activation of NK cells and innate 
lymphoid 1 cells (ILC1) [480]. Considering the alcohol-
mediated disruption of the intestinal barrier and the 
consequent activation and recruitment of liver immune 
cells as the initiating link in AH, the strategy of combin-
ing probiotics to repair the intestinal mucosal barrier 
is expected to further enhance the therapeutic effect of 
MSCs. Lactobacillus rhamnosus GG supernatant (LGG-
s) is known to play a beneficial role in alcohol-induced 
liver injury by improving intestinal barrier function 
[481]. In a combined study of LGG-s and BM-MSCs, it 
was found that their synergistic effect on the treatment 
of AH was specifically manifested as modulating inflam-
mation, accelerating autophagy and reducing the number 
of alcohol-induced natural killer B (NKB) cells and Tfh 
cells through PI3k/NF-kB and PI3K/mTOR pathways, 
and ultimately effectively reducing liver tissue injury and 
hepatic lipid accumulation [482].

The centrality of immune-mediated liver injury in the 
pathophysiology of AH has been widely recognized. The 
treatment of severe AH remains challenging, and con-
trolling inflammation is equally important as controlling 
infection, but there is a conflict. MSCs seem to achieve 
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better efficacy between suppressing inflammation, con-
trolling infection, and promoting tissue repair, but their 
specific regulatory mechanisms remain obscure. Clinical 
studies of MSCs in patients with alcoholic cirrhosis, have 
shown their effectiveness, but high-quality clinical stud-
ies on their treatment of AH, especially severe AH, are 
lacking. Research is urgently needed to bring benefit to 
patients with this high mortality disease.

MSC for NASH
Currently, there is no FDA-approved treatment for 
NASH. Monotherapies against NASH appear to be chal-
lenging, and many targeted therapeutics that were con-
sidered promising have been deemed ineffective in recent 
clinical trials for alleviating the endpoint outcomes of 
NASH, particularly fibrosis [10, 338]. The strategy of 
reducing cell death by inhibiting the caspase pathway also 
brings us important lessons [483]. Although inhibition of 
caspases may reduce serum ALT in the short term, in the 
long term, it may drive cells to other cell death mecha-
nisms, leading to more severe liver fibrosis [484].

MSCs have a positive impact on body weight, glu-
cose and lipid metabolic balance, NAFLD and systemic 
inflammation in obesity treatment[485]. Marcelo et  al. 
found that MSCs intravenously administered to C57BL / 
6 mice fed a high-fat diet for a long time did not reverse 
obesity and metabolic syndrome, but prevented the tran-
sition from steatosis to NASH in obese mice with meta-
bolic syndrome [486]. MSCs improved lipid metabolism, 
insulin resistance, and mitochondrial oxidative stress in 
NAFLD mice, thereby reducing liver inflammation and 
fibrotic features [487, 488]. Furthermore, MSCs treat-
ment reversed gut microbiome and metabolome disor-
ders in NASH models, suggesting that MSCs can exert 
therapeutic effects by affecting the intestinal flora [489]. 
Indeed, MSCs-exosomes also exhibit therapeutic effects. 
Treatment of NAFLD rats with human umbilical cord 
MSCs-exosomes (huMSCs-exos) revealed that miR-
627-5p in exosomes could improve NAFLD progression 
by improving glucose and lipid metabolism and reducing 
liver injury [490].

The hepatic immune imbalance of NASH triggers 
inflammation, liver injury and induction of subsequent 
fibrosis, and studies using immunomodulatory effects of 
MSCs to correct the imbalance of the immune inflamma-
tory response in NASH for the treatment of the disease 
are being attempted (Fig. 6e). In a mouse model of NASH, 
treatment with MSCs improved liver function and mor-
phology and ameliorated liver fibrosis and inflammation. 
These observed effects may be attributed to the downreg-
ulation of pro-inflammatory and pro-fibrotic genes [491]. 
By developing a NASH model for rapid accumulation of 
fibrosis, both reduced serum alanine aminotransferase 

