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Purpose: To investigate accuracy of the sleep staging algorithm in a new miniaturized home sleep monitoring device – 
Compumedics® Somfit. Somfit is attached to patient’s forehead and combines channels specified for a pulse arterial tonometry (PAT)- 
based home sleep apnea testing (HSAT) device with the neurological signals. Somfit sleep staging deep learning algorithm is based on 
convolutional neural network architecture.
Patients and Methods: One hundred and ten participants referred for sleep investigation with suspected or preexisting obstructive 
sleep apnea (OSA) in need of a review were enrolled into the study involving simultaneous recording of full overnight polysomno-
graphy (PSG) and Somfit data. The recordings were conducted at three centers in Australia. The reported statistics include standard 
measures of agreement between Somfit automatic hypnogram and consensus PSG hypnogram.
Results: Overall percent agreement across five sleep stages (N1, N2, N3, REM, and wake) between Somfit automatic and consensus 
PSG hypnograms was 76.14 (SE: 0.79). The percent agreements between different pairs of sleep technologists’ PSG hypnograms 
varied from 74.36 (1.93) to 85.50 (0.64), with interscorer agreement being greater for scorers from the same sleep laboratory. The 
estimate of kappa between Somfit and consensus PSG was 0.672 (0.002). Percent agreement for sleep/wake discrimination was 89.30 
(0.37). The accuracy of Somfit sleep staging algorithm varied with increasing OSA severity – percent agreement was 79.67 (1.87) for 
the normal subjects, 77.38 (1.06) for mild OSA, 74.83 (1.79) for moderate OSA and 72.93 (1.68) for severe OSA.
Conclusion: Agreement between Somfit and PSG hypnograms was non-inferior to PSG interscorer agreement for a number of 
scorers, thus confirming acceptability of electrode placement at the center of the forehead. The directions for algorithm improvement 
include additional arousal detection, integration of motion and oximetry signals and separate inference models for individual sleep 
stages.
Keywords: home sleep apnea testing, polysomnography, forehead electroencephalography, deep learning, interscorer agreement

Introduction
Polysomnography (PSG) is a standard investigation to analyze human sleep and diagnose sleep disorders. It involves full 
night recording of multiple scalp electroencephalographic (EEG) channels, electromyogram (EMG), electrooculogram 
(EOG), single channel electrocardiogram (ECG), limb movement signals, nasal airflow, chest and abdominal movement 
signals, oximetry, snoring and body position signals.1 Subsequently, PSG data are reviewed and associated events are 
scored by a sleep technologist in a format appropriate for diagnosis of sleep disorders. As sleep staging is the major 
component of PSG data analysis, the guidelines of American Academy of Sleep Medicine (AASM) recommend 
continuous recording of the minimum of three EEG channels (frontal, central and occipital) referenced to the mastoid 
process as well as right and left EOG channels and chin EMG.1 Given its complexity, PSG investigation has been 
recommended to be performed in the sleep laboratory in attendance of a sleep technologist.2
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Obstructive sleep apnea (OSA) is a condition of disordered breathing characterized by intermittent partial (hypopnea) 
and/or complete (apnea) upper airway obstruction during sleep. These apneic events lead to hypercapnia, hypoxemia, 
sympathetic stimulation and fragmentation of the sleep architecture by arousals, which often accompany these events. 
This subsequently leads to impairment of daytime function3 and there is also evidence that repeated cortical arousals and 
hypoxemia contribute to increased mortality from cardiovascular disease in these patients.4

Given the high prevalence of OSA,5 its heavy burden on population health and availability of effective treatments, as 
well as the excessive complexity and cost of PSG, the unattended home sleep apnea testing (HSAT) has emerged as 
a simpler and cheaper diagnostic option. The recommended HSAT configurations1 typically do not include the channels 
required for sleep staging and constitute the type 3 diagnostic sleep studies, recommended for the initial diagnosis and 
longitudinal management of OSA.5–8 The type 3 devices include those based on pulse arterial tonometry (PAT),9,10 that 
may incorporate non-EEG based sleep staging algorithms. Misclassification of OSA was reported for these devices,11,12 

which can be at least partially attributed to the limitations of their sleep staging algorithms.13,14 It was shown that type 3 
studies may underestimate the presence and/or severity of OSA due to inability to correctly measure total sleep time 
(TST) and record arousals15,16 with the latter factor also responsible for not reporting the respiratory event related 
arousals (RERA) and subsequently further underestimating respiratory disturbance index (RDI). Lack or inferior 
accuracy of sleep staging in type 3 HSAT does not allow to perform proper phenotyping of OSA specifically of the 
REM phenotype.17

Type 2 diagnostic studies are unattended home recordings that include at least one channel of EEG, EOG and EMG5,7 

and are therefore capable of reporting sleep stages and overcoming the deficiencies of type 3 HSAT devices. The 
Australasian recommendation8 for the limited channel studies states that the central derivation C4-M1 should be used if 
only one EEG channel is available. This recommendation is based solely on the findings18 of only a small shift in the 
sleep stages and no significant difference in the arousals when a single C4-M1 derivation was used instead of all three 
EEG channels. The major limiting factors in type 2 studies compared to type 3 studies are the difficulty of “wiring up” 
the patient which requires the sleep technician for the most reliable recording,7 and a number of wires attached to the 
head that may prevent the patient from sleeping in their natural position and therefore compromise the correct assessment 
and phenotyping of OSA.19 It would be important to investigate feasibility of accurate sleep staging based on the 
minimum number of electrodes attached to a small area on the forehead which would ensure simple and reliable self- 
application by the patient and the least invasiveness of overnight sleep.