levels and inflammatory markers in model mice follow-
ing the use of human MSCs and their small extracellu-
lar vesicles (sEVs), while liver fibrosis improved and a 
significant increase in anti-inflammatory macrophages 
was observed in the livers of mice [492]. The above stud-
ies suggest that MSCs can play a therapeutic role in 
NASH by modulating macrophage phenotypic transfor-
mation and thus suppressing inflammation levels. The 
therapeutic effect of adipose-derived MSCs on obesity-
related complications (e.g., NAFLD, CVD, and renal dis-
eases) in animal models of diet-induced obesity derives 
from the attenuation of inflammatory cytokines such 
as TNF-α and IL-6 [493]. Similarly, in a high-fat diet 
(HFD)-induced NASH model, adipose-derived MSCs-
EVs significantly reduced the number of Kupffer cells in 
rat liver and decreased their expression of inflammatory 
cytokines TNF-α, IL-1β, and IL-6, as well as the secretion 
of TGF-β. Importantly, treatment with exosomes signifi-
cantly alleviated liver fibrosis as well as the activation of 
HSCs [494]. The inhibition of TLR4-mediated signaling 
in Kupffer cells by adipose-derived MSC-EVs was also 
confirmed by in vitro assays [494].

Furthermore, after MSCs treatment, MCD diet-
induced pathological features of NASH in mice were 
attenuated, as evidenced by weight loss, hepatic steatosis, 
hepatocyte expansion, and reduced liver inflammation 
and fibrosis. Further analysis suggested that a possible 
mechanism of this MSCs-mediated immunomodulation 
is the suppression of activation of CD4 + T cells secreting 
IFN-γ and IL-6 [495]. Another study showed that bone 
marrow-derived MSCs could attenuate hepatic steatosis, 
inflammation and fibrosis in NAFLD model mice by sup-
pressing the activation capacity of CD4 + T cells [496].

Preclinical findings suggest that the observed patholog-
ical alterations in NASH appear to be related to at least 
the combined effects of donor MSCs, however, stud-
ies on their relevance are limited especially with respect 
to immune regulation. With the study of NASH-related 
immunopathogenesis, especially the elucidation of the 
role of adaptive immunity in the pathology of NASH 
and the development of NASH-HCC, it will contrib-
ute to the development of immunotherapies, including 
MSCs, to treat NASH and prevent the development of 
NASH-HCC.

MSC for liver cirrhosis
Animal studies have shown that the use of MSCs can 
effectively and safely improve the pathological features of 
liver fibrosis/cirrhosis and liver function [497, 498]. Early 
clinical trials also further evaluated the promising thera-
peutic effects of transplanted MSCs in patients with liver 
fibrosis [499–505], focusing on improvements in disease 
scores and indicators of liver function, but with poor 
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evidence of histological improvements. Therefore, pre-
clinical and clinical trials are ongoing to determine the 
therapeutic potential and safety of MSCs-based therapy 
in liver diseases (Table 2).

Many studies have described the role of MSCs in cir-
rhosis, including downregulation of pro-inflammatory 
and fibrotic cytokine activity, secretion of anti-inflamma-
tory and anti-fibrotic molecules, stimulation of hepato-
cyte proliferation, inhibition of HSCs cell activation 
and promotion of collagen degradation through secre-
tion of matrix metalloproteinases (MMPs) [506–511]. 
MSCs themselves or through paracrine secretion can act 
directly on HSCs to reduce fibrosis [512–515]. Impor-
tantly, MSCs can effectively inhibit NK cells thereby 
attenuating their mediation of liver injury in diseases 
such as cirrhosis [516]. Specifically, IDO, TGF-β and 
PGE2 are the key mediators of NK cells inhibition by 
MSCs. This inhibition is associated with a dramatic 
decrease in the expression of NK cells surface receptors 
CD69, NKp30, NKp44 and NKG2D [516–518]. In addi-
tion, MSCs can exert antifibrotic effects by inhibiting the 
activation of HSCs either directly or indirectly through 
modulation of immune cells [13] (Fig. 6a).

Some researchers have suggested that MSCs injected 
into the body are mostly trapped in the lungs, but these 
MSCs can provide signals to liver macrophages as a way 
to reduce liver fibrosis [519]. MSCs are dependent on 
IL-6 and PGE2, among others, to promote the polari-
zation of macrophages toward the anti-inflammatory 
M2 phenotype [520, 521]. Studies have shown that the 
remission of liver fibrosis after huMSCs infusion is 
attributed to the conversion of M1 macrophages to M2 
macrophages, with M2 secreting IL-10 and subsequently 
increasing M1 macrophage apoptosis [522]. MSCs were 
recently reported to induce changes in the cytokine pro-
file of macrophages and promote resolution of fibro-
sis [523, 524]. Activation of M2 macrophages and their 
MMP-13 secretion were significantly increased after 
transplantation of BM-MSCs, whereas activation of M1 
macrophages was suppressed in liver tissue. This was 
accompanied by an increase in IL-10 gene expression and 
a decrease in IL-12b, IFN-γ, TNF-α and IL-6 gene expres-
sion [523].

MSCs could also promote mobilization of Kupffer cells 
in vitro and in vivo and induce M1 to M2 conversion by 
increasing IL-4 and IL-10 secretion, thereby alleviating 
dimethylnitrosamine (DMN)-induced liver fibrosis [522]. 
Similarly, bone marrow MSCs transplantation can alle-
viate liver fibrosis by promoting the phenotypic shift of 
monocytes from the pre-fibrotic Ly6Chi subpopulation to 
the restorative Ly6Clow subpopulation through paracrine 
secretion of IL-4 and IL-10 [525]. BM-MSCs produce a 
large number of apoptotic bodies in the fibrotic liver 

72  h after transplantation. Ly6Clow macrophages engulf 
most apoptotic bodies after robust triggering of MMP-
12 expression via the PtdSer-MerTK-ERK signaling 
pathway to alleviate fibrosis [525]. A study used a com-
bination of two cell types, MSCs and colony-stimulating 
factor 1-induced bone marrow-derived macrophages (id-
BMMs), for treatment [524]. On the one hand id-BMMs 
promoted the migration of host macrophages and neu-
trophils to the damaged liver, on the other hand ex vivo 
assays confirmed that MSCs made id-BMMs differenti-
ate into M2 macrophages with high phagocytic activity 
and high expression of MMP-13, both of which effec-
tively improved liver fibrosis and regeneration through 
the increase of antifibrotic and pro-regenerative factors 
[524].

MSCs therapeutic effects are mediated, at least in part, 
through the regulation of Treg / Th17 cells balance. Stud-
ies in mouse models of liver fibrosis have shown that 
MSCs promotes the expansion of foxp3 + Treg cells and 
inhibits the proliferation of Th17 cells in an IDO-depend-
ent manner and eventually led to attenuation of liver 
fibrosis [526]. In another study, transplantation of MSCs 
was effective in improving liver function in patients with 
HBV-related cirrhosis, and the increase in hepatic Treg 
cells and decrease in Th17 cells after MSCs transplanta-
tion led to an increase in the Treg/Th17 ratio [527]. IL-
17A and its pro-fibrotic effects in the liver are the most 
studied [528]. IL-17A-producing cells Th17 cells are 
diverse and can be derived from both Th17 cells, but also 
from neutrophils, NKT cells, and some innate T cells 
subsets [529]. In a CCL4-induced rat liver fibrosis model 
[808], BM-MSCs treatment reduced IL-17, IL-2 and IL-6 
serum proteins and downregulated IL-17A and IL-17RA 
proteins in liver tissues [530]. Further studies showed 
that BM-MSCs could play a protective role in liver fibro-
sis treatment by affecting the IL-6/STAT-3 signaling 
pathway and downregulating IL-17A [530].

MSCs-based cell-free therapy, which is also used in 
liver fibrosis, helps to circumvent the limitations of cell 
therapy. In TAA-induced chronic liver injury in rats, 
MSC-EVs immunomodulatory activity was compara-
ble to that of their parent cells, significantly inhibited 
the proliferation of peripheral blood mononuclear cells 
(PBMCs), and resulted in reduced levels of fibrosis and 
collagen density, necrosis, and inflammation [531]. By 
cytokine assay and genetic analysis, MSCs significantly 
increased the secretion of anti-inflammatory factors and 
decreased the secretion of IFN-γ; and were accompanied 
by upregulation of collagenase as well as anti-apoptotic 
genes [531]. In addition, a study delivered TSG-6, a major 
anti-fibrotic cytokine of MSCs, to the liver via calcium 
phosphate nanoparticles with the aim of avoiding pos-
sible adverse effects of MSCs. The results showed that 
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TSG-6 delivery effectively induced macrophage polariza-
tion toward the M2 phenotype and upregulated MMP-12 
expression in macrophages, effectively alleviating liver 
fibrosis [532].