While similarly to the approach used a prior study,18 the early commercial single channel sleep staging algorithms 
utilized the central EEG derivations,20 with the advent of HSAT the focus shifted to investigation of the role of the frontal 
EEG in sleep staging and evaluation of the automatic algorithms based on the frontal EEG. It was demonstrated21 that 
kappa for overall sleep staging agreement between manual scoring from the single frontal channel (Fpz-M1) and from the 
full PSG was 0.72 and 0.73 for the two scorers, and epoch by epoch sleep/wake percent agreement was 92% and 95% 
respectively. Investigation of Michele Sleep Scoring22 found that its performance on single channel EEG was as accurate 
with the frontal as with the central EEG derivations. The performance of Sleep Profiler device utilizing Fp1-Fp2 for EEG 
was reported.23–29 The Sleep Profiler algorithm uses a rule based combination of spectral analysis, feature extraction and 
decision tree. The reported values of kappa statistics for agreement between the Sleep Profiler algorithm and the parallel 
PSG manual scoring were 0.61, 0.62,25 and 0.6327 in the investigation groups including the OSA sufferers, and 0.76 and 
0.74 for the healthy participants.24 When the accuracy of manual staging from the Sleep Profiler frontal electrode and the 
expert adjusted algorithm accuracy were analyzed in the groups with suspected OSA,27,28 the values of kappa were 0.67 
in both studies, with the mean overall percent agreement at 73.9% for the latter case.27 It was also shown24 that the power 
values of submental and frontal EMG were similar during wakefulness and sleep, thus further supporting suitability of 
the frontal montages for sleep staging. Another automatic algorithm for F4-M1 derivation utilizing a combination of 
feature extraction based on spectral analysis and a decision tree based on neural network reported kappa of 0.62 
and percent agreement of 75.5% for the four categories (with N1 and N2 merged into light sleep) in the investigation 
group comprising 60% of participants with OSA.30

In recent years further significant improvement in the accuracy of sleep staging algorithms was achieved with 
application of Deep Learning (DL) models and software tools.31 Several publications32–43 investigated application of 
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DL to development of single EEG channel sleep staging algorithms, typically using multilayer convolutional neural 
networks (CNN)34,35,38,40,42 or different implementations of recurrent neural networks (RNN)32,37 or combinations of 
CNN and RNN.33,36,39,41 While most of these algorithms demonstrate very high percent agreement with manual PSG that 
significantly exceeds 80% and even 85% for some configurations39 it must be taken into account that these results were 
mostly achieved for the public sleep databases which often only include the healthy participants and the artifact free 
signals. Importantly it is demonstrated39 that for the preferred DL model (bidirectional LSTM with attention31) sleep 
staging accuracy is highest at 81.72% for the frontal derivation (Fp1-A1) compared to 81.62% and 77.09% for the central 
(Cz-A1) and occipital (O1-A1) derivations respectively. A combined CNN-RNN (with bidirectional LSTM) DL model36 

was trained on a clinical data set of 717 diagnostic patients with suspected OSA, and achieved the respective accuracies 
of 82.9% on the single F4-M1 EEG channel and 83.8% on a combination of F1-M1 EEG channel and E1-M2 EOG 
channel when tested on 87 recordings from the same data set.

The accuracy of any sleep staging algorithm when it is compared with the manual scoring should be interpreted only 
in the context of interscorer agreement. The level of interscorer agreement varies significantly depending on the study 
population and affiliation of the scorers.25,43 Typically interscorer agreement decreases for OSA population compared to 
the healthy participants and also with increase in the apnea-hypopnea index (AHI), and increases for scorers from the 
same facility following common training procedures. This was demonstrated by the scorers from SHHS study44 who 
achieved the values of percent agreement between 86.8 and 88.1% and kappa statistics in the range of 0.81–0.83 despite 
a significant AHI between 14 and 15 in the study group. For all other reported interrater agreement studies involving the 
OSA populations, the levels of agreement were significantly lower. The reported percent agreement for 38 subjects with 
sleep disordered breathing was 71%.45 The percent agreement and kappa for 31 subjects with mean AHI of 22 were 
reported at 82% and 0.73 respectively.46 The mean percent agreement in a study47 with a large number of scorers was 
reported at 82.6% on a data set with a small proportion of OSA patients. Mean percent agreement for the three scorers 
from different institutions and the data set with mean AHI of 15.8 was 77%.18 Mean percent agreement for the two 
scorers on a data set of 56 subjects with 50% OSA sufferers was 78.9%48 A study of eight different sleep centres49 

reported mean percent agreement and kappa of 76.8% and 0.68 respectively on a data set of 198 recordings with 
a mixture of sleep disorders. Another study with five sleep technologists and a mixed data set of 63 participants (52% 
OSA) revealed the mean interscorer percent agreement of 75.9%.27

Compumedics has developed a new miniaturized sleep monitoring device – Somfit (Figure 1), which is attached to 
the patient’s forehead and combines the channels specified for a PAT-based HSAT device (oximetry and PAT, plus 
oximetry derived pulse rate, snoring and accelerometry derived head positions, angles and motion) with the neurological 
signals representing EEG, EOG and EMG derivations. The first evaluation of Somfit is presented for the early rule based 
sleep staging algorithm.50 Recently a new DL based sleep staging algorithm was developed for Somfit. The objective of 
this study was to evaluate the latest Somfit sleep staging algorithm in a target clinical population, which is a combination 
of the patients with suspected OSA and those with known OSA requiring ongoing management.