The core of MSCs in the treatment of cirrhosis is the 
improvement of fibrosis, and MSCs have been shown to 
reduce the activation of MSCs either directly by target-
ing HSCs or indirectly through immunomodulation, but 
the mechanisms involved remain to be deciphered. Clini-
cal studies using MSCs for cirrhosis have been conducted 
extensively and have confirmed their effectiveness in 
improving liver function, but their ability to reduce fibro-
sis still needs to be confirmed in large scale and stratified 
studies in different chronic liver disease settings. These 
efforts will clear the way for the large-scale use of MSCs 
in clinical treatment in the near future.

MSCs for immunocompromised liver diseases

MSCs for CVH
The continued development of direct antiviral agents 
(DAAs) has addressed most of the challenges in the field 
of chronic HCV treatment and has been so successful in 
the antiviral treatment of chronic HCV that HCV infec-
tion is considered curable [449]. However, some patients 
remain difficult to cure. Compared to HCV, the dilemma 
of HBV antiviral treatment still exists. The field generally 
recognizes the importance of addressing the persistence 
of covalently closed-loop cccDNA in cells and the high 
antigenic load (especially hepatitis B surface antigen). 
However, HBV is present in cells as cccDNA and can-
not be eliminated with antiviral drugs [533]. In addition, 
recovery of the immune response after DAAs therapy is 
currently under debate, with certain immune features 
being rejuvenated but some signs of immune exhaustion 
likely to persist [534–537]. Therefore, treatment of CVH 
requires restoration of a low antiviral immune response 
[538], clearance of infected hepatocytes and prevention 
of reactivation of residual virus (Table 1).

The immunosuppressive activity of MSCs has raised 
safety concerns regarding primary viral infections and 
increased risk of viral reactivation. However, MSCs can 
promote the proliferation of virus-specific immune cells 
and their antiviral exertion [20, 21]. For example, using 
the SIV model of AIDS, some researchers have recently 
found that MSCs can restore antiviral immunity by 
reconstituting damaged lymphoid follicles, as evidenced 
by robust regeneration of germinal centers, as well as 

restoration of follicular B cells and Tfh cells leading to 
increased levels of anti-SIV antibodies and SIV-specific 
CD8 + T cells, resulting in viral reduction [539]. Similarly, 
a phase II randomized, double-blinded, multicenter, pla-
cebo- controlled, dose-determination trial in 72 immune 
nonresponder (INR) patients with chronic HIV-1 infec-
tion showed that treatment with huMSCs was safe, with 
a significant increase in CD4 + T cells counts in HIV-
infected patients after 48 weeks of treatment, although a 
larger cohort studies are needed to further confirm the 
immune reconstitution efficacy of MSCs [540].

MSCs have been shown to be effective in the treatment 
of HBV [460, 527, 541–553] and HCV [554–558] related 
liver failure and cirrhosis. These studies validated the 
effectiveness of MSCs in improving liver function and 
prognosis in patients with CVH. Of course, as BM-MSCs 
allow HBV infection, they may become a viral reservoir 
after administration. However, research found that adi-
pose-derived MSCs were insensitive to HBV [544] and 
may be a more suitable source for HBV-related liver dis-
eases. In addition, recent studies have shown that the effi-
cacy of MSCs in the treatment of HBV-associated acute 
chronic liver failure and cirrhosis varies depending on 
the age of the patient [559]. In summary, prior to the clin-
ical use of MSCs, assessment of patient’s age and further 
study of the long-term effects of MSCs therapy in HBV-
infected patients from different sources are necessary to 
determine the safety and efficacy of their therapeutic use.