Figure 1 Somfit device.
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Methods
Study Design
A total of 110 participants were enrolled in the study, which involved simultaneous recording of full overnight PSG and 
Somfit data. Eligible participants were patients who were referred for a sleep diagnostic study and satisfied at least one of 
the following criteria:

● Referral includes suspected sleep disordered breathing based on the judgement of a referring sleep physician;
● Patients have already been diagnosed with sleep disordered breathing and require a diagnostic study as part of their 

ongoing OSA management. Significant weight change of more than 10% was the main reason for a referral for 
a diagnostic study for such patients,6 and ongoing fatigue despite good adherence to treatment being an additional 
reason.

Offers to participate in the study were made to the patients as they presented to the center in the order they presented. 
To confirm the high pretest probability of sleep apnea, the participants were asked to complete Epworth Sleepiness Scale 
(ESS) questionnaire.

The recordings were conducted at the three centers in Australia:

● Sleep Unit, Epworth Hospital, Camberwell Victoria – 40 subjects;
● SleepMetrics, Heidelberg Victoria – 35 subjects;
● Appleton Institute Central Queensland University, Wayville South Australia – 35 subjects.

This multicenter clinical trial was approved by HREC (Bellberry Limited Eastwood South Australia Australia), Protocol 
No. 2022-10-1133. The approval included the participant information sheet and consent form. According to this form 
informed consent was obtained from the study participants. The study was conducted in accordance with the guidelines 
outlined in the Declaration of Helsinki. The trial is also listed on ClinicalTrials.gov (ID NCT05647746).

Out of the 110 studies, four (two each in Centers 2 and 3) were excluded from analysis. The flowchart for the 
exclusion scenarios is presented in Figure 2.

Sleep Studies
The PSG recordings were conducted with Compumedics Grael system at Centers 1 and 2, and with Compumedics 
E-Series System at Center 3.

Figure 2 Study flow chart.
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All PSG recordings were independently scored according to the AASM rules1 by three qualified, experienced sleep 
scientists blinded to the subjects’ identity and to the fact that the sleep studies were utilized in the trial. Each study at a given 
center was scored by the same three sleep scientists. The scorers at Center 1 were the sleep scientists continuously employed 
by the Epworth Sleep Units for a number of years, while the scorers from the two other centers were all accredited by 
Australasian Sleep Technologists Association (ASTA) while not necessarily working together for the same facility.

The consensus hypnogram generated from the three manual PSG hypnograms was used as the final hypnogram for 
each PSG recording for all subsequent comparisons with the Somfit automatic hypnogram.

Somfit Sleep Staging Algorithm
The Somfit sleep staging algorithm is based on DL U-sleep CNN architecture.36 It comprises 12 combinations of encoder 
and decoder units that take 35 consecutive 30 second epochs of EEG and EOG data as a two-dimensional input, map the 
input signals into a sequence of up to 302-dimensional feature spaces and then determine the probabilities of the five 
sleep stages for each one of the 35 epochs. As required by AASM,1 Somfit records two EOG channels – right and left, 
therefore the inference model estimates the probabilities of sleep stages for the two input pairs – EEG+EOG (right) and 
EEG+EOG (left), then adds the respective probabilities and selects the stage with the highest combined probability as the 
output of the algorithm. This architecture was initially trained on 783 Somfit studies with the manual Somfit hypnograms 
used as the ground truth. The final model comprises more than three million optimized weight coefficients. To improve 
detection of stage N1, another similar DL architecture was trained on 216 parallel Somfit and PSG recordings with the 
long continuous stretches of stage N3 excluded from training and the manual PSG hypnograms used as the ground truth. 
If the second model detects N1, it overrules the output of the first model, if that output is Wake or N2 within 10 min of 
the nearest Wake epoch.

Statistical Analysis
The reported statistics include the following measures of agreement between the Somfit automatic hypnogram and 
consensus PSG hypnogram:

● Percent agreement across the five sleep stages – N1-N2-N3-REM-Wake;
● Kappa statistic across the five sleep stages;
● Percent agreement across the four sleep stages (Light NREM-N3-REM-Wake) with N1 and N2 merged into one 

category – light NREM sleep. This metric allows to remove the effect of errors in detection of N1 which is known 
for poor level of agreement37 in all settings;

● Percent agreement across three categories – NREM-REM-Wake. This metric is important for OSA phenotyping 
which includes identification of the REM phenotype;11

● Percent agreement across two categories – Sleep-Wake. This statistic demonstrates the impact of sleep staging 
accuracy or agreement on the estimation of AHI;1

● Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for each 
sleep stage.

The same statistics were generated to characterize the level of agreement between different manual PSG hypnograms.
Linear Mixed Models (LMM) with random intercepts were used to examine the significant differences (P<0.05) 

between the measures of Somfit/PSG agreement and interscorer agreement as well as between the estimates of agreement 
for different combinations of sleep stages. In addition to examination of superiority (that required non-negativity of 95% 
confidence interval of a respective regression coefficient) we explored noninferiority of the Somfit algorithm with respect 
to interscorer agreement. The margin of noninferiority [MNI] was set at 5% for percent agreement, 0.05 for kappa statistic 
and 5% for the individual sleep stage performance measures based on the range of reported interscorer variability in 
various settings.43–49 To establish noninferiority with LMM, 95% confidence interval of a respective regression 
coefficient had to fall within [-MNI;∞]. ANOVA was used to test for the different mean agreement measures between 
the centers and sample categories (OSA presence/severity, gender, age, BMI). Repeated measures ANOVA was used to 
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test for the different mean agreement measures between the pairs of scorers form the same center. Unpaired t-test was 
used to examine the significant differences between the sample categories with the hypothesized direction of change in 
the level of agreement. Stata 15 (StataCorp) statistical software was used for statistical analysis.

Results
Participants Characteristics
Characteristics of 106 patients who completed both Somfit and PSG recordings and were included into analysis are 
presented in Table 1. The participants’ information includes ESS statistics and key comorbidities.

Integrative Estimates of Agreement Between Somfit Algorithm and PSG Consensus 
Hypnogram
The estimates of percent agreements between the Somfit hypnogram and consensus PSG hypnogram for the three centers 
separately and for the combined data set are presented in Table 2 and Figure 3. The percent agreement estimates for the 
individual studies are presented in the Tables S1–S3 for the respective centers. LMM analysis shows that for each center 
separately and for the combined data the percent agreement progressively increases when the number of categories is 
reduced from five sleep stages (N1-N2-N3-REM-Wake) to two (Sleep-Wake). ANOVA F values demonstrate that there 
are no significant differences between the estimates of percent agreement for the study centers for all sets of categories.

The respective kappa statistics for all five stages are shown in Table 3. For kappa statistic the two sets of results are 
presented – derived from the separate confusion matrices for each sleep study (left column) and from the pooled 
confusion matrix (right column). There is a noticeable difference between the two methods because of their impact on the 

Table 1 Characteristics of the Study Cohort

Participants Characteristics Center 1, N=40 Center 2, N=33 Center 3, N=33 Total, N=106

OSA status at enrolment Suspected 37 4 33 74

Known 3 29 0 32

ESS – Mean (SD)* 9.45 (4.71) 9.09 (5.39) 9.19 (4.45) 9.23 (4.82)

Cardiovascular Comorbidities 13 14 9 36

Respiratory Comorbidities 9 8 11 28

Diabetes 2 2 5 9

OSA severity No OSA 11 6 4 21

Mild 15 5 16 36

Moderate 6 9 5 20

Severe 8 13 8 29

Gender Male 28 14 17 59

Female 12 19 16 47

Age group <65 years old 34 26 25 85

≥65 years old 6 7 8 21

BMI category <25 5 6 10 21

[25:30] 17 12 14 43

≥30 18 15 9 42

Notes: Cardiovascular comorbidities included high blood pressure, heart failure, heart attack/angina, stroke/brain aneurysm. Respiratory comorbidities 
included asthma and chronic obstructive pulmonary disease (COPD). *ANOVA F = 0.06 (P=0.98) – no difference between mean ESS at three Centers.
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values of chance agreement. We decided to present both sets of results as the former method appears to be more adequate 
for characterization of single night studies and appropriate for statistical comparisons, yet the latter method is often used 
in the literature on staging algorithms.22–30,32–42 ANOVA F value shows that there are no significant differences between 
the estimates of kappa for the study centers.

PSG Interscorer Agreement
The percent agreement estimates between all pairs of manual PSG hypnograms are shown in Table 4. It also 
demonstrates which interscorer agreement estimates are superior to the respective measures of agreement between 
Somfit and PSG consensus hypnograms, and for which study centers and comparison categories the Somfit agreement 
is noninferior. It is also evident form the repeated measures ANOVA tests that for the Centers 2 and 3 the hypotheses of 
no difference between mean pairwise comparisons cannot be supported. The ANOVA tests between the mean 
pairwise percent agreements at the three centers indicate the difference between the centers for all comparison categories.

Figure 4 shows all 95% confidence intervals for the interscorer percent agreement, together with the 95% confidence 
interval for the percent agreement between Somfit algorithm and consensus PSG hypnogram for the total data set.

Table 5 presents kappa statistics characterizing agreement between all pairs of manual PSG hypnograms for the five 
sleep stages. Similar to Table 4, all instances of superior interscorer PSG agreement and noninferior agreement between 
Somfit algorithm and PSG consensus hypnogram with respect to the interscorer agreement are marked based on the 
results of LMM regression. The findings of difference in the mean pairwise agreements at the Centers 2 and 3 (repeated 
measures ANOVA) and between the three Centers (ANOVA) are confirmed.

Somfit Algorithm Performance for OSA Severity and Other Study Subgroups
The percent agreement estimates for the Somfit algorithm against the consensus PSG hypnogram stratified for different 
OSA severity levels are presented in Table 6. With the expectation of reduction in the level of agreement as the severity 
of OSA increases, unpaired t-test demonstrates that only some comparisons reveal significant (P<0.05) decreases in the 
level of agreement – normals/mild versus severe for N1-N2-N3-REM-Wake and normals versus moderate/severe for 
NREM-REM-Wake and Sleep-Wake. ANOVA results also show that the mean percent agreements for the OSA 
categories are different only for N1-N2-N3-REM-Wake and Sleep-Wake comparisons.

The results for kappa between the Somfit algorithm and consensus PSG hypnogram are presented in Table 7. Unpaired t-test 
only shows decreases between normals/mild vs severe, and ANOVA confirms different means across the OSA categories.

The percent agreement and kappa statistics for the Somfit algorithm against the consensus PSG hypnogram stratified 
for the genders, age groups (younger and older than 65 years old) and BMI categories (normal, overweight and obese) are 
presented in the Tables S4–S9. The only detected change in the level agreement is the decrease in kappa between normal 
weight (BMI <25) and obese patients (BMI ≥30).

The percent agreement statistics across OSA severity, gender, age and BMI categories are graphed in Figure 5 – only 
showing the results for all five sleep stages (N1-N2-N3-REM-Wake).