MSCs can be used as adjuvants for antiviral vaccines 
and, in addition, MSCs or their exosomes modified by 
genetic modification and other methods can be used 
as a delivery vehicle for antiviral vaccines (Fig. 7a). In a 
study, mouse MSCs simultaneously expressing five non-
structural HCV proteins (NS3-NS5B) modified triggered 
strong phagocytic activity, enhanced T lymphocyte pro-
liferation, anti-HCV non-structural proteins (NS3-NS5B) 
IgG antibodies production and type I and II interferon 
production [560]. This antiviral immune effect produced 
by modified MSCs is thought to be related to the inflam-
matory cytokine IL-6 affecting the immunomodula-
tory effects of MSCs and the reduction of MDSCs [560]. 
A study by the same research group further showed 
that bone marrow MSCs also exhibit adjuvant proper-
ties in hepatitis C DNA vaccination [561]. When MSCs 
were administered prior to hepatitis C DNA vaccina-
tion, low levels of cytokines in mice allowed MSC type 
1 to effectively enhance the immunostimulatory activity 
of mice against DNA vaccine. In contrast, high levels of 

(See figure on next page.)
Fig. 7  Immunomodulation and immunotherapeutic strategies of MSCs in liver diseases. Due to the immunomodulatory plasticity of MSCs 
and their ability to deliver immunomodulators after modification, MSCs can activate or enhance antiviral and antitumor immune responses in 
immunocompromised liver diseases including (a) CVH and (b) HCC, resulting in clearance of viral and tumor cells. The dashed arrows indicate 
potential immunomodulatory mechanisms or immunotherapeutic strategies
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pro-inflammatory cytokines detected after DNA vaccina-
tion promoted the conversion of MSC type 2, leading to 
suppression of antiviral immunity [561].

MSCs can also effectively inhibit the replication of 
HCV and exhibit antiviral effects. The huMSC-Exos 
contain four microRNAs (miRNAs), including let-7f, 
miR-145, miR-199a, and miR-221, which are capa-
ble of inhibiting HCV RNA replication. It was found 
that exosomes may exert antiviral effects by transport-
ing these microRNAs with HCV-RNA binding sites to 
infected hepatocytes [556]. In addition, huMSC-Exos 
shows synergistic effects with IFN-α or telaprevir in the 
inhibition of HCV replication and is considered as a new 
adjuvant therapeutic agent for the treatment of HCV 
patients [556].

Despite the risk of viral transmission as well as immu-
nosuppressive properties, studies have demonstrated the 
safety and efficacy of MSCs in viral liver diseases. The 
use of MSCs-exos and the loading of immunotherapeu-
tic agents by biomodified MSCs and their extracellular 
vesicles are expected to avoid these risks while enhancing 
hepatic antiviral immunity. However, it should be noted 
that the additional liver damage associated with restored/
enhanced immunity may affect its immunotherapeutic 
efficacy [108, 534, 562], which also applies and needs to 
be carefully evaluated in MSCs.

MSCs for HCC
As mentioned earlier, chronic liver disease induces a 
tumor microenvironment that promotes tumor develop-
ment and metastasis through a variety of inflammatory 
and non-inflammatory precancerous factors, in addition 
to the formation of tumor cells and tumor tissue that can 
further consolidate the immunosuppressive microenvi-
ronment that promotes their development (Fig.  4c). To 
reverse the tumor-induced immunosuppressive microen-
vironment, a number of immunotherapeutic approaches 
have targeted the aforementioned critical steps [563] 
(Table  1). ICIs such as PD-1/PD-L1 have been used in 
immunotherapy regimens for HCC patients with impres-
sive success [74, 564]. However, immune checkpoint-
based immunotherapies still have a long way to go in the 
face of low response rates and appear to exhibit negative 
effects in NASH-HCC that impair immune surveillance 
and promote tumorigenesis[199]. And PD-1 inhibi-
tor treatment may lead to Treg cells expansion and fur-
ther suppression of antitumor immunity, causing tumor 
hyper-progressive disease (HPD) [565]. Recent stud-
ies have shown that HPD can occur in patients with 
advanced hepatocellular carcinoma treated with anti-
PD-1 antibodies, suggesting that ICIs may even be harm-
ful in this setting [566]. Moreover, the occurrence and 
progression of HCC involves various mechanisms and 

microenvironmental changes, and there is a fundamen-
tal question regarding targeted drug therapy (MTA), i.e., 
whether a targeted therapy is effective. In fact, most tar-
get drug candidates have not shown the expected thera-
peutic effect in phase II or phase III clinical trials [567]. 
Combining two or more targeted agents for treatment to 
exploit synergistic effects may be a more effective strat-
egy for the treatment of HCC [74].