Table 2 Percent Agreement Between Somfit Algorithm and Consensus PSG Hypnogram

Center (No. Studies) Percent Agreement – Mean (SE)

N1-N2-N3- REM-Wake 

F (P) = 1.21 (0.30)*

Light NREM-N3-REM-Wake 

F (P) = 0.50 (0.61)*

NREM-REM-Wake 

F (P) = 0.36 (0.70)*

Sleep-Wake 

F (P) = 0.42 (0.66)*

1 (40) 75.91 (1.15)** 79.87 (1.14)** 87.38 (1.15)** 89.89 (1.03)

2 (33) 74.72 (1.26)** 80.75 (0.98)** 86.15 (1.11)** 88.41 (0.98)

3 (33) 77.82 (1.72)** 81.66 (1.66)** 85.86 (1.82)** 89.45 (1.49)

Total (106) 76.14 (0.79)** 80.70 (0.74)** 86.52 (0.79)** 89.30 (0.37)

Notes: *F and P-values for ANOVA tests between the three centers. **Inferior to the percent agreement with the reduced number of sleep stages, 
positioned to the right (P<0.05).
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Performance Measures for Individual Sleep Stages
Table 8 presents the estimates for five performance measures (sensitivity, specificity, PPV, NPV and accuracy), for different 
sleep stages. As these results are to be compared with the respective PSG interscorer performance measures (these estimates 
are presented in the Table S10), the results for the combined Centers 2 and 3, that employed the scorers from different facilities 
in contrast to the Centre 1, are shown separately in addition to the results for the full data set. On the basis of LMM regression 

Figure 3 Percent agreement between Somfit algorithm and consensus PSG hypnogram.
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tests, Table 8 highlights the performance measures where PSG interscorer estimates are superior to those of the Somfit 
algorithm, and where the Somfit algorithm estimates are superior and noninferior with respect to the interscorer estimates.

Discussion
There were significant discrepancies in some patient characteristics between different centers. While almost all patients 
enrolled at Centers 1 and 3 only had suspected OSA, the majority of the patients enrolled at Center 2 had a known history 
of OSA and required diagnostic review, primarily due to a significant recent weight change. This resulted in over-
representation of the moderate and severe OSA populations at Center 2 (two thirds of the enrolled participants) compared 
to the Centers 1 and 3 at 35% and 39%, respectively. Despite that, the hypothesis of no difference in the mean ESS 

Table 3 Kappa Statistics for Agreement Between Somfit Algorithm 
and Consensus PSG Hypnogram – Five Sleep Stages (N1-N2-N3- 
REM-Wake)

Center (No. Studies) Kappa – Mean (SE)

Sleep Study Based 
F (P) = 0.85(0.43) *

Pooled Confusion  
Matrix

1 (40) 0.650 (0.017) 0.672 (0.003)

2 (33) 0.637 (0.019) 0.655 (0.003)

3 (33) 0.676 (0.020) 0.689 (0.003)

Total (106) 0.654 (0.013) 0.672 (0.002)

Notes: *F and P-values for ANOVA tests between the three centers.

Table 4 Interscorer Percent Agreement Between All Pairs of Manual PSG Hypnograms

Center 
(No. Studies)

Scorers Percent Agreement - Mean (SE)

N1-N2-N3-REM- 
Wakea,b,c

Light NREM-N3-REM- 
Wakea,b,c

NREM-REM- 
Wakea,b,c

Sleep- 
Wakea,b,c

1 (40) A vs B 84.45 (0.66)* 89.20 (0.56)* 95.23 (0.34)* 96.60 (0.30)*

A vs C 85.50 (0.64)* 89.69 (0.51)* 95.14 (0.59)* 96.69 (0.24)*

B vs C 84.46 (0.77)* 89.71 (0.67)* 95.28 (0.29)* 96.85 (0.27)*

Average 84.81 (0.63)* 89.53 (0.51)* 95.22 (0.27)* 96.71 (0.25)*

2 (33) A vs B 74.36 (1.93)** 81.85 (1.53)** 87.59 (1.47)** 89.59 (1.51)**

A vs C 79.02 (1.27)* 86.60 (0.81)* 91.85 (0.66)* 93.20 (0.71)*

B vs C 77.83 (1.37)* 83.57 (1.05)* 89.98 (1.10)* 92.12 (1.08)*

Average 77.07 (1.43)** 84.01 (1.03)* 89.80 (1.02)* 91.63 (1.06)*

3 (33) A vs B 76.67 (1.91)** 82.77 (1.95)** 86.95 (2.10)** 90.54 (2.12)**

A vs C 83.90 (1.17)* 90.38 (0.71)* 94.00 (0.69)* 95.78 (0.71)*

B vs C 78.41 (2.03)** 82.72 (2.07)** 86.67 (2.19)** 90.04 (2.21)**

Average 79.66 (1.63)** 85.29 (1.51)* 89.21 (1.61)* 92.12 (1.65)**

Notes: *Superior to the respective percent agreement between Somfit algorithm and PSG consensus hypnogram (p<0.05). **Respective percent agreement between Somfit 
algorithm and PSG consensus hypnogram is noninferior (P<0.05). aMean interscorer percent agreements at center 2 are different (P<0.05). bMean interscorer percent 
agreements at center 3 are different (P<0.05). cMean average interscorer percent agreements between the three centers are different (P<0.05).
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between the centers could not be rejected, most likely because majority of the participants at Center 2 were on CPAP at 
home. Overall, the distribution of different OSA categories at 20%, 34%, 19%, and 27% for healthy, mild, moderate and 
severe OSA is similar to the respective values of 17%, 31%, 23%, and 29% reported for a data set of 891 consecutive 
diagnostic studies in a large Australian public sleep unit.36

Review of interscorer agreement (Table 4 and Figure 4) indicated that the mean overall percent agreement at Center 1 
was consistently high at about 85% between all pairs of scorers, while for the other two centers it was under 80%, except 
the value of 83.90% between the scorers A and C at Center 3. The likely causes of such discrepancy are long-term 
affiliation of all scorers used by Center 1 with the same sleep laboratory and predominance of healthy and mild OSA 

Figure 4 Ninety-five percent confidence intervals for percent agreement between all pairs of manual PSG hypnograms and percent agreement between Somfit algorithm 
and consensus PSG hypnogram.

Table 5 Kappa Statistics for Agreement Between All Pairs of Manual PSG Hypnograms – 
Five Sleep Stages (N1-N2-N3-REM-Wake)

Center (No. Studies) Scorers Mean (SE)

Sleep Study Baseda,b,c Pooled Confusion Matrix

1 (40) A vs B 0.781 (0.009)* 0.794 (0.002)

A vs C 0.794 (0.010)* 0.807 (0.002)

B vs C 0.780 (0.012)* 0.793 (0.002)

Average 0.785 (0.009)*

2 (33) A vs B 0.649 (0.025) 0.661 (0.003)

A vs C 0.711 (0.014)* 0.725 (0.003)

B vs C 0.693 (0.019)* 0.705 (0.003)

Average 0.684 (0.019)*

3 (33) A vs B 0.665 (0.028)** 0.676 (0.003)

A vs C 0.775 (0.016)* 0.781 (0.003)

B vs C 0.687 (0.029)** 0.696 (0.003)

Average 0.709 (0.024)*

Notes: *Superior to the respective kappa between Somfit algorithm and PSG consensus hypnogram (P<0.05). 
**Respective kappa between Somfit algorithm and PSG consensus hypnogram is noninferior (P<0.05). aMean 
interscorer kappa at Center 2 are different (P<0.05). bMean kappa at Center 3 are different (P<0.05). cMean 
average interscorer kappa between the three centers are different (P<0.05).
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cases at this center compared to the other centers. The overall percent agreement levels of under 80% are widely reported 
for the data sets with significant OSA representation and the scorers affiliated with different sleep centers.18,27,45,48,49 

Table 5 shows that the respective mean kappa statistic estimates are above 0.78 for Center 1 and around 0.7 or lower for 
most comparisons at the other two centers. The estimates for the Center 1 are close to the range of 0.81–0.83 reported for 
the scorers following the same training procedure,44 while the lower estimates for the Centers 2 and 3 are consistent with 
the values of 0.73 and 0.68 reported for the multicenter studies with significant OSA representation.46,49 Our findings for 
kappa are also consistent with the overall meta-analysis estimate of 0.7643 which summarizes the reported interrater 
agreement investigations. Considering the individual sleep stages the reported lowest interscorer agreement for Stage 
N1,43,47 in comparison with the other stages, is confirmed by our findings of mean interscorer N1 sensitivity at 45.79 for 
all participants and 40.20 for the Centers 2 and 3 combined. As the scorers for Centers 2 and 3 were not trained at the 
same sleep laboratories, all measures of agreement indicated within center differences for these two Centers in contrast to 
those at Center 1. Particular prominent patterns of interscorer disagreement included the tendency of Scorer B from 
Center 2 to score sleep stages in a more “blocky” fashion in contrast to the other scorers more likely to present the 
fragmented hypnograms, and also a tendency of Scorer B from Center 3 to discriminate between sleep and wake more 
strictly according to AASM rules in contrast to the other scorers who appear to also take into account the breathing and 
desaturation patterns. Such differences in sleep scoring patterns lead to significant disagreements in the recordings of 
patients with moderate and severe OSA which is also confirmed by the outcomes of ANOVA tests between the centers.

Results of percent agreement between Somfit automatic hypnogram and consensus PSG hypnogram (Table 2 and 
Figure 3) at different centers demonstrate similar mean estimates at 75.91%, 74.72%, and 77.82%, with the lowest mean 

Table 6 Percent Agreement Between Somfit Algorithm and Consensus PSG Hypnogram for Different OSA Categories

OSA Category (No. Studies) Percent Agreement - Mean (SE)

N1-N2-N3-REM-Wake 

F (P) = 3.46 (0.02)*

Light NREM-N3-REM-Wake 

F (P) = 0.63 (0.60)

NREM-REM-Wake 

F (P) = 1.94 (0.13)

Sleep-Wake 

F (P) = 3.03 (0.03)*

No OSA (21) 79.67 (1.87)*** 82.42 (1.73) 89.86 (1.31)**,*** 92.56 (1.15)**,***

Mild (36) 77.38 (1.06)*** 80.98 (0.99) 86.89 (1.08) 89.86 (0.84)

Moderate (20) 74.83 (1.79) 79.51 (1.72) 84.73 (2.02) 88.29 (1.64)

Severe (29) 72.93 (1.68) 79.94 (1.68) 84.87 (1.86) 86.97 (1.64)

Notes. *Mean percent agreements are different for OSA categories, ANOVA (P<0.05). **Greater than percent agreement for moderate OSA (P<0.05). ***Greater 
than percent agreement for severe OSA (P<0.05).

Table 7 Kappa Statistics for Agreement Between Somfit 
Algorithm and Consensus PSG Hypnogram – Five Stages (N1- 
N2-N3-REM-Wake), Different OSA Categories

OSA Category  
(No. Studies)

Kappa - Mean (SE)

Sleep Study Based 
F (P) = 4.90(<0.01)*

Pooled Confusion  
Matrix

No OSA (21) 0.711 (0.026)** 0.723 (0.004)

Mild (36) 0.678 (0.015)** 0.692 (0.003)

Moderate (20) 0.638 (0.026) 0.650 (0.004)

Severe (29) 0.595 (0.025) 0.618 (0.004)