Although in vitro cellular experiments have shown that 
MSCs and their exosomes effectively inhibit the prolif-
eration of hepatocellular carcinoma cell lines [568–570], 
which involves multiple signaling pathways [571], some 
evidence suggests that MSCs also promote the prolif-
eration and progression of HCC [572–576]. The specific 
regulatory mechanisms regarding the promotion or sup-
pression of tumors by MSCs remain unclear. Differences 
in the tumor-promoting or tumor-suppressing effects of 
MSCs depend, at least in part, on the high or low level of 
inflammation in the microenvironment [18, 19]. In addi-
tion, the ability of MSCs to exert anti-tumor immunity 
may vary depending on their tissue origin. MSCs from 
reproductive tissu es (e.g., uterus, umbilical cord, or pla-
centa) have more potent antitumor effects and tropism 
towards tumor tissue [577]. Besides, the composition of 
the contents of MSC-EVs varies with the MSCs source 
and ultimately has different effects on tumor fate [578].

Based on the conflicting results of direct use of MSCs 
in the treatment of HCC and the risk of tumor promo-
tion, current strategies for MSCs in the treatment of 
HCC mainly include genetically modified MSCs [579, 
580], and as vectors for the delivery of oncolytic viruses 
[581, 582], bioactive proteins [583], antitumor drugs [447, 
584] and suicide genes [585, 586], especially their derived 
extracellular vesicular EVs [587, 588]. The aim of the 
above strategies is to enable MSCs to exert an efficient 
anti-tumor capacity while minimizing the pro-tumor 
risk. For example, IFN-β-modified MSCs can effectively 
inhibit HCC proliferation in vitro and in vivo by blocking 
AKT/FOXO3a signaling in HCC cells [580]. Importantly, 
exploiting the immunomodulatory capacity of MSCs and 
their advantages as alive cells carriers to enhance antitu-
mor immune responses is a more promising strategy [22, 
589], and we will highlight the progress of MSCs research 
in this regard (Fig. 7b).

Oncolytic virus‑MSCs
MSCs loaded with tumor lytic viruses activate and 
enhance the anti-tumor immune response mainly by 
inducing immunogenic cell death (ICD) and releasing 
tumor antigens (TAAs) [590]. MSCs using tumor tropism 
to deliver measles virus to tumor microenvironment sig-
nificantly inhibited the growth of hepatocellular carci-
noma in mice by administration [591]. In another study, 
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adenoviral vectors carrying anti-CD3scfv were firstly 
constructed with the aim of infecting and modifying 
HCC cells to highly express anti-CD3scfv, and secondly 
engineered MSCs were used to load this adenoviral vec-
tor to efficiently target HCC tissues. The results showed 
that MSCs successfully targeted tumor tissues and HCC 
cells highly expressing anti-CD3scfv effectively activated 
CTLs, thus inhibiting the growth of HCC [592]. In mouse 
models of renal adenocarcinoma and melanoma, treat-
ment with lysovirus dlE102 (OAd)-MSCs reduced tumor 
volume by 50%, which was associated with increased 
tumor tissue infiltration by TAMs, NK cells and TILs and 
a reduced proportion of PD-1 + TILs [593]. This suggests 
that this MSC treatment system is effective in inducing 
activation of the human immune system, thus exerting 
anti-tumor effects.

Cancer vaccine‑MSCs
MSCs and their derived exosomes can be genetically 
modified or otherwise loaded with cargo to become 
antigen expression vectors or antigen libraries for use 
as cancer vaccine delivery platforms [594]. In a phase I/
II clinical trial, mature DCs enriched with HCC antigens 
such as α-FP, glypican-3 (GPC-3) were given as a can-
cer vaccine to patients with advanced HCC and induced 
an effective T-cells response as evidenced by high lev-
els of IL-12 and IFN-γ production, with radiographic 
regression and disease stabilization in 13.3% and 60% of 
patients, respectively [595]. Predictably, MSCs could also 
carry HCC antigens or related antigenic peptides as can-
cer vaccine delivery vehicles because of their tumor-tar-
geting and antigen-presentation capabilities. The strategy 
of MSCs as cancer vaccine targeted delivery and presen-
tation of antigenic peptides to T cells has shown initial 
success in tumor models such as mouse lymphoma as 
well as melanoma [596, 597], although the lack of HCC 
highly immunogenic tumor antigens and neoantigens 
may pose some challenges for HCC vaccine development 
[598].