Notes: *Mean kappa estimates are different for OSA categories, ANOVA 
(P<0.05). **Greater than kappa for severe OSA (P<0.05).
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agreement at Centre 2, which had the largest combined proportion of moderate and severe OSA at 67%. ANOVA 
confirms no difference in means at the three centers for all comparison categories, As demonstrated in Table 2, percent 
agreement estimates for all centers consistently increased when the number of categories was reduced from the five sleep 
stages to four (N1 and N2 merged to light NREM), then to three (NREM-REM-Wake), and finally to two (Sleep-Wake) 
with respective mean percentages at different centers being within two percent of each other. For the total data set, the 

Figure 5 Percent agreement between Somfit algorithm and consensus PSG hypnogram (five sleep stages) across different patient characteristics.

https://doi.org/10.2147/NSS.S463026                                                                                                                                                                                                                                  

DovePress                                                                                                                                                        

Nature and Science of Sleep 2024:16 1038

McMahon et al                                                                                                                                                       Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


respective mean percent agreement estimates increased from 76% to 81% when N1 and N2 were merged, to above 86% 
for the three categories – NREM-REM-Wake, and then to above 89% for the sleep/wake discrimination. The high value 
of the latter number would contribute to reliability of the AHI values reported by Somfit, as they rely on an accurate TST. 
Table 4 demonstrates that the Somfit algorithm percent agreement across five categories is noninferior to PSG interscorer 
agreement for the three out of nine pairwise comparisons, and also for the average interscorer percent agreements at 
Centers 2 and 3. There are also a number of noninferior comparisons at Centers 2 and 3 with the reduced sets of 
categories, however none of the comparisons for Centre 1 reveal noninferiority of the Somfit algorithm. The relationships 
for the N1-N2-N3-REM-Wake comparisons are further highlighted in Figure 4 with 95% confidence intervals for 
all percent agreement estimates.

All estimates of kappa (Tables 3, 5, 7 and also S5, S7 and S9 in the Supplement) reveal the reduction of up to 0.02 
with the change from the pooled confusion matrix (right column), that is typically used in the publications, to the 
estimates based on kappa for individual studies (left column), that appears more relevant to the research questions and 
amenable to the correct statistical analysis. Such difference can be explained by the fact that the individual studies with 
lower kappa impact the overall estimate to the greater extent when they are included into analysis directly rather via the 
pooled confusion matrix. Similar to the percent agreement, there is no difference between mean kappa estimates at the 
three centers, with the mean kappa for the full data set at 0.654, or 0.672 if the pooled confusion matrix method is used 
(Table 3). According to Table 5, kappa for the agreement between Somfit and PSG consensus is noninferior to PSG 
interscorer kappa only for the pairs A/B and B/C at Center 3.

The presented percent agreement and kappa estimates demonstrate that the accuracy of Somfit sleep staging algorithm 
most likely exceeds that reported by Sleep Profiler25,27 and the frontal EEG algorithm30 for the data sets including OSA 
sufferers. The range of kappa statistic for those studies was between 0.61 and 0.63. However, the DL algorithm based on 
a combination of EEG derivation F4-M1 and EOG derivation E1-M2 reported the higher reported accuracy of 83.8% and 
kappa of 0.78.36 We will comment further on possible reasons for such discrepancy and outline the steps suggested to 
improve the accuracy of the Somfit algorithm.

Table 8 shows that the sensitivity of the stages N2 and REM is noninferior for Somfit with respective to the mutual 
PSG interscorer sensitivities, however the sensitivities of Wake, N1 and N3 are not noninferior and in fact the respective 
PSG interscorer sensitivities are superior. While the sensitivity of Wake is not noninferior, it is still relatively high at 
78.23% for the full data set. However the sensitivities of N3 and especially N1 are significantly lower for the Somfit 

Table 8 Somfit Algorithm Performance Measures for Sleep Stages – Mean (SE)

Measure Centers  
(No. Studies)

Sleep Stage

Wake N1 N2 N3 REM

Sensitivity All (106) 78.23 (1.53)* 22.34 (1.13)* 83.91 (1.40)*** 58.40 (2.78)* 87.17 (1.77)**

2+3 (66) 74.29 (2.06)* 21.74 (1.49)* 84.76 (1.76)*** 62.38 (3.47)* 87.10 (2.23)**

Specificity All (106) 91.45 (1.03)* 96.83 (0.24)*** 82.74 (0.85)* 98.68 (0.21)*** 95.85 (0.39)**

2+3 (66) 92.53 (1.29)** 21.74 (1.49)*** 82.59 (1.10)* 98.42 (0.30)*** 95.57 (0.56)**

PPV All (106) 76.30 (1.56)* 38.13 (1.57)* 75.98 (0.94)* 84.6 (2.33)*** 75.74 (2.13)*

2+3 (66) 79.99 (1.80)* 36.05 (1.93)** 76.31 (1.23)* 82.61 (2.80)*** 75.71 (2.63)*

NPV All (106) 93.19 (0.56)** 93.13 (0.45)** 89.96 (0.62)*** 94.17 (0.48)** 98.18 (0.22)**

2+3 (66) 91.61 (0.76)** 92.98 (0.62)** 90.35 (0.79)*** 95.68 (0.41)** 98.11 (0.28)**

Accuracy All (106) 89.30 (0.67)* 90.58 (0.47)** 83.73 (0.56)** 93.78 (0.39)** 94.88 (0.36)**

2+3 (66) 88.93 (0.89)** 90.29 (0.64)*** 83.92 (0.73)** 94.85 (0.36)** 94.55 (0.50)**

Notes: *Respective PSG interscorer estimate is superior (P<0.05). **Noninferior to respective PSG interscorer estimate (P<0.05). 
***Superior to respective PSG interscorer estimate (P<0.05).
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algorithm. The reduction in N3 sensitivity is exacerbated by the fact that our analysis did not use the pooled confusion 
matrix, so the moderate/severe OSA studies with small N3 durations and likely underestimation of N3 by Somfit would 
have significant impact on the mean estimate for the complete data set. It is well established that detection of stage N1 is 
the most difficult for both automatic algorithms and interscorer agreement43 which is supported by the respective 
accuracies of 23% and 47% reported by Sleep Profiler27 and DL algorithm.36 The correct detection of N1 is more 
challenging for the frontal EEG derivations owing to the greater distance from the occipital placement preferred for 
detection of the alpha patterns.1 Table 8 includes the estimates for the partial date set formed by Centers 2 and 3 to 
eliminate the effect of scorer training at the same center. This does not change the outcome of sensitivity analysis 
however for a number of performance measures (specificity and accuracy of Wake and PPV of N1) noninferiority can be 
established for the reduced data set in contrast to the full data set.

The hypothesized reduction in the level of agreement with the increase in OSA severity was only established for some 
comparisons – with transitions from no OSA or mild OSA to severe OSA for the five categories percent agreement and 
kappa, as well with transitions from no OSA to moderate or severe OSA for NREM-REM-Wake and Sleep-Wake percent 
agreement (Tables 6 and 7 and Figure 5), despite the consistent trends for the mean estimates across all OSA severity 
categories. These observations are supported by the findings for interscorer agreement43 and for the accuracy of sleep 
staging algorithms.27,30,36 Similar trends without the significant differences, except reduction in kappa between the 
normal and overweight BMI, were observed when we compared the genders (Tables S4 and S5 and Figure 5), age groups 
(Tables S6 and S7 and Figure 5) and BMI categories (Tables S8 and S9 and Figure 5). Presence and increasing severity of 
OSA and the subsequent increase in sleep fragmentation is most likely the main factor responsible for reduction in 
algorithm accuracy.

A contributing factor into reduction in the level of agreement for the Somfit algorithm with the PSG hypnograms was that 
every full night Somfit study (except the one from Center 3 with almost continuous electrode disconnection) was included in 
the data analysis. Five studies (two from Center 1–10 and 35, one from Center 2–20 and two from Center 3–4 and 11) revealed 
the noisy EEG signals as a consequence of incorrect electrode application and/or excessive patient movement. The range 
of percent agreement with the consensus PSG hypnogram for these five studies was between 48% and 62% resulting in 
significant impact on the overall level of agreement. In two of these studies (4 and 11 from Center 3) the PSG signals also had 
excessive high frequency resulting in very poor interscorer percent agreement of as low as 38% for one pair of scorers. It was 
evident that a small percentage of severe OSA studies demonstrated very noisy appearance of EEG/EOG signals not only for 
Somfit, but also on a number of occasions for PSG recordings. In addition to these observations there were inconsistencies with 
the manual scoring of stage N3 at Center 1, resulting in apparent overdetection of N3 by Center 1 scorers. This factor resulted 
in relatively poor overall percent agreement for a number of studies at Center 1, for example 17, 23 and 33, and the pooled 
confusion matrix sensitivity for Stage N3 at this center being at 59%, while staying above 69% for the other two centers.

Regarding the comparison of our results with those reported for the combined frontal EEG and EOG DL algorithm36 

we believe that there were multiple factors responsible for the difference in performance:

● DL algorithm36 excluded about 5% of consecutive diagnostic studies;
● DL algorithm36 was trained and tested on studies recorded at the same center and scored by the same scorers;
● The average interscorer agreement in our study was 80.43% therefore it is unlikely that the agreement of Somfit 

algorithm with the PSG consensus can be higher than this level;
● The mean AHI for the study36 was 15.8 while it was 21.1 for our study which makes it more challenging for the 

sleep staging algorithm performance;
● DL algorithm36 utilized EEG and EOG derivations referenced to the mastoid process which makes the signal 

patterns cleaner but this diagnostic set-up problematic for self-application.

While the presented results demonstrate that the accuracy of the Somfit sleep staging algorithm approaches the level 
of interrater agreement for accredited sleep technologists, this study also allows to identify a number of steps for further 
improvement of the algorithm to realize the maximum potential of the DL approach:
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● Integration of a DL arousal detection algorithm and retraining of a DL sub-model for stage N1 on a larger 
simultaneous Somfit/PSG data set (500 studies plus) to rectify “blocky” appearance of a hypnogram, represent 
sleep fragmentation more accurately and lift the stage N1 sensitivity to the level of at least 50%;

● Addition of a DL sub-model for stage N3 trained on a simultaneous Somfit/PSG data set to increase the stage N3 
accuracy to the level of at least 80%;

● Exploration of a larger training data set and possibility of addition of the Somfit motion signal to the main DL 
model to rectify occasional misclassification of Wake as REM sleep – examples of such errors can be found in 
studies 22 and 28 from Center 3;

● Addition of single channel DL models or DL models based on non-EEG Somfit channels (motion, SpO2, PAT) to be 
activated under the conditions of excessive noise or high impedance.

The results of the study also imply that, with the possibility of manual editing, the Somfit data are likely to be 
immediately fully adequate for producing the hypnograms of equivalent accuracy to the full PSG. As also supported by 
the results36 and a number of other single channel DL models,39 the separate chin EMG signal may not necessarily be 
required to produce valid hypnograms for the correct diagnosis of OSA.

Conclusion
Our multicenter clinical trial in a population with suspected or known OSA investigated the performance of a sleep 
staging algorithm implemented in Compumedics Somfit, a miniaturized HSAT device attached to a patient’s forehead. 
We established that the estimates of agreement between the Somfit hypnogram and simultaneous PSG hypnogram were 
noninferior to the level of PSG interscorer agreement for a number of indicators. It was possible to achieve a high level of 
algorithm accuracy owing to the application of deep learning methodology.
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