Genetically modified MSCs
Genetically modified MSCs coupled with the ability of 
these cells to migrate to tumor sites can be used as an 
effective tool to boost the body’s anti-tumor immunity. 
Bone marrow MSCs have been explored as carriers for 
the delivery of bispecific T cell-junction antibodies, 
which bind tumor antigens and specific T lymphocytes 
[599]. Szoor and colleagues used MSCs that expressed 
bispecific T-cell splicing agents (GPC3-ENG) target-
ing Glypican 3 (GPC3) and CD3, to direct GPC3-spe-
cific CD4 + T helper cells and CD8 + CTLs towards the 
GPC3-expressing HCC cells. Increased IFN-γ production 
by GPC3-specific CD4 + T cells and enhanced activation 

and amplification of GPC3-specific CTLs in  vitro and 
in  vivo, resulting in CTLs-dependent effective killing of 
GPC3-expressing HCC cells [599]. Furthermore, IL-12 
genetically engineered MSCs can preferentially appear at 
primary tumor sites in mice and at spontaneous metas-
tasis sites pre-established by subcutaneous injection of 
hepatocellular carcinoma cells, representing its tumor 
suppressive effect [600]. Another study using radiation 
and MSCs expressing IL-12 increased the inhibition of 
hepatocellular carcinoma, including inhibition of lung 
metastasis and improved survival [601]. Further studies 
found increased expression of IL-12 in tumor cells and 
caused proliferation of CD8 + T cells and NK cells [601].

Using a liver metastasis model of colorectal cancer, 
SIRT-1 overexpressing MSCs were recently shown to 
exert antitumor activity by increasing the number of 
CD8 + T cells [602]. In other solid tumors, MSCs over-
expressing SIRT-1 can induce NK cell recruitment at 
breast and prostate cancer tumor sites in  vivo and pro-
mote their antitumor activity by enhancing IFN-γ secre-
tion of NK cells [603, 604]. Pan et al. overexpressed the 
T/NK cells-targeting chemokine CXCL9 and the immu-
nostimulatory factor OX40 ligand (OX40L) in MSCs by 
lentiviral transfection, which increased the proportion of 
infiltrating CD8 + T and NK cells in colon cancer tumors, 
the production of antitumor cytokines and cytolytic pro-
teins in the tumor microenvironment, thus overcoming 
the systemic toxicity of therapeutic agents and the prob-
lem of low lymphocyte infiltration in solid tumors [605]. 
In another study, chemokine ligand 19 (CCL19) was 
generated by genetic modification, successfully attracted 
CCR7 + DCs and CD8 + T cells that secrete IFN-γ, and 
effectively inhibited colon cancer growth. And the anti-
tumor phase effect was better in the case of combined 
anti-PD-L1 antibody treatment [606]. In gliomas, the 
persistence of secreted IFN-β around gliomas after trans-
plantation of MSCs infected with lentiviral overexpres-
sion of IFN-β and ferritin heavy chain (FTH) led to a 
significant infiltration of Batf3 + DCs and CD8 + T cells 
in gliomas and was able to effectively treat malignant 
gliomas [607]. These potential gene modification targets 
for MSCs have not been investigated in HCC, but their 
ability to enhance anti-tumor immunity in solid tumors 
is attractive and deserves further validation in the treat-
ment of HCC.

MSCs‑exos
Research confirms that adipose-derived MSC-exos can 
inhibit HCC growth in rat models, possibly associated 
with increased numbers of circulating and intra-tumor 
NKT cells [608]. In addition, MSC-exos can transfect 
specific miRNAs to effectively inhibit HCC develop-
ment [609, 610]. In other solid tumor models, miR-182 
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released from huMSCs-exos killed clear cell renal cell 
carcinoma (ccRCC) by suppressing VEGFA expres-
sion promoting increased numbers of DCs, NKT cells 
and CD8 + T cells as well as enhancing the sensitivity of 
tumor cells to NKT cells [611]. A recent study utilized an 
exosome-based dual delivery biological system for the 
treatment of pancreatic cancer [612]. The delivery sys-
tem consisted of BM-MSC-exos loaded with galectin-9 
siRNA by electroporation, and surface-modified oxali-
platin (OXA) prodrug as an ICD trigger. This combina-
tion therapy reversed the tumor immunosuppression of 
M2-like TAMs (M2-TAMs) by disrupting the galectin-9/
dectin1 axis and recruited cytotoxic T cells and downreg-
ulated Treg cells to stimulate anti-tumor immunity with 
significant efficacy in cancer therapy [612].

In conclusion, despite the risk associated with tumor 
promotion, MSCs can effectively activate the hepatic 
anti-tumor immune response through genetic modi-
fication and loading of tumor antigenic peptides, can-
cer vaccines and other oncology drugs, and show good 
potential for the treatment of HCC. In addition, MSCs 
have immunomodulatory functions, superior tumor tar-
geting and the ability to reach inside tumor tissues, which 
is unmatched by other vectors [22].

Conclusion and prospect
The treatment of liver diseases cannot be separated from 
the discussion of the hepatic immune microenvironment, 
a complex and ever-changing system whose full pic-
ture has not been fully revealed, especially in pathologi-
cal states. Many immunotherapies have been developed 
and used to treat liver diseases, but the complexity of the 
hepatic immune microenvironment makes single-target 
therapy unsatisfactory and combination of drugs may be 
a more effective therapeutic strategy. In addition, more 
advanced and comprehensive multi-omics techniques are 
being used to dissect the immune interaction landscape 
in the liver to identify potential therapeutic targets for 
specific diseases.

Clinical trials of MSCs for the treatment of liver dis-
eases have been extensively conducted, with most studies 
focusing on advanced liver disease and cirrhosis to verify 
safety and efficacy. Their therapeutic effects have been 
interpreted as a combination of immunomodulatory, 
regeneration-promoting and anti-fibrotic capabilities. 
From the perspective of immunopathogenesis of liver 
disease, the immunomodulatory capacity of MSCs needs 
to be carefully investigated to assess whether the com-
bined and plastic immunomodulatory capacity of MSCs 
has significant advantages, especially if it can overcome 
the poor effect of single immune target therapy. This is 
crucial for the further application of MSCs in the treat-
ment of liver diseases.

Still, the immunomodulatory ability of MSCs in viral 
infections and tumors is controversial and requires fur-
ther studies to clarify as well as strict quality control dur-
ing clinical use to avoid their potential risks. Compared 
to conventional unmanipulated MSCs, the overall effi-
cacy and/or organ homing of MSCs has been improved 
in recent years by genetically engineering MSCs [613] 
and by using MSCs-derived exosomes as drug carriers 
[614]. Exosomes, a cell-free therapy, also avoid the poten-
tial risk of hypermigration and carcinogenesis of MSCs 
[614]. Therefore, MSCs are promising for the treatment 
of liver diseases.

Furthermore, the assessment of the therapeutic efficacy 
of MSCs does not include their effectiveness in halting 
the progression of chronic liver disease to cirrhosis and 
HCC. Considering the refractory nature of end-stage 
liver disease and HCC, the high mortality rate and the 
need for clinical control, it is necessary to evaluate the 
role of MSCs in this regard in the future. In addition, 
there are differences in the immunomodulatory mecha-
nisms and focus of MSCs in acute and chronic viral hepa-
titis, and future clinical and preclinical studies should 
pay attention to the distinction in the selection of study 
subjects. Immune dysfunction in end-stage liver dis-
eases such as advanced cirrhosis, liver failure, and HCC 
is often characterized by the coexistence of inflamma-
tion and immune deficiency, and different etiologies may 
lead to different immune landscapes in end-stage liver 
diseases. Therefore, further etiologically stratified, rand-
omized, high-level clinical studies are needed to improve 
the reliability of the clinical efficacy of MSCs in order to 
establish MSCs therapy as a clinical option for these liver 
diseases. The efficacy of MSCs in combination with other 
immunotherapeutic agents for the treatment of liver dis-
ease has not been fully evaluated. In addition, further 
research on the optimal source, the best route of admin-
istration, sufficient number of MSCs and prolonged 
survival of transplanted MSCs is needed to improve the 
efficacy of MSCs therapy.

In conclusion, MSCs are promising immunotherapeu-
tic approaches for liver diseases, and the specific cellular 
and molecular mechanisms of MSCs immunomodula-
tion will be further clarified as the immunopathogenesis 
of liver diseases is further investigated. MSCs, together 
with other immunotherapeutic agents, are expected to 
advance the field of immunotherapy for liver diseases.
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